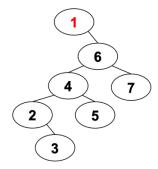
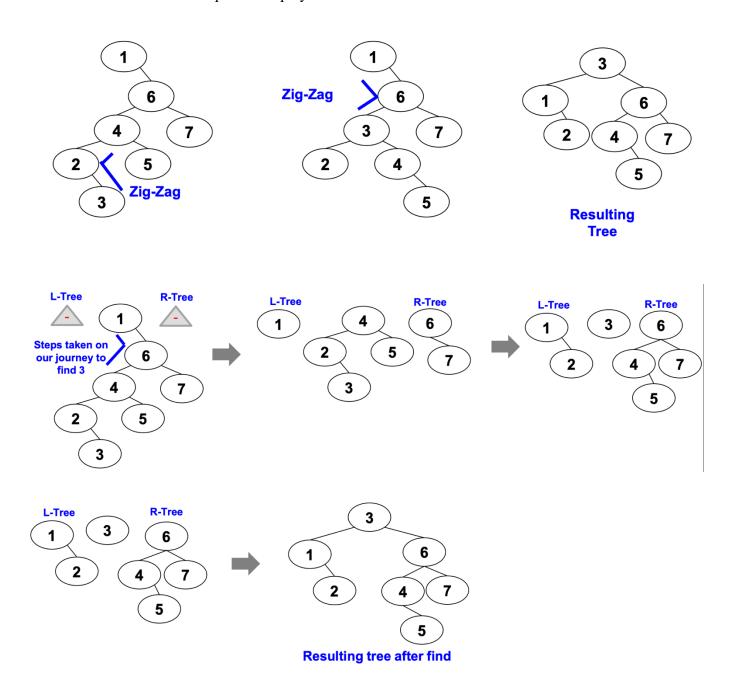
- 1. Recap: Delete (e) algorithm (bottom-up way, not top-down)
 - Step 1: Perform standard BST search for e. O(h)
 - Step 2: Splay *e* to the root O(h)
 - Step 3: Remove e (Let L, R be the left and right subtree respectively) O(1)
 - Step 4: Search for *Lmax* (Max of L), O(h)
 - Step 5: Splay *Lmax* to the root O(h) Since it is max of L, it should have no right subtree) and attach R as the right child of *Lmax*. O(1)

What is the time complexity for each step above? $4 \times O(h) + O(1)$ Amortized cost is $4 \times O(\log n)$, which is $O(\log n)$

2. (True/False) Another possible way to perform Delete(e) would be to take the predecessor of e and place it directly at the root, without splaying it up through each level.

Why?

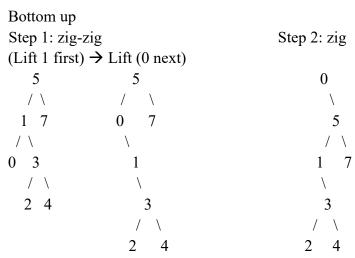

This is because the *proof* of splay trees' amortized complexity relies on the fact that **every access ends** with a splay rotation sequence that redistributes weight and reduces potential. If you skip splaying, you break the proof.


- 3. Find (e) operation in a splay tree can be performed in two ways:
 - (1) use the **bottom-up** splay method, which performs a standard BST search for e and then splay e to the root.
 - (2) use the **top-down** splay method, which performs splaying while descending the search path.

(True/False) The resulting trees from these two methods will be identical.

False!

Ex 1) Find (3)



Ex 2) Find(0)

CS314H CSB Lecture 23: Top-Down Splay Tree

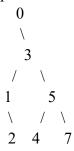
0 2

Top down Initially,

Step 1: zig-zig

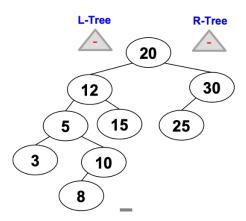
L = null,
$$M = 1$$
 $R = 3$ $0 2$ 5 $0 2$ 6 7 $(Rmin = 3)$

Step 2: zig

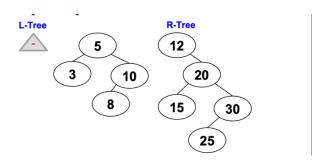

L = null,
$$M = 0$$
 $R = 3$ / \ 1 5 \ \ \ \ \ \ 2 4 7 \ (new Rmin = 1)

Attached 1 as the left child of Rmin (3)

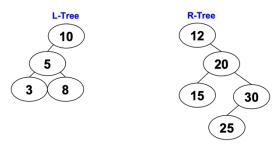
2

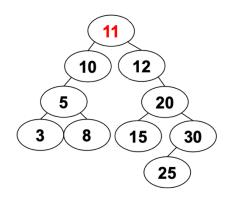

M is equal to target, thus stop.

Step 3: Final tree - Attach t with L and R.

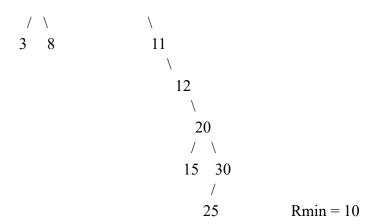


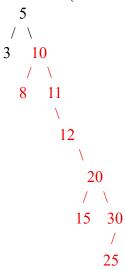
As you can see the two resulting trees from top-down and bottom-up splay is different


4. Perform Insert (11) in top-down manner. When to stop and construct a new tree with root 11?


Step 1: top-down zig-zig

Step 2: top-down zig-zig (symmetric)


Step 3: M is empty. (This is the stopping condition) Create a new node 11 and attach L and R.


5. Perform delete 5 in top-down manner from above tree. Initially L = null, R = null, M = T

$$L = \text{null}, \quad M = 5 \qquad R = 10$$

CS314H CSB Lecture 23: Top-Down Splay Tree

Attach L and R (case 2 when t has subtrees)

Step 2: Remove 5 (L = 3 and R = the subtree with root of 10) Step 3: Let's do successor replacement. Perform Top-down zig. Initally L' = null, M = R(Red tree above), R' = null,

Finally tree:

6. Compare time complexity:

Delete(e) vs Delete-top-down(e)
$$4 \times O(h) + O(1)$$
 vs $2 \times O(h) + O(1)$