Lesson 05-02:
Principles of Reliable Data Transfer

CS 326E Elements of Networking
Mikyung Han

mhan@cs.utexas.edu

Example Protocols

FTP, HTTP, SMTP

TCP, UDP

Ethernet, WiFi

802.3 PHY

Application

Transport

Responsible for Internet
Reference Model

application specific needs

process to process data transfer

host to host data transfer across different network

data transfer between physically adjacent nodes

bit-by-bit or symbol-by-symbol delivery

Outline

@ |. Channel with bit errors: rdt 2.0

Principles of reliable data transfer (rdt)

'
<=, sending
process

application

transport

=\

=\
receiving B
process

data N

— I ——

reliable service abstraction

Reliable data transfer has both sender-side and
receiver-side implementation

process process
application data
transport l T

sender-side of
reliable data
transfer protocol

receiver-side
of reliable data
transfer protocol

transport
network .
“unreliable channel

Communication is bi-directional!

The receiving end has to also send control info such as ack

rdt2.0: channel with bit errors

* How to detect bit errors!?

* How to recover from errors!
* ACKs: receiver explicitly tells sender that pkt received OK
* NAKSs: receiver explicitly tells sender that pkt had errors
* sender retransmits pkt on receipt of NAK

— stop and wait
sender sends one packet, then waits for receiver response

Recap: checksum can detect bit errors

example: add two |6-bit integers

|1 1001 1001100110
|10101010101010I

wraparound ®|0|||0|||0|||0||

sum OT1T1O1TT1OITT10O0
checksum 0100010001000O01 1

When does checksum NOT work!?

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

~
~

sender

rdt_rcv(rcvpkt) &&
isSNAK(rcvpkt)

dt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt)
udt_send(NAK)

e

Wait for
call from
below

Wait for
call from
above

< rdt_rcv(rcvpkt) && isACK(rcvpkt)

A

receiver

rdt_rcv(rcvpkt) && Twotcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt2.0: operation with errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

~ o de-tcv(revpkt) &&
d Wit for isSNAK(rcvp —~
sender call from udt_send(sndpkt) rdt_rcv(rcvpkt7 && corrupt(rcvpkt)
above
udt_send(NAK)
:dt_rcv(rcvpkt) && isACK (revpkt) RN

A

Wait for
call from
below

receiver

>
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

What is the fatal flaw of rdt 2.0?

Kahoot ©

True or False?

= (T/F) Sender knows if the corrupted packet was an ACK or NACK

= (T/F) Sender should always retransmit when receiving corrupted pkt

* What happens when sender retransmit for a corrupted ACK?

= Possible solution?

How many bits should be used for seq no!?

" We want to use a little space as possible
* How many packets do we want to distinguish?
" Note: link is never lossy but only bit error happens

We only need to distinguish the new packet

from previously already seen packet

Do we need to specify
sequence number in ACK/NAKSs!?

* To specify which seq no it is acknowledging the receipt?
= aka ACK number

Why or why not!?

Example sequence

Outline

@ 2. rdt 2.1 and rdt 2.2

rdt2.1: sender, handling garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt) rdt_rcv(rcvpkt) &&

(corrupt(recvpkt) ||
Wait fO" isNAK(rcvpkt))
ACK or

NAK 0

udt_send(sndpkt)

rdt_rcv(rcvpkt)

dt ke
&& notcorrupt(rcvpkt) && isACK (rcvpkt) rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

A

Wait for
ACK or
NAK |

Wait for
call | from
above

rdt_rcv(rcvpkt)
&& (corrupt(revpkt) ||
isNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(I, data, checksum)
udt_send(sndpkt)

rdt2.1: receiver, handling garbled ACK/NAKSs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
v sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && <
has_seq| (rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql (rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt2.2: a NAK-free protocol

= same functionality as rdt2.1, using ACKs only
* How to “simulate” NAK?

How to simulate NAK with just ACKs!?

rdt2.2: a NAK-free protocol

" Do we need a sequence number for ACK?
= Sender sends DATA |
= Receiver sends ACK without sequence number

* |n this case, does sender know if it is really ACKing DATA |
or dupe ACKing DATA 0?

No. Receiver needs to explicitly specify:

ACK for seq 0 and seq | must be distinguished specified
by the receiver

20

rdt2.2: sender, receiver fragments

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

T
Vit fon Wait for (F:orrupt(rcvpkt) |
..................... call O from ACK iSACK(revpke,1))
.................................... above 0 udt_send(sndpkt)
.. sender FSM
..... fragment rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && && isACK(rcvpkt,0)

(corrupt(revpkt) ||
has_seql (rcvpkt))

receiver FSM e

fragment ..
- T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql (rcvpkt)

udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACKI, chksum)
udt_send(sndpkt)

21

rdt2.2x: an NAK-only protocol

" How to “simulate” ACK with just NAKs?

22

Outline

@ 3. Channels with errors and losses: rdt 3.0

23

rdt3.0: channels with errors and loss
Loss can happen for both DATA and ACKs

* checksum, sequence #s,ACKs, retransmissions will be of help ...
but not quite enough

If receiver never gets DATA what happens!?

If receiver got DATA but ACK is lost what happens?

24

Channel loss introduces the need for timeout

Approach: sender waits “reasonable” amount of time for ACK

= retransmits if no ACK received in this time
= if pkt (or ACK) just delayed (not lost):

* retransmission will be duplicate, but seq #s already handles this!

* receiver must specify seq # of packet being ACKed

D timeout

What is the “reasonable” time!?

25

rdt3.0 sender

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

\
\ udt _sendisadpe)
start_timer
—
Wait for Wait
call 0 from for
above ACKO
rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt) rdt_rcv(rcvpkt)
&& isACK(revpkt, 1) && notcorrupt(rcvpkt)

&& isACK(revpkt,0)
op_timer
Wait for

stop_timer

call | from
above

dt_send(data)

sndpkt = make_pkt(l, data, checksum)
udt_send(sndpkt)
start_timer

26

rdt3.0 sender

rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(revpkt, 1)

stop_timer

timeout

udt_send(sndpkt) (,

start_timer
rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

A

call O from

rdt_send(data) rdt_rcv(rcvpkt) &&
sndpkt = make_ pkt(0, data, checksum) (corrupt(revpkt) ||
udt_send(sndpkt) isACK(revpkt, 1))
start_timer A
—
timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK (rcvpkt,0)

stop_timer

Wait for
call | from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(l, data, checksum)
udt_send(sndpkt)
start_timer

27

rdt3.0 in action

sender receiver
send pktO ktO
\\ rcv pktO
ack send ackO
rcv ackO /
send pktl \K‘
rcv pktl
y send ackl
rcv ackl
send pkt0 \K
rcv pktO
y send ackO

(@) no loss

sender receiver
send pkt0 ktO
ack send ackO
rcv ack0 44/
send pktl Kt
piel T~
loss
timeout
resend pktl ktl
\ rcy Pktl
‘y send ackl
rcv ackl
send pkt0 \K
rcv pktO
y send ackO

(b) packet loss

28

rdt3.0 in action

sender receiver
send pktO ktO
\ rcv Pkto
ack send ackO
rcv ackO /
send Pktl —\K‘
rcv pktl
XEV send ack|
loss
timeout_
resend pktl \K rcv pktl
(detect duplicate)
rcv ackl ‘y send ackl
send pktO \M‘
rcv pktO
y send ackO

(c) ACK loss

sender receiver

send pkt0 —__ <0
P ~, rcv pkt0

_—send ack0
ackO
rcv ack0 —

send pktl _==~ pj¢|

~ rcv pktl
" send ackl
- ackl
timeout_
resend pktl
pkel __ rev pktl
rcv ackl (detect duplicate)
send pkt0 — pktO send ack|
ack| rcv pktO
rcv ackl “
(ignore) ackO — send ack0
< ktl
P —

(d) premature timeout/ delayed ACK

29

Suppose RT T between sender and receiver
is constant and known to sender

True or false!?

* Sender knows whether DATA is correctly received by the receiver
* Sender knows whether ACK is lost

* Sender still needs a timer

What should be the timeout value in this case?

30

rdt 3.0 is functionally ok;
What about performance!?

stop-and-wait only allows | unACKed packet

sender receiver

first packet bit transmitted, t = 0 —

A

— first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next|
packet,t =RTT +L/R

32

Performance of stop-and wait

=U : utilization — fraction of time sender busy sending

sender*

= example: | Gbps link, 15 ms prop. delay, 8000 bit packet

time to transmit packet into channel:

D = L - _8000bits _ g . secs
trans — R | 07 bits/sec

33

stop-and-wait suffers from very low link utilization

sender receiver

U = L/R 11 R
sender RTT+L/R

.008 RTT B

30.008
0.00027 2 ——

[~

What is the root cause of this low link utilization?

34

Pipelining allows to send multiple “in-flight” packets

In-flight packets: yet-to-be-acknowledged packets
* range of sequence numbers must be increased
* buffering at sender and/or receiver

data pc:.cke’r—b

(a) a stop-and-wait protocol in operation

35

Pipelining: increased

sender

first packet bit transmitted, t = 0 —
last bit transmitted,t = L/ R

RTT

ACK arrives, send next|

packet,t =RTT +L/R"|

U

utilization

receiver

first packet bit arrives
last packet bit arrives, send ACK

~ > last bit of 2" packet arrives, send ACK
—last bit of 37 packet arrives, send ACK

............ 3-packet pipelining increases
- utilization by a factor of 3!

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]

sender

0.00081

36

Outline

@ 4. Go-Back-N

37

Go-Back-N sends up to N consecutive “in-flight” pkts

* k-bit seq # in pkt header

send_base hexfsegnum

| d ble, not
L l’ géi%dy I t/lse(’:rlseen’rno
T URARRREEN L et A [T
2 window size —4
N

True or false?

= (T/F) cumulative ACK(n): ACKs all packets up to, excluding seq # n
= (T/F) on receiving ACK(n): reset send base to n+|

= (T/F) timer for newest in-flight packet

= (T/F) timeout(n): retransmit just packet n

38

Go-Back-N sends up to N consecutive “in-flight” pkts

* k-bit seq # in pkt header

send_base nhextsegnum

| d ble, not
: | aready | yastiene
LRI DEERRRO000000) septneta [otesame
2 window size —4
N

Answer key

= cumulative ACK(n): ACKs all packets up to, including seq # n

= on receiving ACK(n): reset send_base to n+| (advances the window forward)
= timer for oldest in-flight packet

= timeout(n): retransmit packet n and all higher seq # pks in the window

39

Go-Back-N receiver always send ACK(n)
where n is highest in-order seq # received correctly

= May generate duplicate ACKs

" Need to only remember rcv_base
* What is the relationship between n and rcv_base!?

" on receipt of out-of-order packet:
* can discard (don’t buffer) or buffer: an implementation decision
* re-ACK pkt with highest in-order seq #

Receiver view of sequence number space:
received and ACKed

_ATRIRDRVRDORID . |
|

Out-of-order: received but not ACKed

rcv base X
— Not received

40

Go-Back-N in action

sender window (N=4) sender receiver
0 | 2 3 7AW send pktO
kY4 5678 send pktl ,
TEEE T send pkt2- receive pkt0, send ackO
ks e7s send pke3 receive pktl, send ackl
(wait) . .
receive pkt3, discard,
OEEY 6 7 8 rcv ackO, send pkt4 (re)send ackl
0 EERER /8 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ackl

ignore duplicate ACK

pkt 2 timeout
0 IPEEEF 7 8 send pkt2
812345 YA send pkt3
0 IPEEEY 7 8 send pkt4
0 IPEEEF 7 8 send pkt5

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

v

Outline

@ 5. Selective Repeat

42

In selective repeat receiver
individually ACKs all correctly received pks

True or false?

= Receiver does not need to buffer pkts

=Sender has a timeout for the oldest in-flight packet
= Upon timeout sender sends out just | packet
=Sender window consists of N consecutive seq #s

=Sender window limits the number of in-flight ptks

43

Selective repeat answer key

= Receiver should buffer packets for in-order delivery to app. layer

= Sender maintains timer for each in-flight pkt
* Upon timeout sender retransmits that unACKed packet

*Sender window
* N consecutive seq #s
* limits seq #s of sent, unACKed packets

44

Selective repeat: sender, receiver windows

send_base hexfsegnum

: ey | e
T T I

g S wEndow size —4
PN

i (a) sender view of sequence numbers
L)

Selective Repeat in action

sender window (N=4)

sender

(UREVAKR4 567 8
(UREVAKR4 5 67 8
0 | 2 3 ZNWA:
0 | 2 3 ENWA:

ORWERR 67 8
0 IPAREEY 7 8

B2 345 A
0 PRI 7 8
0 PRI 7 8
0 IPAREIN 7 8

send pktO
send pktl
send pkt2-
send pkt3

(wait)

rcv ackO, send pkt4
rcv ackl, send pkt5

record ack3 arrived

—

pkt 2 timeout _

send pkt2
(but not 3,4,5)

\

\Xloss

=
\

Q: what happens when ack2 arrives?

—

receiver

receive pkt0, send ackO
receive pktl, send ackl

receive pkt3, buffer,
send ack3

receive pkt4, buffer,

send ack4
receive pkt5, buffer,

send ack5

rcv pkt2; deliver pkt2,

pkt3, pkt4, pkt5; send ack2

46

Outline

@ 6. What should be the proper window size?

47

Sequence number with 2 bits

0,1,2,3,0,1,2,3,...

= Can we allow window size 5/
«0,1,2,3,0,1,2,3, ...

" How about window size 3!

Receiver cannot distinguish [t and 5*" segment

because they have the same seq no of 0

48

Seq no and window size

example:
" seq #s:0, |, 2, 3 (base 4 counting)
= window size=3

Why is this happening?

sender window receiver window

(after receipt) (after receipt)

012]

012 Kl oEED | 2

012) o | EEXN 2
01 2 Rl

OWER | 2

(UNR2 3 0 Wi

Pkt0\> will accept packet

with seq number 0

() no problem

01 2) ktO

E% o2 —Bkt! o[IFED | 2

0 12 W) ke2 X o | EEXN 2
o 1 2 N

. X

timeout

retransmit pkt0

012 —BKO
will accept packet

(b) | with seq number 0
OoOops.

49

sender window receiver window

Seq n O an d Wi n d OW S ize (after receipt) (after receipt)

— o[EED | 2
EE?2 3 0 Wi
— o 1 2E[
example: T
" seq #s:0, |, 2, 3 (base 4 counting) " receiver cant ——+ will accept packet
. . - see sender side with seq number 0
- WlndOW SIZe—3 " receiver
behavior
identical in both
cases!

= something’s
(very) wrong!

70|2
70||2
— o121

WHY is this happening?

—, Will accept packet
with seq number 0

50

Sequence number with 2 bits

0,1,2,3,0,1,2,3,...

= Sender’s retransmission of |t segment falls into
receiver’s window of 5% segment

* If seq no space is infinite would this ever happen?

" The "highest” seq no in receiver window should NOT overlap
with the “lowest” seq no in sender window

Sequence no space should fit entire sender window

and receiver window WITHOUT overlap!

51

Seq no=2 x window size

example:
"seq#s:0,1,2,3,4,5
= window size=3

BEEE: 4 5 0 ktO

ONES 450 —Rkt! olEE]4 5 0

[MPY 450 —pkt2 X VNl 3 4 HY
(W13 4 5[0

. X

timeout

retransmit pkt0

EY560 —RkO
will correctly identify as dup packet

With sufficiently large seq number space,

sender’s window does NOT overlap with receiver’s window

52

Backup Slides

Selective repeat: sender and receiver

— sender
data from above:

" if next available seq # in
window, send packet

timeout(n):
" resend packet n, restart timer
ACK(n) in
[sendbase,sendbase+N]:
= mark packet n as received

* if n smallest unACKed packet,

advance window base to next
unACKed seq #

—receiver
packet n in [rcvbase, rcvbase+N-1]

= send ACK(n)

= out-of-order: buffer

* in-order: deliver (also deliver
buffered, in-order packets),

advance window to next not-yet-

received packet
packet n in [rcvbase-N,rcvbase-1]
= ACK(n)
otherwise:
" ignore

54

Reliable data transfer protocol (rdt): interfaces

rdt_send(): called from app
layer. Passes data to deliver to
receiver upper layer

deliver_data(): called by rdt to
deliver data to upper layer

receiving Bl
process

udt_send()

sender-side
implementation of
rdt reliable data
transfer protocol

yd

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

receiver-side
implementation of
rdt reliable data
transfer protoco

T deliver_data()

rdt_rcv()

\/

Bi-directional communication over

unreliable channel

rdt_rcv(): called when packet
arrives on receiver side of
channel

55

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

56

Backup Slides

What if ACK/NAKs get corrupted!?

= Sender doesn’t know if the corrupted packet was an ACK or NACK
= Sender should always retransmit when receiving corrupted pkt

" Duplicates happen when sender retransmit for a corrupted ACK

= Sender should add sequence number to each pkt to inform Receiver

= Receiver discards (doesn’t deliver up) duplicate pkt

= a packet with previously seen sequence number

58

rdt2.|: discussion

sender:
= | bit seq # added to pkt: 0 or |

= must check if received
ACK/NAK corrupted

" twice as many states

* state must ‘remember’ whether
“expected” pkt should have seq #
of 0 or |

receiver:

" must check if received packet
is duplicate

 state indicates whether 0 or |
is expected pkt seq #

= Can receiver know if its last
ACK/NAK received OK at
sender!?

59

