Exam2 Review

CS 326E Elements of Networking Mikyung Han mhan@cs.utexas.edu

Exam format

- Exam will be cumulative by nature
- 3 hours
- Similar format as Exam I
 - $_{\circ}$ Probably shorter tho igodot
- 2 double-sided 8.5x11 in cheat sheets allowed • Either handwritten or typed ok
- No electronic devices allowed including the calculator
- Review all EXs, in-class EXs, Hands-on Assignments
- Panopto videos and async lecture videos

Everything in Exam I

Refer to the Exam I Review Slides in the Course Calendar

Transport Layer

- RDT
- UDP
- TCP
- TCP Congestion Control

Network Layer

- Router, subnet, IPv4
- NAT
- IPv6
- SDN & GF
- OSPF and BGP
- ICMP: ping and traceroute
- Specific routing algorithms will NOT be on the exam

Link Layer

- MAC
- ARP
- Ethernet Switch

Network Security

• All about Tor

• Encryption

- Symmetric encryptionAsymmetric encryption (PKI)
- Diffie Hellman Key exchange
- Digital signature
- Digital certificate
- Authentication
- Message Integrity
- TLS handshake

Network Security

- All about Tor
 - ∘ Ho

• Encryption

Symmetric encryptionAsymmetric encryption (PKI)

- Diffie Hellman Key exchange
- Digital signature
- Digital certificate
- Authentication
- Message Integrity
- TLS handshake

NAT: network address translation

Hierarchical OSPF to solve scalability

area I

ABR (Area Border router):

- "summarize" distances to destinations in own area, advertise in backbone
- Also lets routers within one area know about the other area

Local router:

- flood LS in area only
- compute routing within area
- forward packets to outside via area border router

area 2

- Link-state advertisements are NOT flooded across multiple areas/backbone
- Each node has detailed topology for its own area but just next hop for outside
- ASBR must run both BGP as well as IGP (such as OSPF)

BGP basics

- BGP session: two BGP routers ("peers, speakers") exchange BGP messages over semi-permanent TCP connection:
 - advertising paths to different destination network prefixes (e.g., to a destination /16 network)
 - BGP is a "path vector" protocol
- when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
 - AS3 promises to AS2 it will forward datagrams towards X

- 2d learns (via iBGP) it can route to X via 2a or 2c
- hot potato routing: choose local gateway that has least intra-domain cost (e.g., 2d chooses 2a, even though more AS hops to X): don't worry about inter-domain cost!

SDN architecture

Responsible for

application specific needs

process to process data transfer

host to host data transfer across different network

data transfer between physically adjacent nodes

bit-by-bit or symbol-by-symbol delivery

16

Security Primer

TLS uses symmetric encryption

How do Alice and Bob establish the shared key?

Security Primer

Public Key (aka asymmetric) Encryption

ex) RSA, Elliptic Curve, etc.

PK public key SK private key

Anonymous communication takes place by forwarding traffic across consecutive tunnels

Security Primer

Key Exchange: Diffie-Hellman's Nifty Idea

- p = a large prime
 g = a number [I.. p]
- a, b = random num [1..p-1]
- $A = g^a \mod p$ $B = g^b \mod p$
- Alice computes B^a mod p
- Bob computes A^b mod p
- g^{ab} mod p is the shared key!

21

Tor Packet Forwarding via 3 hop Circuit

• Alice – Bob, Alice – Charlie, Alice – Dave has shared session key K₁, K₂ and K₃

VPN vs Tor (vs Proxy)

Responsible for

process to process data transfer

application specific needs

host to host data transfer across different network

data transfer between physically adjacent nodes

bit-by-bit or symbol-by-symbol delivery

24

MAC addresses

each interface on LAN

- has unique 48-bit MAC address
- has a locally unique 32-bit IP address (as we've seen)

ARP: address resolution protocol

ARP table: each IP node (host, router) on LAN has table

 IP/MAC address mappings for some LAN nodes:

< IP address; MAC address; TTL>

• TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

Self-learning switch example

- frame destination, A', location unknown: flood
- destination A location known: selectively send on just one link

