
Lesson 07-02:
Network Security - Tor Hidden Service

CS 356 Computer Networks
Mikyung Han

mhan@cs.utexas.edu

Tor: Enabling Anonymous
Communication Over the Internet

2

CS 356 3

2/21/20 CS 356 4

Outline

1. Network Security Recap

5

Public Key Infrastructure (PKI)

ex) RSA, Elliptic Curve, etc.

6

plaintextciphertext

PKBob

encryption
algorithm

decryption
algorithm

SKBob

plaintext m

E(PKBob, m)=c D(SKBob,c)=m

Security Primer

PK public key
SK private key

Alice can send the suggested share key to Bob
encrypting with Bob’s public key

7

plaintextciphertext

PKBob

encryption
algorithm

decryption
algorithm

SKBob

plaintext KCom

E(PKBob, KCom)=c D(SKBob,c)= KCom

Security Primer

PK public key
SK private key

PKI is also used in digital signature

Provides authenticity and integrity of digital messages
• Authenticity: The message was created by the known sender
• Integrity: The message was not altered in transit

Security Primer

mm, sig

SKAlice

Sign Verify

PKAlice

m “hello bob”

Sign(SKAlice, m)=sig Verify(PKAlice, m)?=sig

PK public key
SK private key

How does Alice obtain Bob’s PK?

Security Primer

Certificates bind Bob’s ID to his PK

Outline

1. Network Security Recap
2. TLS handshake

10

• Goal: Establish common session keys

TLS Handshake v1

11

Client (Alice)
ClientHello

ServerHello: Certs
KeyGen(PKs, SKs)

Certs

Server (Bob)

Pick rand
48 byte PreK

ClientKeyExchange: C E(PKs, PreK)
Decrypt C to

get PreK
Session Keys KDF(PreK)

Obtain PKs in Certs

Link is Now TLS-Encrypted

What could go wrong?Replay attack can happen!

• Goal: Establish common session keys

TLS Handshake v2
Adding randomness protects against replay attack

12

Client (Alice)
ClientHello: Noncec

ServerHello: Certs , Nonces
KeyGen(PKs, SKs)

Certs

Server (Bob)

Pick rand
48 byte PreK

ClientKeyExchange: C E(PKs, PreK)
Decrypt C to

get PreK
Session Keys KDF(PreK, Noncec, Nonces)

Obtain PKs in Certs

Link is Now TLS-Encrypted

What could go wrong?What could go wrong?What if SKs gets compromised?

What if Bob’s SK got lost or compromised?

• Bob’s certificate has to be revoked
• Bob regenerates (PK, SK) pair and get a new certificate from CA

13

If an attacker has recorded past message exchange,
he can encrypt with the compromised private key!

Future compromise of secret key should NOT affect past sessions

• Need a separate session key other than the private key

• Computationally less burdensome

Key exchange should provide forward secrecy

14

• Goal: Establish common session keys

TLS Handshake with forward secrecy

15

Client (Alice)
ClientHello: Noncec

ServerHello: Certs, Nonces, Sign(SKs, PKeph)
KeyGen(PKs, SKs)

Server (Bob)

Pick rand
48 byte PreK

ClientKeyExchange: C E(PKeph, PreK)
Decrypt C with

SKeph to get PreK
Session Keys KDF(PreK, Noncec, Nonces)

Validate PKeph

via PKs in Certs

Link is Now TLS-Encrypted

RSA Key Gen is Slow. Can we do better?

Delete SKeph

KeyGen(PKs, SKs)
KeyGen(PKeph, SKeph)

• Goal: Symmetric key exchange

TLS Handshake via Diffie Hellman

16

Alice (Client) ClientHello: NonceAlice

ServerHello: CertBob, NonceBob, Sign(SKBob, (p, g, B))

Bob (Server)

PreK is gab mod p

ClientKeyExchange: A

Session Keys KDF(PreK, NonceAlice, NonceBob)

Link is Now TLS-Encrypted

Pick rand b in 1.. p
B = gb mod p

Pick rand a in 1.. p
A = ga mod p

PreK is gab mod p

Finished
Finished

Delete a Delete b

Outline

1. Network Security Recap
2. TLS handshake
3. The full story of Tor Circuit

17

Alice Server

Tor network

Guard Middle Exit

TLS connections are pre-established among Tor nodes

TLS TLS

Alice Server

Tor network

Guard Middle Exit

TLS connection first needs to be established
between Alice and Guard

TLS TLS
TLS

ANY messages exchanged between each connection
is encrypted using the set of session keys (connection key in Tor)

Alice Server

Tor network

Guard Middle Exit

With TLS tunnel already established
Alice starts the steps to build the Tor circuit

TLS TLS
TLS

• How Alice – Bob establish shared session key K1

Tor Circuit Construction: 1st hop

21

Alice(Client)

Create c1, E(PKB, gx)

Created c1, gb

shared key
K1 = gxb

Bob(entry) Charlie(Mid)

pick x

pick b

Dave(Exit)

Alice Server

Tor network

Guard Middle Exit

With TLS tunnel already established
Alice starts the steps to build the Tor circuit

TLS TLS
TLS

• How Alice – Charlie establish shared session key K2

Tor Circuit Construction: 2nd hop

23

Alice(Client)

Relay c1,
K1{Extend, Charlie, E(PKC,gy)}

Create c2, E(PKC, gy)

Created c2, gc

shared key
K2 = gyc

Relay c1,
K1{Extended, gc}

Bob(entry) Charlie(Mid)

pick y

pick c

Dave(Exit)

Alice Server

Tor network

Guard Middle Exit

With TLS tunnel already established
Alice starts the steps to build the Tor circuit

TLS TLS
TLS

• How Alice – Dave establish shared session key K3

Tor Circuit Construction: 3rd hop

25

Alice(Client)

Relay c1,
K1{K2{Extend, Dave, E(PKD, gz)}}

Created c3, gd

Relay c2,
K2{Extended, gd}

shared key
K3 = gzd

Relay c1,
K1{ K2{Extended, gd}}

Bob(entry) Charlie(Mid)

pick z

pick d

Dave(Exit)

Relay c2,
K2{Extend, Dave, E(PKD, gz)}

Create c3, E(PKD, gz)

Alice Server

Tor network

Guard Middle Exit

ALL Tor messages are exchanged inside TLS tunnels

TLS TLS
TLS

This makes it hard to distinguish Tor traffic from normal TLS traffic

• Alice – Bob, Alice – Charlie, Alice – Dave has shared session key K1, K2 and K3

Tor Packet Forwarding via 3 hop Circuit

27

Alice WebsiteBob Charlie

Relay c1,
K1{K2{K3{ begin cnn.com:80 }}}

Relay c2,
K2{K3{ Connected }}

Relay c2,
K2{K3{ begin cnn..}}

TCP handshake
(raw unencrypted)

Relay c1,
K1{K2{K3{ Connnected }}}

Dave

Relay c3,
K3{ begin cnn.. }

Relay c3,
K3{ Connected }

When selecting relays what should Alice consider?

Alice (Client) à Bob (Entry) à Charlie (Middle) à Dave (Exit) à Server

28

Diversify the relays as much as possible! Why?

Top Countries where Tor relays are located

• The US
• Germany
• France
• Russia
• Netherlands

• United Kingdom

29

Outline

1. Network Security Recap
2. TLS handshake
3. The full story of Tor Circuit
4. Tor Onion Service (aka hidden service)

30

Motivation: Now that we have secured Alice
(identity, IP, location) is not known to server

31

Can we hide the IP and location of the server from Alice?

Tor Onion Service (aka Hidden Service)

32

https://www.nytimes3xbfgragh.onion/
https://www.bbcnewsv2vjtpsuy.onion

https://www.nytimes3xbfgragh.onion/
https://www.bbcnewsv2vjtpsuy.onion/

33

Onion service provides server anonymity
by concealing server IP and location

34

Alice (client) shouldn’t know where onion service (server) is

client ???
.onion

Useful for servers hosting sensitive information

From server’s point of view
Alice should also remain anonymous

35

.onion

???

How to achieve both client-side and server-side anonymity?

A middleman between Alice and onion service is needed:
Tor calls it a Rendezvous Point (RP)

36

.onion

???

How can Alice or Server trust this Rendezvous Point?

RP

They DON’T! RP should never learn anything regarding both Alice or server

???

How many hops should RP have from Alice and Server?

37

.onion

???
RP

???

3 hop is required for anonymity for both Alice and Server

How about 5 hop topology?

38

.onion

???
RP

entry middle middle
entry

???

RP is exactly 3 hop away from both Alice and Server

as a shared
exit relay

How about 7 hop topology?

39

.onion

???
RP

entry middle
exit

middle
entry

???exit

RP should be at least 3 hops away from both client and server
without any overlap to support bi-directional anonymity

40

.onion

???

How to agree on RP without exposing oneself?

RP

entry middle
exit

middle
entry

???
/exit

Step 1: Server picks random 3 relays as its
introduction points(IP) and builds circuits to them

41

IP1

IP3 3 hop circuit
(entry-middle-exit)

.onion

Onion service generates (PKS, SKS)
Sends PKS to IPs IP2

Step 2: Server advertises
its onion address, PK, and IPs to lookup service

42

IP1

IP3 3 hop circuit
(entry-middle-exit)

.onion

Lookup Service

PKS, IP1-3

IP2

Step 3: Client retrieves the PK, and IPs for the server
Also client builds circuit to a randomly chosen RP

43

IP1

IP3 3 hop circuit
(entry-middle-exit)

.onion

Lookup Service

retrieves PKS, IPs
of server

one-time secret

RP

IP2

Step 4: Client sends introduce message to server via IP

44

IP1

IP3 3 hop circuit
(entry-middle-exit)

.onion

E(PKS, (, RP))
E(PKS, (, RP))

RP

IP2

Step 5: Server sends rendezvous message to RP

45

IP1

3 hop circuit
(entry-middle-exit)

.onion

Connected
IP2

IP3

RP

Step 6: Client and server proceeds to use
Tor circuits like normal

46

IP1

3 hop circuit
(entry-middle-exit)

.onion

IP2

IP3

RP

None of IPs, RP, and LS do not know about server or client IP/location

Why can’t just IPs be the RP forwarding data for server?

47

IP1

3 hop circuit
(entry-middle-exit)

.onion

IP2

IP3

RP

How about 5 hop topology?

48

.onion

???
RP

entry middle middle
entry

???

If RP is compromised, then both circuits are impacted

as a shared
exit relay

7 hop works but unnecessary as RP is simply forwarding

49

.onion

???
RP

entry middle
exit

middle
entry

???exit

No added value in terms of security but only causes longer delay

Why can’t just IP be the RP forwarding data for server?

50

IP1

3 hop circuit
(entry-middle-exit)

.onion

IP2

IP3

RP

Hint: There are just a few IPs per server
Each client can pick any relay as its RP

Having a separate RP per client helps spreading the load over different RPs

51

NOT SO

Outline

1. Network Security Recap
2. TLS handshake
3. The full story of Tor Circuit
4. Tor Onion Service (aka hidden service)
5. When Tor hidden service is not really hidden

52

Fingerprinting Attacks

Circuit Fingerprinting Attack:
Passive Deanonymization of Tor Hidden Service (USENIX Sec’15)

53

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-sun.pdf

Circuits for onion service has unique characteristics

54

IP1

.onion

IP2

IP3

RP

Circuits for onion service has unique characteristics

• HS-IP circuits are long-lived while Client-IP circuits are short-lived
• IP’s have little incoming and outgoing cells
• HS-RP circuits have more outgoing than incoming
• Streams for different .onion domains are not multiplexed
• IP and RP circuits are disjoint from general circuits

55

Use these characteristics to identify
onion service circuits and locate the server!

Summary of Tor

• Tor enables anonymous communication over the Internet

• Tor uses 3 hop encrypted circuit to provide anonymity

• Tor Onion service aims to achieve both client-server server-client
anonymity by hiding server IP/location

• Tor is vulnerable to various attacks and censorship attempts

• Tor is a constantly evolving network protocol to resists them

56

Backup slides

57

• Goal: Authenticate and establish TLS connection with shared session keys

• Any problems here?

Tor: TLS Handshake (v1)

58

Client (OP/OR)
ClientHello: Noncec

ServerHello: [Certcon,Certsid], Nonces, Sign(SKcon, (p, g, A)) KeyGen
(PKcon, SKcon)

Server (OR)

PreK is Ab mod p

ClientKeyExchange: B

PreK is Ba mod p
Session Keys KDF(PreKs, Noncec, Nonces)

Authenticate Server
with PKsid in Certsid

Link is Now TLS-Encrypted

Validate p, g, A
with PKcon in Certcon

ClientAuth:[Certscon,Certcid]

ServerHello: [Certcon,Certsid], Nonces, Sign(SKcon, (p, g, A))

ClientAuth:[Certscon,Certcid]
Pick random a in 1…p

A = ga mod p

Pick random b in 1…p
B = gb mod p

Can enable fingerprinting attacks or censorship!

• First, establish TLS connection (looks like regular TLS handshake traffic)

• Then, do authentication “in-protocol” using Tor cells

59

Client (OP/OR)
ClientHello: Noncec

ServerHello: Certcon, Nonces, Sign(SKcon, (p,g,A))

Server (OR)

ClientKeyExchange: B

Session Keys KDF(PreK, Noncec, Nonces)

Link is Now TLS-Encrypted

KeyGen(PKcon, SKcon)

Pick random a in 1…p
A = ga mod p

PreK is Ab mod p

Pick random b in 1…p
B = gb mod p

PreK is Ba mod p

TOR: TLS Handshake

• Step 2: Authenticate Server using TOR cells

60

Client (OP/OR) VERSIONS cell: “v3?”

VERSIONS cell: v3 agreed!

Server (OR)

Authenticate
Server based on
Certlink and Certid

CERTS cell: Certlink, Certsid “I am PKid holding Skid and
I am the one you’ve been talking to on this link”

AUTH_CHALLENGE cell: “To prove who you say you are and
you are the one I’ve been talking with on this link, solve this”

NETINFO: timestamp, IP address

RSA Keypairs
(PKsid, SKsid)
(PKcon, SKcon)

T R: TLS Handshake

• Step 3: Client authentication (optional) and client network info shared

CS 356 61

Client (OP/OR) CERTS cell: Certauth, Certcid Server (OR)

Authenticate
Client based on

Certauth and Certcid

AUTHENTICATE: “puzzle solved!”

NETINFO cell: timestamp, IP address

RSA Keypairs
(PKcid, SKcid)

(PKauth, SKauth)

T R: TLS Handshake

