### Lesson 08-02: Link Layer 2 VLAN and Data Center Network

#### CS 356 Computer Networks Mikyung Han mhan@cs.utexas.edu



Responsible for





process to process data transfer

application specific needs

host to host data transfer across different network

data transfer between physically adjacent nodes

bit-by-bit or symbol-by-symbol delivery

## Outline

H. VLAN

# Why Virtual LANs (VLANs)?

Q: what happens as LAN sizes scale, users change point of attachment?



#### single broadcast domain:

- scaling: all layer-2 broadcast traffic (ARP, DHCP, unknown MAC) must cross entire LAN
- efficiency, security, privacy issues

# Why Virtual LANs (VLANs)?

Q: what happens as LAN sizes scale, users change point of attachment?



#### single broadcast domain:

- scaling: all layer-2 broadcast traffic (ARP, DHCP, unknown MAC) must cross entire LAN
- efficiency, security, privacy, efficiency issues

#### administrative issues:

 CS user moves office to EE physically attached to EE switch, but wants to remain logically attached to CS switch

## Port-based VLANs

- Virtual Local Area Network (VLAN)
  - switch(es) supporting VLAN capabilities can be configured to define multiple virtual LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that single physical switch .....



... operates as multiple virtual switches



## Port-based VLANs

- traffic isolation: frames to/from ports
  I-8 can only reach ports
  I-8
  - can also define VLAN based on MAC addresses of endpoints, rather than switch port
- dynamic membership: ports can be dynamically assigned among VLANs
- forwarding between VLANS: done via routing (just as with separate switches)
  - in practice vendors sell combined switches plus routers



## Outline

I. VLAN 2. Data Center Networking

# What is Datacenter Networks?

100's of thousands of hosts, often closely coupled, in close proximity

- e-business (e.g. Amazon)
- content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
- search engines, data mining (e.g., Google)

#### challenges:

- multiple applications, each serving massive numbers of clients
- reliability
- managing/balancing load, avoiding processing, networking, data bottlenecks



Inside a 40-ft Microsoft container, Chicago data center

#### Datacenter networks: network elements



#### **Border routers**

connections outside datacenter

#### Tier-I switches

connecting to ~16 T-2s below

#### Tier-2 switches

connecting to ~16 TORs below

#### Top of Rack (TOR) switch

- one per rack
- 40-100Gbps Ethernet to blades

#### Server racks

20- 40 server blades: hosts

#### Datacenter networks: network elements

Facebook FI6 data center network topology:



https://engineering.fb.com/data-center-engineering/f16-minipack/ (posted 3/2019)

#### Datacenter networks: multipath

- rich interconnection among switches, racks:
  - increased throughput between racks (multiple routing paths possible)
  - increased reliability via redundancy



two disjoint paths highlighted between racks I and II

### Datacenter networks: protocol innovations

#### • link layer:

• RoCE: remote Direct Memory Access (RDMA) over Ethernet

#### • transport layer:

 ECN (explicit congestion notification) used for congestion control (DCTCP, DC Quantized Congestion Notification)

o experimentation with hop-by-hop (backpressure) congestion control

#### • routing, management:

- SDN widely used within/among organizations' datacenters
- place related services, data as close as possible (e.g., in same rack or nearby rack) to minimize tier-2, tier-1 communication

## Outline

I. VLAN

2. Data Center Networking 3. Summary

## Let's reflect on the course goals

#### Course goals

- I. Understand HOW Internet works
- 2. Understand WHY behind its design
- 3. Know the fundamentals

### First objective: Understand HOW Internet works

#### BTS Jungkook's post reached IM people in just 10 min!



Video of Jeon Jungkook singing Lauv's "Never Not" via Twitter (@BTS\_twt)



#### One: Learn HOW Internet works



Video of Jeon Jungkook singing Lauv's "Never Not" via Twitter (@BTS\_twt)





## A day in the life: scenario



#### scenario:

- arriving mobile client attaches to network ...
- requests web page: www.google.com



# A day in the life: connecting to the Internet



- connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

# A day in the life: connecting to the Internet



- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

### A day in the life... ARP (before DNS, before HTTP)



- before sending HTTP request, need IP address of www.google.com: DNS
- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

# A day in the life... using DNS



- demuxed to DNS
- DNS replies to client with IP address of www.google.com

 IP datagram containing DNS query forwarded via LAN switch from client to 1<sup>st</sup> hop router

 IP datagram forwarded from campus network into Comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server

### A day in the life...TCP connection carrying HTTP



- to send HTTP request, client first opens TCP socket to web server
- TCP SYN segment (step I in TCP 3way handshake) inter-domain routed to web server
- web server responds with TCP SYNACK (step 2 in TCP 3-way handshake)
- TCP connection established!

# A day in the life... HTTP request/reply



- HTTP request sent into TCP socket
- IP datagram containing HTTP request routed to www.google.com
- web server responds with HTTP reply (containing web page)
- IP datagram containing HTTP reply routed back to client

#### In addition...



Video of Jeon Jungkook singing Lauv's "Never Not" via Twitter (@BTS\_twt)

## In addition ....since it's multimedia streaming

- Video encoding
- Web cache
- Dynamic Adaptive Streaming over HTTP (DASH) of Content Distribution Network (CDN)
- Playout buffering
- TLS for security: encryption, message integrity, authentication
- Tor could have been used if users are in a country where Twitter is censored or just proxy
- Bloom filter and distributed hash table could have been used

#### Second Objective: Understand WHY behind the Internet design

### Second objective: Understand WHY behind what



Responsible for

Internet Reference Model



#### application specific needs



process to process data transfer

host to host data transfer across different network

data transfer between physically adjacent nodes

bit-by-bit or symbol-by-symbol delivery

### Motivation

- Why layers?
- Why CDN?
- Why TCP/UDP?
- Why SDN?
- Why overlay?
- Why Tor?
- Why VLAN?
- •

#### Third Objective: Know the fundamentals of computer networks

- Back of the envelope calculations
- Reliable data transfer
- Stateless vs stateful
- Connectionless vs connection oriented
- Flow control
- Congestion control
- Error detection
- Routing vs switching
- Addressing

32

# Summary

- Covered all layers (except PHY)
- Covered major protocols and fundamentals + Tor
- 2 multi-threaded projects
  - UDP client-server blocking and non-blocking IO
  - HTTP Proxy
- 3 labs
  - TCP Buffer Bloat/Network Measurements/Port Scan
- 3 hands on
  - DNS Dig/TCP Wireshark/Traceroute

#### Thanks for your hard work! ©

## Acknowledgements

Slides are adopted from Kurose' Computer Networking Slides