Lesson 05-04:
TCP Congestion Control

CS 326E Elements of Networking
Mikyung Han

mhan@cs.utexas.edu

mailto:mhan@cs.utexas.edu

Example Protocols

FTP, HTTP, SMTP

TCP,UDP

Ethernet,WiFi

802.3 PHY

Application

Transport

Responsible for Internet
Reference Model

application specific needs

process to process data transfer

host to host data transfer across different network

data transfer between physically adjacent nodes

bit-by-bit or symbol-by-symbol delivery

Outline

@ |. Approaches to Congestion Control

Congestion control has 2 approaches

* First, solely based on sender’s detection
o Loss-based: Increase sending rate until a loss (timeout) and then cut back
o Delay-based: Do the same until RTT reaches RT T congested

* Second, network assisted approach
o Sender, network core (routers), and the receiver all participates

Let’s first look at the loss-based approach!

* AIMD

 TCP CUBIC

Outline

2. TCP's AIMD

TCP sending rate is limited by congestion window cwnd

sender sequence number space
R — cwnd —_—]

TCP sending rate ~ 409 bycesisec

RTT
last byte L
ACKed sent, but not- available but LastByteSent- LastByteAcked < cwnd
yet ACKed not used
(“in-flight”) — last byte sent

True/False? cwnd is a fixed value

How should we adjust cwnd?

cwnd is dynamically adjusted in response to observed congestion

We need to probe what the optimal sending rate is
at the moment!

AIMD: sender increases sending rate until packet loss
then decrease sending rate on loss

- Additive Increase ~ Multiplicative Decrease —]
increase sending rate by | cut sending rate in half at eact
maximum segment size every loss event
RTT until loss detected

AIMD sawtooth

behavior: probing
for bandwidth

1

/
o

7

TCP sender Sending rate

time

AIMD’s multiplicative decrease

m AIMD has been shown to:
* optimize congested flow rates network wide!

* have desirable stability properties
* WITHOUT any coordination

Different versions Reno vs Tahoe
m Reno: Cut to roughly half on loss detected by triple duplicate ACK
m Tahoe: Cut to | MSS when loss detected (either t-d-ACK or timeout)

Outline

@3. 3 States in TCP Congestion Control

TCP CC has 3 states

duplicate ACK

new ACK
cwnd = cwnd+MSS
dupACKcount =0

/)transmit new segment(s), as allowed

cwnd > ssthresh

dupACKcount++

o

L

cwnd = | MSS
ssthresh = 64 KB

implementing AIMD

cwnd = cwnd + MSS , (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

_dupACKcount =0__ L R
ffof;Q\ timeout
"\& <)) ssthresh = cwnd/2
2a </ cwnd = | MSS duplicate ACK
&) timeout dupACKcount =0 dupACKcount++
£l ssthresh = cwnd/2 A retransmit missing segment A
cwnd = | MSS
dupACKcount =0 IR
o NG,
retransmit missing segment dimeout & 2
ssthresh = cwnd/2
cwnd = | New ACK
dupACKcount =0 cwnd = ssthresh ==
dupACKcount == 3 retransmit missing segment dupACKcount = 0 dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

TCP slow start is not that slow

Host A Host B

mwhen connection begins, 3 Eﬂ

increase rate exponentially it

until first loss event: L T—tesemen

- initially cwnd = | MSS T<

* double cwnd every RTT e

* done by incrementing cwnd for

every ACK received

time

Initial rate is slow but ramps up exponentially fast!

Two states that increases cwnd

mSlow Start does exponential increase (initial ramp up)
mCongestion Avoidance does linear increase

mWhen should we switch from exponential to linear increase!?

When it reaches half of last max cwnd value just before the loss

SSthresh stores half of last max cwnd value

Q: when should the exponential
increase switch to linear?

— —
N
| |

A:when cwnd gets to |/2 of its
value before timeout.

ssthresh

Congestion window
(in segments)

Implementation:

m variable Ssthresh (slow start threshold)

O N A O 0 O
| | | | |

-1t &> & 17T 17 ‘1 1T ‘T
O1 2 3 45 6 7 8 910111213 14 15

Transmission round

m on loss event, ssthresh is set to |/2 of
cwnd just before loss event

If cwnd < ssthresh, we are in slow start

Tahoe vs Reno’s fast recovery

Tahoe (no fast recovery)
* ssthresh = cwnd/2

e cwnd = | MSS

Reno

e ssthresh = cwnd/2
e cwnd = ssthresh + 3MSS

Congestion window

(in segments)

N B o
| 1|

o
1

00
|

ssthresh

TCP Tahoe

TCP Reno

ssthresh

|

01 2 3 4

T 1

|

|

|

|

5 6 7 8 9 10 11 12 13 14 15

Transmission round

Summary: TCP congestion control

duplicate ACK

new ACK i*m é

cwnd = cwnd + MSS , (MSS/cwnd)

dupACKcount++ NewACK dupACKcount =0
cwnd = cwnd+MSS transmit new segment(s), as allowed

o

L

cwnd = | MSS
ssthresh = 64 KB

dupACKcount =0

/)transmit new segment(s), as allowed

cwnd > ssthresh

_dupACKcount =0__ L R
f(Q’;Q\ timeout
"\ &))" ssthresh = cwnd/2
. CS e e aupice ACK
.(sc 4 ?), timeout dupACKcount =0 dupACKcount++
ssthresh = cwnd/2 A retransmit missing segment A
cwnd = | MSS
dupACKcount =0 IR
t it missi t &4
retransmit missing segmen timeout &) %
ssthresh = cwnd/2
cwnd = | New ACK
dupACKcount =0 cwnd = ssthresh ==
dupACKcount == 3 retransmit missing segment dupACKcount = 0 dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Outline

@ 4. TCP CUBIC

Is there a better way
to “probe” available bandwidth!?

TCP CUBIC: more aggressive initially but
more cautious later with higher probability of loss

®* |nsight/intuition:
* W, ... sending rate at which congestion loss was detected
* congestion state of bottleneck link probably (?) hasn’t changed much

e after cutting rate/window in half on loss, initially ramp to to W, faster, but then
approach W _. more slowly

classic TCP

= = = = TCP CUBIC - higher
throughput in this
example

20

TCP CUBIC has higher throughput than Reno

= K:point in time when TCP window size will reach W,

« K itself is tunable
= increase WV as a function of the cube of the distance between current

time and K
* larger increases when further away from K

|

I

I

* smaller increases (cautious) when nearer K :
I

- —_——-—

Wiax| —-oo-- =TT —==, TN -,
TCP Reno
TCP CUBIC

CUBIC is default in Linux, |

TCP
sending

widely used among popular
Web servers rate y

Outline

@ 5. Delay-based CC

20

Delay-based TCP CC monitors throughput

Keeping the pipe “just full enough, but no fuller”

bytes sent

&y _‘ i Throughputmessured _ inlast RTT interval
T & RTT
P\-I-Tmeasured measured

m RTT,i, - minimum observed RTT

m uncongested throughput - cwnd/RTT .,

if Throughputmeasured “‘very close” to cwnd/RTTmin //not congested
increase cwnd linearly

else if Throughputmeasured “far below” cwnd/RT T i, //congested
decrease cwnd linearly

21

Outline

@ 6. Network assisted CC

22

Network-assisted approach:
Explicit congestion notification (ECN)

= two bits in IP header (ToS field) marked by network router to indicate congestion
* policy to determine marking chosen by network operator
= congestion indication carried to destination
= destination sets ECE bit (ECN-Echo) on ACK segment to notify sender of congestion

TCP ACK segment
source / & destination
TCP < TCP
o = e
\\// =
IP datagram

ECN approach involves both IP and TCP

25

Outline

@ /. TCP fairness

24

TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link
of bandwidth R, each should have average rate of R/K

TCP connection |

i/
N
- .
. bottleneck
A router

TCP connection ,
capacity R

25

Q:is TCP Fair?

Example: two competing TCP sessions:

= additive increase gives slope of |, as throughout increases

* multiplicative decrease decreases throughput proportionally

P

Connection 2 throughput

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection | throughput R

— |s TCP fair?

A:Yes, under idealized

assumptions:
= same RTT
= fixed number of sessions
only in congestion
avoidance

28

Fairness: must all network apps be “fair™?

Fairness and UDP Fairness, parallel TCP connections
mmultimedia apps opts out TCP mapplication can open multiple parallel
* do not want rate throttled by connections btw 2 hosts
congestion control (web browsers, etc.)

minstead use UDP:

* send audio/video at constant rate,
tolerate packet loss

mLink of rate R with 9 existing connections:
* new app asks for | TCP, gets rate R/10
* new app asks for | | TCPs, gets R/2

There is NO “Internet Police” policing use of bandwidth

27

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

28

