
Lesson 05-03:
TCP

CS 326 E Elements of Networking
Mikyung Han

mhan@cs.utexas.edu

1

mailto:mhan@cs.utexas.edu

Link

Network

Transport

Application

Physical802.3 PHY

Ethernet,WiFi

IP

TCP, UDP

FTP, HTTP, SMTP

Internet
Reference Model

bit-by-bit or symbol-by-symbol delivery

data transfer between physically adjacent nodes

host to host data transfer across different network

process to process data transfer

application specific needs

Example Protocols Responsible for

2
2

Outline

1. TCP overview

3

TCP: overview

5

RFCs: 793,1122, 2018, 5681, 7323

■ cumulative ACKs
• ACK N acks all packets till N-1

cumulatively
• ACK N means send me Seq N next

■ timeouts
■ pipelining:
• TCP congestion and flow control

set window size

■ connection-oriented (handshake)
■ flow controlled:
• sender will not overwhelm receiver

■point-to-point:
• one sender, one receiver

■reliable, in-order byte steam:
• no “message boundaries"

■ full duplex data:
• bi-directional data flow in same

connection
• MSS: maximum segment size

TCP segment structure
32 bits

receive window

source port # dest port #

sequence number
segment seq #: counting
bytes of data into bytestream
(not segments!)

flow control: # bytes
receiver willing to accept

application
data

(variable length)

data sent by
application into
TCP socket

acknowledgement number

checksum Urg data pointer

options (variable length)

head not C E U A P R S F
len used

ACK: seq # of next expected
byte; A bit: this is an ACK

length (of TCP header)
Internet checksum

C, E: congestion notification

TCP options

RST, SYN, FIN: connection
management

6

7

TCP sequence numbers, ACKs
Sequence numbers:
• byte stream “number” of

first byte in segment’s data

outgoing segment from receiver
source port # dest port #

sequence number

acknowledgement number
A rwnd

checksum urg pointer

sent
ACKed ACKed

(“in-flight”)

sent, not-yet usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Acknowledgements:
• seq # of next byte expected

from other side
• cumulative ACK

TCP ACK n means “Got everything till n-1 so send me n”

host ACKs receipt of ‘C ’ ,
sends back ‘OK ’

simple telnet scenario

Server: Host BClient: Host A

User types‘C’
Seq=42, ACK=79, data = ‘ C ’

host ACKs receipt
of ‘OK ’

Seq number is calculated based on bytes sent

Actual num bytes sent is determined by network condition 8

Seq=??, ACK=??

Seq=??, ACK=??, data = ‘OK ’

host ACKs receipt of ‘C ’ ,
sends back ‘OK ’

simple telnet scenario

Server: Host BClient: Host A

User types‘C’
Seq=42, ACK=79, data = ‘ C ’

Seq=79, ACK=43, data = ‘OK ’
host ACKs receipt

of ‘OK ’
Seq=43, ACK=81

9

TCP ACK n means “Got everything till n-1 so send me n”

Does the last segment have DATA? Why then seq no?

host ACKs receipt of ‘C ’ ,
sends back ‘OK ’

simple telnet scenario

Server: Host BClient: Host A

User types‘C’
Seq=42, ACK=79, data = ‘ C ’

Seq=79, ACK=43, data = ‘OK ’
host ACKs receipt

of ‘OK ’
Seq=43, ACK=81

9

TCP ACKs can piggyback to DATA

Which segments have the ACKs piggybacked to DATA?

Practice one more time!
simple telnet scenario

Server: Host BClient: Host A

User types‘ABC’
Seq=52, ACK=30, data = ‘ABC ’ host ACKs receipt of‘ABC’,

sends back ‘Longhorn’
Seq=??, ACK=??, data = ‘Longhorn’

host ACKs receipt
of ‘Longhorn’

Seq=??, ACK=??

10

Practice one more time!
simple telnet scenario

Server: Host BClient: Host A

User types‘ABC’
Seq=52, ACK=30, data = ‘ABC ’ host ACKs receipt of ‘C ’ ,

sends back ‘OK ’
Seq=30, ACK=55, data = ‘Longhorn’

host ACKs receipt
of ‘Longhorn’

Seq=55, ACK=38

11

Outline

1. TCP overview
2. TCP timeout

12

13

How to set TCP timeout value?

■What happens if timeout value is too short?
■What happens if timeout value is too long?
■We know it should be at least longer than… what?

How to set TCP timeout value?
■too short: premature timeout, unnecessary retransmissions
■too long: slow reaction to segment loss
■It should be at least longer than RTT but RTT varies!
■TCP maintains timer for its oldest unACKed segment

TCP uses EWMA of Sample RTT plus safety margin

14

15

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

SampleRTT Estimated RTT

RT
T

(m
illi

se
co

nd
s)

R
T

T
 (

m
ill

is
ec

on
ds

)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Estimate RTT uses EWMA to smooth out
EstimatedRTTn = (1- a)*EstimatedRTTn-1 + a*SampleRTTn

■ exponential weighted moving average (EWMA)
■ SampleRTT: measured time from segment transmission until ACK receipt
■ influence of past sample decreases exponentially fast
■ typical value: a = 0.125

In addition, safety margin is added

■timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

DevRTTn = (1-�)*DevRTTn-1 + �*|SampleRTTn-EstimatedRTTn|

16

(typically, � = 0.25)

■DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Outline

1. TCP overview
2. TCP timeout
3. TCP retransmissions

17

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

tim
eo

ut

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

tim
eo

ut

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative
ACK for 120

18

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

19

TCP fast retransmit: upon receiving triple dup ACKs
immediately retransmit without timeout

20

Host BHost A

tim
eo

ut

ACK=100

ACK=100

ACK=100

ACK=100

X

Seq=92, 8 bytes of dataSeq=100, 20 bytes of data

Seq=100, 20 bytes of data

Receipt of three duplicate
ACKs indicates 3 segments

received after a missing
segment – lost segment is likely.

So retransmit!

Is it a good idea to retransmit as soon as possible?

■TCP assumes packet is lost upon timeout
■TCP assumes the packet is lost due to congestion

Doubles the timeout interval each time TCP retransmits upon timeout!

21

Outline

1. TCP overview
2. TCP timeout
3. TCP interesting scenarios
4. TCP flow control

22

What happens if network delivers faster than
what application layer can process?

23

application
process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Loss happens when socket’s recv buffer is full!

This loss is NOT due to network congestion

You are talking too fast!

application
process

TCP socket
receiver buffers

TCP
code

IP
code

from sender

receiver protocol stack

Network layer
delivering IP datagram

payload into TCP
socket buffers

Application removing
data from TCP socket

buffers

24

TCP flow control ensures
NOT to overflow receiver socket buffer

application
process

TCP socket
receiver buffers

TCP
code

IP
code

from sender

receiver protocol stack

Network layer
delivering IP datagram

payload into TCP
socket buffers

receive window

Application removing
data from TCP socket

buffers
flow control: # bytes
receiver willing to accept

24

TCP sender limits in-flight packets smaller than rwnd

■TCP receiver “advertises” free buffer space
in rwnd field in TCP header
• RcvBuffer size set via socket options

(default 4096 bytes) buffered data

free buffer spacerwnd

RcvBuffer

to application process

TCP segment payloads

TCP receiver-side buffering

Guarantees receiver buffer will not overflow!
25

Outline

1. TCP overview
2. TCP timeout
3. TCP interesting scenarios
4. TCP flow control
5. TCP connection management

26

27

TCP has “handshake” prior to actual data exchange

■agree to establish connection
■agree on connection parameters (e.g., starting seq #s, rwnds)

What were the two socket methods to perform this handshake?

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?

§ variable delays
§ retransmitted messages (e.g.

req_conn(x)) due to message loss
§ message reordering
§ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)

29

2-way handshake scenarios

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)ACK(x+1)

No problem!

30

2-way handshake scenarios

ESTAB

retransmit
req_conn(x)

req_conn(x)

client
terminates

server
forgets x

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

acc_conn(x)
Problem: half open
connection! (no client)

31

2-way handshake scenarios

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Problem: dup data
accepted!

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

retransmit
req_conn(x)

ESTAB

req_conn(x)

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;

send ACK for SYNACK;
this segment may contain

client-to-server data
received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

33

A human 3-way handshake protocol

1. On belay?

2. Belay on.
3. Climbing.

34

Closing a TCP connection

32

■Send TCP segment with FIN bit = 1
■respond to received FIN with ACK

• on receiving FIN, ACK can be combined with own FIN

■simultaneous FIN exchanges can be handled

33

Backup slides

34

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

