
1

Lesson 05-03:
TCP

CS 356 Computer Networks
Mikyung Han

mhan@cs.utexas.edu

2
2

Link

Network

Transport

Application

Physical802.3 PHY

Ethernet, WiFi

IP

TCP, UDP

FTP, HTTP, SMTP

Internet
Reference Model

bit-by-bit or symbol-by-symbol delivery

data transfer between physically adjacent nodes

host to host data transfer across different network

process to process data transfer

application specific needs

Example Protocols Responsible for

3

Outline

1. Recap

4

Selective repeat:
a dilemma!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
§ seq #s: 0, 1, 2, 3 (base 4 counting)

§ window size=3

§ receiver can’t
see sender side

§ receiver
behavior
identical in both
cases!

§ something’s
(very) wrong!

Why this is happening?
What should be the

relationship btw seq #
size and window size?

5

Outline

1. Recap
2. TCP overview

6

TCP vs rdt

• What are the similarities?
• What are the differences?

7

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

§ cumulative ACKs
§ timeouts
§ pipelining:
• TCP congestion and flow control

set window size

§ connection-oriented
(handshake)

§ flow controlled:
• sender will not overwhelm receiver

§ point-to-point:
• one sender, one receiver

§ reliable, in-order byte steam:
• no “message boundaries"

§ full duplex data:
• bi-directional data flow in same

connection
• MSS: maximum segment size

8

TCP sequence numbers, ACKs
Sequence numbers:
• byte stream “number” of

first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-yet
ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Acknowledgements:
• seq # of next byte expected

from other side
• cumulative ACK

9

TCP ACKs can piggyback to DATA

host ACKs receipt
of ‘OK’

host ACKs receipt of‘C’,
sends back ‘OK’

simple telnet scenario

Server: Host BClient: Host A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘OK’

Seq=43, ACK=??

Which segments have the ACKs piggybacked to DATA?Does the last segment have DATA? Why then seq no?

10

Outline

1. Recap
2. TCP overview
3. TCP timeout

11

How to set TCP timeout value?

§What happens if timeout value is too short?
§What happens if timeout value is too long?
§We know it should be at least longer than… what?

12

How to set TCP timeout value?
§ too short: premature timeout, unnecessary retransmissions
§ too long: slow reaction to segment loss
§ It should be at least longer than RTT but RTT varies!
§TCP maintains timer for its oldest unACKed segment

TCP uses EWMA of Sample RTT plus safety margin

13

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

R
T

T
 (

m
ill

is
ec

on
ds

)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Estimate RTT uses EWMA to smooth out
EstimatedRTTn = (1- a)*EstimatedRTTn-1 + a*SampleRTTn

§ exponential weighted moving average (EWMA)
§ SampleRTT: measured time from segment transmission until ACK receipt
§ influence of past sample decreases exponentially fast
§ typical value: a = 0.125

14

In addition, safety margin is added

§ timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

DevRTTn = (1-b)*DevRTTn-1 + b*|SampleRTTn-EstimatedRTTn|

(typically, b = 0.25)

§DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

15

Outline

1. Recap
2. TCP overview
3. TCP timeout
4. TCP retransmissions

16

TCP fast retransmit: upon receiving triple dup ACKs
immediately retransmit without timeout

Host BHost A

tim
eo

ut

ACK=100

ACK=100

ACK=100

ACK=100

X

Seq=92, 8 bytes of dataSeq=100, 20 bytes of data

Seq=100, 20 bytes of data

Receipt of three duplicate
ACKs indicates 3 segments

received after a missing
segment – lost segment is likely.

So retransmit!

17

T/F? Timeout interval for retransmission
is derived from EstimatedRTT and DevRTT

§TCP assumes packet is lost upon timeout
§TCP assumes the packet is lost due to congestion
§With these assumptions, is it a good idea to retransmit

as soon as possible?

Doubles the timeout interval each time TCP retransmits!

18

Outline

1. Recap
2. TCP overview
3. TCP timeout
4. TCP interesting scenarios
5. TCP flow control

19

Why in P0P Dostoyevsky caused packet losses?

• Even when client/server is within the same host
• No network between client and server thus no network loss!

Where were 20,000+ loss happening then?

20

Loss happens if network delivers faster than
what application layer can process

application
process

socket
receiver buffers

Transport
code

IP
code

receiver protocol stack

Loss was happening in the
socket buffer of the receiver!

Network layer
delivering IP datagram

payload into socket
buffers

from sender

Application removing
data from socket buffers

21

TCP flow control ensures
NOT to overflow receiver socket buffer

application
process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers
receive window flow control: # bytes

receiver willing to accept

22

TCP sender limits in-flight packets smaller than rwnd

§TCP receiver “advertises” free buffer space
in rwnd field in TCP header
• RcvBuffer size set via socket options

(default 4096 bytes) buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Guarantees receiver buffer will not overflow!

23

Outline

1. Recap
2. TCP overview
3. TCP timeout
4. TCP interesting scenarios
5. TCP flow control

6. TCP connection management

24

TCP has “handshake” prior to actual data exchange

§ agree to establish connection
§ agree on connection parameters (e.g., starting seq #s, rwnds)

25

We could use 2-way handshake

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)ACK(x+1)

No problem!

Let’s talk

OK
ESTAB

ESTAB

26

2-way handshake is not enough!

ESTAB

retransmit
req_conn(x)

req_conn(x)

client
terminates

server
forgets x

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

acc_conn(x)
Problem: half open
connection! (no client)

27

2-way handshake is not enough!

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB
acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Problem: dup data
accepted!

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

retransmit
req_conn(x)

ESTAB

req_conn(x)

28

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;

send ACK for SYNACK;
this segment may contain

client-to-server data
received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

29

Closing a TCP connection

§ Send TCP segment with FIN bit = 1
§ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

§ simultaneous FIN exchanges can be handled

30

Outline

1. Recap
2. TCP overview
3. TCP timeout
4. TCP interesting scenarios
5. TCP flow control

6. TCP connection management
7. TCP seq num wrap around

31

Sequence number with 2 bits

0, 1, 2, 3, 0, 1, 2, 3, …
§Can we allow window size 5?
• 0, 1, 2, 3, 0, 1, 2, 3, …

§How about window size 3?

Receiver cannot distinguish 1st and 5th segment
because they have the same seq no of 0

32

Seq no and window size

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
§ seq #s: 0, 1, 2, 3 (base 4 counting)

§ window size=3

Why is this happening?

33

Seq no and window size

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
§ seq #s: 0, 1, 2, 3 (base 4 counting)

§ window size=3

§ receiver can’t
see sender side

§ receiver
behavior
identical in both
cases!

§ something’s
(very) wrong!

WHY is this happening?

34

Sequence number with 2 bits

0, 1, 2, 3, 0, 1, 2, 3, …
§Sender’s retransmission of 1st segment falls into

receiver’s window of 5th segment
• If seq no space is infinite would this ever happen?

§The ”highest” seq no in receiver window should NOT overlap
with the “lowest” seq no in sender window

Sequence no space should fit entire sender window
and receiver window WITHOUT overlap!

35

Seq no≥2 x window size

0 1 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

pkt0

pkt1

pkt2

0 1 2 4 5 6 0 pkt0

timeout
retransmit pkt0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

X
X
X

will correctly identify as dup packet

example:
§ seq #s: 0, 1, 2, 3, 4, 5
§ window size=3

With sufficiently large seq number space,
sender’s window does NOT overlap with receiver’s window

36

Backup slides

37

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=72, 18 bytes of data

Seq=72, 18 bytes of data

ACK=100

X

ACK=100

tim
eo

ut

premature timeout

Host BHost A

Seq=72, 18
bytes of data

ACK=120

tim
eo

ut

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=72, 18 bytes of data

Seq=100, 20 bytes of data

SendBase=72

send cumulative
ACK for 120

38

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=72, 18 bytes of data

Seq=130, 15 bytes of data

Seq=100, 30 bytes of data

X
ACK=100

ACK=130

39

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

