Amortization Analysis (AA)

It is the	cost per operation in t	sequence of operations to obtain bound the sequence. tase analysis? Which one is input-dependent?							
1101115	it different from the average of	ase analysis. Which one is input dependent.							
_	le, Insert to an array with dou each step we insert one item	ubling size when array is full. Initially array size is 0 in the array							
and for	++								
Insert	11 11								
	++								
	+++								
Insert	12 11 12								
	+++								
	+++								
Insert	13 11 12 13								
	+++								
	+++								
Insert	14 11 12 13 14								
	+++								
	+++								
Insert	15 11 12 13 14 15								
	+++++								
What i	s the time complexity of ins	sert?							
		opy 1), step 3 (copy 2), step 5 (copy 4), etc							
Сорупц	over happens after step 2 (et	οργ 1), step 3 (copγ 2), step 3 (copγ +), etc							
There	are 3 methods in Amortizat	ion Analysis							
There are 3 methods in Amortization Analysis.									
1.	method:								
c _i :actu	al cost of insert at step i								
	of copying over at step i								
$c_i = \sum_{i}$	(Express c _i in terr	ns of d _i).							
_		,							
Solve th	ne equation directly.								
	•								

What is the amortized cost of n inserts?

2 method: find a charged to each individual operation such that the for seq of n operation ≤ sum of n										
c_i : actual cost of insert at step i c_i' : b_i : At any given step, has to stay	non-	zero)!							
	≤									
Total provides the upper bound f How much should be charge for each inser		e								
What happens when we charge \$1?									8 9 8 16	
What happens when we charge \$2?									1 9	
What happens when we charge \$3?										
Why \$3? How is each \$1 spent?										

Using accounting method, what is the amortized cost of n inserts?

CS314H CSB Lecture 21: Amortization Analysis

3. method: Defines potential function for the Let c _i be the
D_i be the of the after i th operation ϕ_i (D_i): Potential function that maps D_i to a real number, which represents potential of D_i after i th operation. O Typically ϕ_0 (D_0) =
Let a_i be the • $a_i = c_i +$ • What does the second term represent?
\bullet \sum $a_i =$
• What do we need ensure about ϕ_n (D _n) to provide the upper bound for $\sum c_i$?
Define a potential function in a clever way is the key
Resizing array example: ϕ_i (D_i) = 2N - M • N: • M: Two cases • Case 1: No need to resize. • What is c_i in this case? • After ith insert, N \Rightarrow and M \Rightarrow • a_i =
 Case 2: Need to resize. When does this happen? ○ What is c_i in this case? ○ After ith insert, N → and M → ○ a_i =

Using potential method, what is the amortized cost for n inserts?

4. Example 1: Stack with multipop

What is the amortized cost for each operation?

Use accounting method:

Use potential method:

5. Example 2: Even more dynamic array

A data structure that supports deletes can both grow and shrink in size. It would be nice if the size that it occupies is not too much bigger than necessary. This is where a list that shrinks in size is useful.

Let c be the capacity of the array. Let n be the number of actual list elements.

- initialize(): create an empty list with capacity 2. (c = 2 and n = 0)
- append(): if c = n then grow(). Now insert the element into the table.
- pop(): if n = c/4 and $c \ge 4$ then shrink(). Now erase the element from the table

Where

- grow() increases the capacity of the array from c to 2c,
- shrink() decreases the capacity of the array from c to c/2.

Cost model:

- Writing a value to any location in an array costs 1
- Moving a value from one array to another costs 1
- Erasing a value from an array costs 1
- All other operations are free

What is the amortized cost of append, pop, and initialize? Use potential method.

Note: c/2 is the "midpoint" in some sense of the capacity, since we will always have n=c/2 immediately following a grow or a shrink. So, it would be nice if the potential function still had the property that it was equal to zero when n=c/2.