
Lesson 05-02:
Principles of Reliable Data Transfer

CS 326E Elements of Networking
Mikyung Han

mhan@cs.utexas.edu

1

mailto:mhan@cs.utexas.edu

Link

Network

Transport

Application

Physical802.3 PHY

Ethernet,WiFi

IP

TCP, UDP

FTP, HTTP, SMTP

Internet
Reference Model

bit-by-bit or symbol-by-symbol delivery

data transfer between physically adjacent nodes

host to host data transfer across different network

process to process data transfer

application specific needs

Example Protocols Responsible for

2
2

Outline

0. What is reliable data transfer?

3

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication
transport

4

reliable channel

reliable service abstraction

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication
transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side of
reliable data
transfer protocol

sending
process

data

receiving
process

data

reliable channel

application
transport

reliable service abstraction

5

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication
transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side of
reliable data
transfer protocol

Sender, receiver do not know
the “state” of each other, e.g.,
was a message received?
■ unless communicated via a

message

6

7

Let’s start with perfect condition: rdt 1.0

• No packet loss • No bit errors

rdt1.0: reliable transfer over a reliable channel
■underlying channel perfectly reliable

• no bit errors
• no loss of packets

■Separate FSMs for sender, receiver:
• sender sends data into underlying channel
• receiver reads data from underlying channel

packet = make_pkt(data)
udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

rdt_rcv(packet)Wait for
call from
below

receiversender

8

Wait for
call from
above

Outline

1. Channel with bit errors: rdt 2.0

9

rdt2.0: channel with bit errors
• How to detect bit errors?

• How to recover from errors?
• Sender retransmits upon the receipt of NAK
• NAKs: receiver explicitly tells sender that pkt had errors

stop and wait
sender sends one packet, then waits for receiver response

10

11

What is the fatal flaw of rdt 2.0?

12

True or False?
■(T/F) Sender knows if the corrupted packet was an ACK or NACK
■(T/F) Sender should always retransmit when receiving corrupted pkt

How to tell if the pkt received is a new packet or a duplicate?

Say, sender retransmits upon receiving ACK which was corrupted.

■(T/F) Receiver knows the retransmit pkt is a duplicate

Sequence number distinguishes a new packet from a duplicate

How many bits should be used for seq no?

■We want to use a little space as possible
■How many packets do we want to distinguish?
■Note: link is never lossy but only bit error happens

We only need to distinguish the new packet from
previously already seen packet (duplicate)

13

Do we need to specify
sequence number in ACK/NAKs?

■To specify which seq no it is acknowledging the receipt?
■aka ACK number

Why or why not?

14

15

Example sequence

(RDT 2.1) So far, we have

ü Checksum
ü DATA + Sequence number
ü ACK or NAK
ü Retransmission of DATA

16

Outline

1. rdt 2.0
2. rdt 2.1 and rdt 2.2

17

rdt2.1: DATA has sequence no + ACK/NAK

How about having just ACK pkts (no NAKs)? Any potential benefits?

18

rdt2.2: a NAK-free protocol

• same functionality as rdt2.1, using ACKs only
• How to say NAK with just ACKs?

We need an ACK number (seq no for ACKs)!

• Consider below scenario
■ Sender sends DATA 1 but it got corrupted
■ Receiver sends ACK?!

■ What additional info should this ACK contain?

19

rdt2.2: a NAK-free protocol

• ACK with ACK no in action
■ Sender sends DATA 1 but it got corrupted
■ Receiver sends… ACK 0 or ACK 1?

■ Depends on the protocol definition of ACK!

■ ACK0 could mean either

RDT 2.2: Having ACK # allows us to be NAK-free!

o DATA0 was successful, so send me DATA1 (RDT way)

o Or, DATA0 was unsuccessful, so send me DATA0 again! (TCP way)

20

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

udt_send(sndpkt)

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isACK(rcvpkt,1))
udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

Wait
for

0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

^

21

(RDT 2.2) So far, we have

ü Checksum
ü DATA + Sequence number
ü ACK only + ACK number
ü Retransmission of DATA

22

Outline

1. rdt 2.0
2. rdt 2.1 and rdt 2.2
3. Channels with errors and losses: rdt 3.0

23

rdt3.0: channels with errors and loss
Loss can happen for both DATA and ACKs

• checksum, sequence #, ACK #, retransmissions will be of help …
but not quite enough

If receiver never gets DATA what happens?

If receiver got DATA but ACK is lost what happens?

24

Channel loss introduces the need for timeout

Approach: sender waits “reasonable” amount of time for ACK
• retransmits if no ACK received in this time
• if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

What is the “reasonable” time?

25

rdt3.0 sender

Wait
for

ACK0

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

Wait for
call 0 from

above

Wait
for

ACK1

26

rdt3.0 sender

Wait
for

ACK0

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

udt_send(sndpkt)
start_timer

timeoutWait for
call 0 from

above

Wait
for

ACK1

L
rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Lrdt_rcv(rcvpkt)

L

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

L

27

rdt3.0 in action

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

28

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1

29

Suppose RTT between sender and receiver
is constant and known to sender

True or false?
• Sender knows whether DATA is correctly received by the receiver
• Sender knows whether ACK is lost
• Sender still needs a timer

What should be the timeout value in this case?

30

Kahoot ©

31

Check Canvas - will be optional extra-credit

rdt 3.0 is functionally ok;
What about performance?

32

stop-and-wait only allows 1 unACKed packet

first packet bit transmitted, t = 0

sender receiver

RTT
first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

33

Performance of stop-and wait

R 109 bits/sec
Dtrans = L = 8000 bits

• U sender: utilization – fraction of time sender busy sending

• example: 1 Gbps link, 15 s prop. delay, 8000 bit packet

• time to transmit packet into channel:
= 8 microsecs

34

stop-and-wait suffers from very low link utilization

sender receiver

Usender=
L / R

RTT+ L / R

.008
30.008

RTT

L/R

= 0.00027

=

What is the root cause of this low utilization?

35

Protocol is limiting the performance of underline channel!

Pipelining allows to send multiple “in-flight” packets

In-flight packets: yet-to-be-acknowledged packets
• range of sequence numbers must be increased
• buffering at sender and/or receiver

Say bye to stop-and-wait. Let’s adopt pipelining!
36

Pipelining: increased utilization
sender receiver

RTT

first packet bit transmitted, t = 0
last bit transmitted, t = L / R

ACK arrives, send next
packet, t = RTT + L / R

first packet bit arrives
last packet bit arrives, send ACK
last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender=

.0024
30.008

= 0.00081
3L / R

RTT + L / R
=

37

Outline

1. rdt 2.0
2. rdt 2.1 and rdt 2.2
3. rdt 3.0
4. Go-Back-N

38

Go-Back-N sends up to N consecutive “in-flight” pkts

• k-bit seq # in pkt header

True or false?
■ (T/F) cumulative ACK(n): ACKs all packets up to, excluding seq # n
■ (T/F) on receiving ACK(n): reset send_base to n+1
■ (T/F) timer for newest in-flight packet
■ (T/F) timeout(n): retransmit just packet n

39

Go-Back-N sends up to N consecutive “in-flight” pkts

• k-bit seq # in pkt header

Answer key
■ cumulative ACK(n): ACKs all packets up to, including seq # n
■ on receiving ACK(n): reset send_base to n+1 (advances the window forward)
■ timer for oldest in-flight packet
■ timeout(n): retransmit packet n and all higher seq # pks in the window

40

Go-Back-N receiver always send ACK(n)
where n is highest in-order seq # received correctly

■May generate duplicate ACKs
■Need to only remember rcv_base
• What is the relationship between n and rcv_base?

■on receipt of out-of-order packet:
• can discard (don’t need to buffer)
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

41

Go-Back-N in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

42

Outline

1. rdt 2.0
2. rdt 2.1 and rdt 2.2
3. rdt 3.0
4. Go-Back-N
5. Selective Repeat

43

In selective repeat receiver
individually ACKs all correctly received pks
True or false?
• Receiver does not need to buffer pkts
• Sender has a timeout for the oldest in-flight packet
•Upon timeout sender sends out just 1 packet
• Sender window consists of N consecutive seq #s
• Sender window limits the number of in-flight ptks

44

Selective repeat answer key

• Receiver should buffer packets for in-order delivery to app. layer
• Sender maintains timer for each in-flight pkt

• Upon timeout sender retransmits that unACKed packet

• Sender window
• N consecutive seq #s
• limits seq #s of sent, unACKed packets

45

Selective repeat: sender, receiver windows

46

Selective Repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

send pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3

record ack3 arrived

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?

47

Compare: GBN vs SR

• Which one uses more memory?
• Which one uses less processing overhead?
• Which one would help fight off very lossy network?

48

Outline

1. rdt 2.0
2. rdt 2.1 and rdt 2.2
3. rdt 3.0
4. Go-Back-N
5. Selective Repeat
6. What should be the proper window size?

49

When pipelining there is MORE to consider!

In other words, what should be the right window size?

How many in-flight pkts are we allowing?

Max window size is closely related with size of sequence number!
50

Consider 2-bit Sequence number

0, 1, 2, 3, 0, 1, 2, 3, …
•Can we allow window size 5?

0, 1, 2, 3, 0,• 1, 2, 3, …

•How about window size 3?

Remember: Receiver should be able to
distinguish each packet within the same window

51

Seq no and window size

example:
■ seq #s: 0, 1, 2, 3 (base 4 counting)

■window size=3

Why is this happening?

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

52

Seq no and window size

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

0 1 2 3 0 1 2 pkt0

0 1 2 3 0 1 2 pkt1

0 1 2 3 0 1 2 pkt2

0 1 2 3 0 1 2 pkt3
X

0 1 2 3 0 1 2
pkt0

(a) no problem

0 1 2 3 0 1 2 pkt0

0 1 2 3 0 1 2 pkt1

0 1 2 3 0 1 2 pkt2

timeout
retransmit pkt0
0 1 2 3 0 1 2 pkt0

(b) oops!

will accept packet
with seq number 0

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

will accept packet
with seq number 0

example:
■ seq #s: 0, 1, 2, 3 (base 4 counting)

■window size=3

■receiver can’t
see sender side
■receiver

behavior
identical in both
cases!
■something’s

(very) wrong!

BUT, WHY is this happening?

53

• Same thing happens when sender retransmits1
• 1 is mistaken for new 1

0,1, 2, 3, 0, 1, 2, 3 …

Sequence number with 2 bits

• Sender’s retransmission of 0 falls into receiver window
• 0 is mistaken for new 0

If we have infinite sequence number would this happen?

0,1, 2, 3, 0, 1, 2, 3 …

54

0,1, 2, 3, 4, 5, 0, 1 …

Need larger sequence number space!

• In this example, seq number should span at least [0, 5]
•Or, window size should be limited

Sequence no space should fit entire sender window
and receiver window WITHOUT overlap!

0,1, 2, 3, 0, 1, 2, 3 …

55

Seq no ≥2 x window size

0 1 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

pkt0

pkt1

pkt2

0 1 2 3 4 5 0 pkt0

timeout
retransmit pkt0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

X
X
X

will correctly identify as dup packet

example:
■ seq #s: 0, 1, 2, 3, 4, 5
■window size=3

With sufficiently large seq number space,
sender’s window does NOT overlap with receiver’s window

56

Backup Slides

57

Recap: checksum can detect bit errors

example: add two 16-bit integers

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

sum

checksum

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

58

Reliable data transfer protocol (rdt): interfaces

sending
process

data

receiving
process

data

unreliable channel

sender-side
implementation of
rdt reliable data

transfer protocol

receiver-side
implementation of
rdt reliable data

transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

Header data Header data

rdt_send(): called from app
layer. Passes data to deliver to
receiver upper layer

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on receiver side of
channel

deliver_data(): called by rdt to
deliver data to upper layer

Bi-directional communication over
unreliable channel

59

rdt2.0: operation with no errors

Wait for
call from

above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

udt_send(NAK)

Wait for
ACK or

NAK

Wait for
call from
below

rdt_send(data)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

sender

receiver

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

60

rdt2.0: corrupted packet scenario

Wait for
call from

above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)Wait for

ACK or
NAK

Wait for
call from
below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

61

Selective repeat: sender and receiver

data from above:
■ if next available seq # in

window, send packet

timeout(n):
■ resend packet n, restart timer

ACK(n) in
[sendbase,sendbase+N]:

■mark packet n as received

■ if n smallest unACKed packet,
advance window base to next
unACKed seq #

packet n in [rcvbase, rcvbase+N-1]
■ send ACK(n)
■ out-of-order: buffer
■ in-order: deliver (also deliver

buffered, in-order packets),
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]
■ ACK(n)

otherwise:
■ ignore

sender receiver

62

What if ACK/NAKs get corrupted?

■Sender doesn’t know if the corrupted packet was an ACK or NACK
■Sender should always retransmit when receiving corrupted pkt
■Duplicates happen when sender retransmit for a corrupted ACK

■Sender should add sequence number to each pkt to inform Receiver
■Receiver discards (doesn’t deliver up) duplicate pkt
■a packet with previously seen sequence number

63

rdt2.1: discussion
sender:
■1 bit seq # added to pkt: 0 or 1

■must check if received
ACK/NAK corrupted

■twice as many states
• state must “remember” whether

“expected” pkt should have seq #
of 0 or 1

receiver:
■must check if received packet

is duplicate
• state indicates whether 0 or 1

is expected pkt seq #

■Can receiver know if its last
ACK/NAK received OK at
sender?

64

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

65

