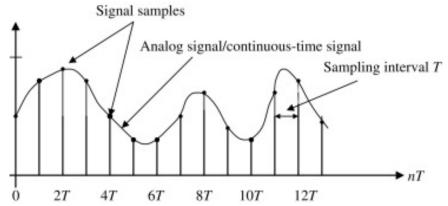
Lecture 03-8: Physical Layer IDFT and IFFT example

CS 356R Intro to Wireless Networks

Mikyung Han

I. DFT and FFT Recap

Discrete Fourier Transform



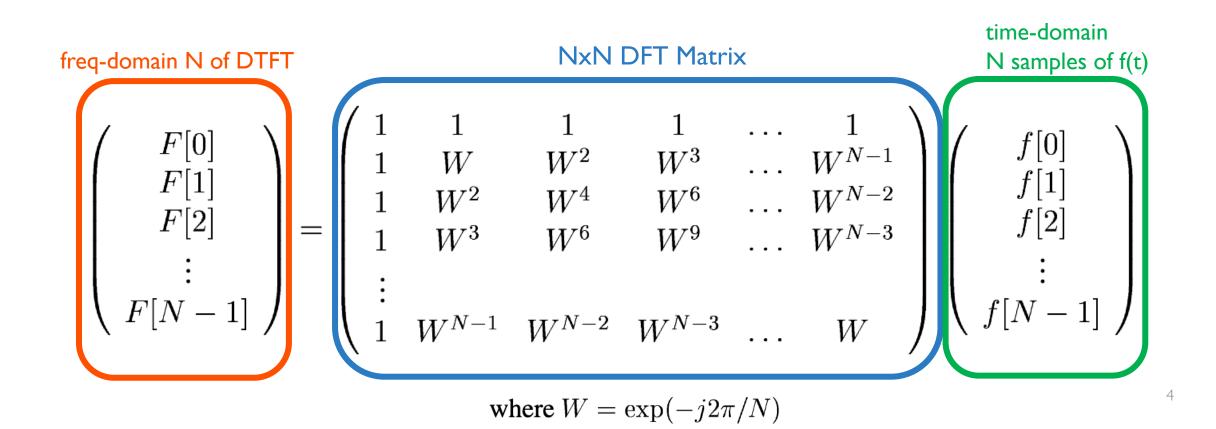
3

- Let f(t) be 2L periodic continuous function in time-domain
- DFT is defined over "equally spaced" N samples of f(t)
 - $_{\circ}$ Define T as the sampling interval
 - $_{\circ}$ Sampling rate Fs = I/T
 - \circ Note NT = 2L
- Let f[0] f[1] f[2]... f[N-1] be the N samples of f(t) taken at t=0,T, 2T, 3T ...
- We can obtain the "equally spaced" Discrete-time Fourier Transform F[n]

$$F[n] = \sum_{k=0}^{N-1} f[k] e^{-j\frac{2\pi}{N}nk} \quad (n = 0: N-1)$$

DFT Matrix
$$F[n] = \sum_{k=0}^{N-1} f[k] e^{-j\frac{2\pi}{N}nk}$$
 $(n = 0: N-1)$

• The same equation can be expressed as a matrix multiplication



angle(a+ib) = phi

• Each F[n] values are complex value, where n=0: N-I

b

 $_{\circ}$ [F[n]] represents how similar f(t) is to e^{iwt}

 $_{\circ}$ Angle formed by real(F[n]) and imag(F[n]) represents the phase offset from e^{iwt}

freq-domain N of DTFT

DFT results

$F[0]\\F[1]\\F[2]$	
\vdots F[N-1]	

- nth bin is mapped to actual frequency value nFs/N in Hz
 - 。 0th bin: 0 Hz
 - $_{\circ}~$ I st bin: Fs/N Hz
 - 。2nd bin:2Fs/N Hz
 - 0 ...
 - 0 ...
 - 。 (N-1)th bin: (N-1)Fs/N Hz

Only half of the DTFT is meaningful

• Based on Shannon Nyquist Sampling Theorem

 $_\circ$ To resolve all frequencies in a f(t), we must sample f(t) at 2 x w_{max} where w_{max} is the highest frequency present in f(t)

 $_{\circ}$ Fs > 2 x w_{max} means

freq-domain N of DTFT

$ \begin{bmatrix} F[0] \\ F[1] \\ F[2] F[2] $	 This means frequencies Fs/2 and is meaningless! Oth bin: 0 Hz Ist bin: Fs/N Hz 2nd bin: 2Fs/N Hz 	
$\left[\begin{array}{c} -\vdots \\ F[N-1] \end{array}\right]$	 (N-1)th bin: (N-1)Fs/N Hz The latter half values are the "alias" of the first half 	
	NEGATIVE FREQUENCY ZONE (Often it is discarded)	

DFT and **FFT**

- FFT is a fast implementation of DFT
- Typical NxN matrix multiplication takes O(N²)
- FFT's runtime is O(Nlog₂N)
- Basic idea

 Re-arranging matrix as a diagnonal matrix (linear operation) and dividing into even/odd (log N each step)

$$\mathbf{\hat{f}} = \mathbf{F}_{1024}\mathbf{f} = \begin{bmatrix} \mathbf{I}_{512} & -\mathbf{D}_{512} \\ \mathbf{I}_{512} & -\mathbf{D}_{512} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{512} & \mathbf{0} \\ \mathbf{0} & \mathbf{F}_{512} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{even} \\ \mathbf{f}_{odd} \end{bmatrix} \quad \mathbf{D}_{512} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\omega} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \boldsymbol{\omega}^2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{\omega}^{511} \end{bmatrix}$$

• This video illustrates cleverly the idea of FFT

Simply we call $f_hat = fft(f)$, where f is $I \times N$ vector of samples

I. Fourier Series Definition
2. Power Spectral Density

Matlab Example: A signal with phase shift

• fft_with_phase.m

Power Spectral Density

- One of the measures to analyze FFT results
- Aka Power Spectrum
- Describes how much power is present per frequency
- How to calculate

```
\circ f_hat = fft(f)
```

 \circ PSD = f_hat.x conj(f_hat)/N

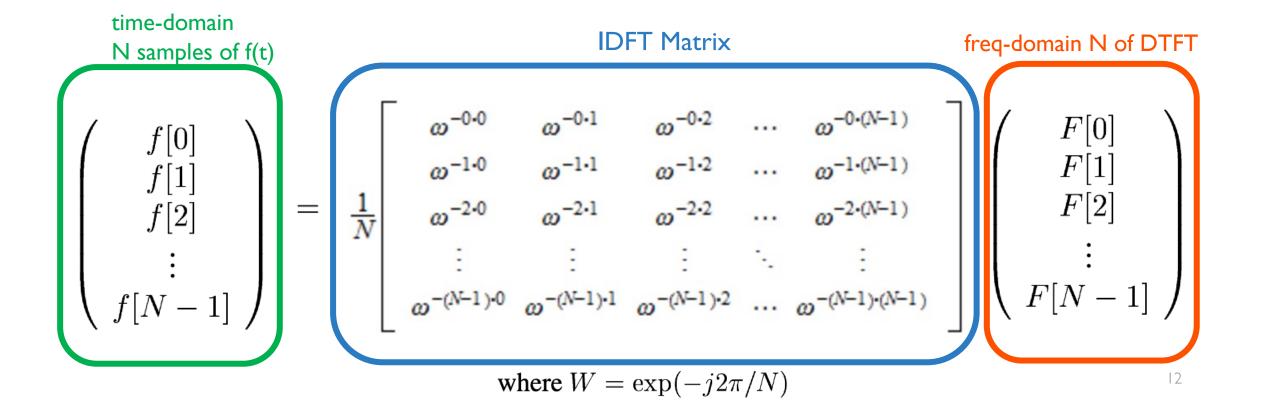
 $_{\circ}$ Let f_hat be 1x N vector where each complex value is $a_{k}+ib_{k}$ (k=1 \ldots N)

Note magnitude calculates $sqrt(a_k^2+bk^2)$ whereas PSD calculates $\frac{1}{N}(a_k^2+b_k^2)$

- I. Fourier Series Definition
- 2. Power Spectral Density
- **3.** Inverse Discrete Fourier Transform

Inverse Discrete Fourier Transform (IDFT)

• The inverse of
$$F[n] = \sum_{k=0}^{N-1} f[k] e^{-j\frac{2\pi}{N}nk}$$
 is given by $f[k] = \frac{1}{N} \sum_{n=0}^{N-1} F[n] e^{+j\frac{2\pi}{N}nk}$



IDFT and IFFT

- IFFT is a fast implementation of IDFT
- Almost the same operation as FFT
 - The sign is flipped on the exponent
 Has I/N normalizing factor
- IFFT and FFT has the same time complexity of O(N logN)

Simply we call f = ifft(f_hat) to recover the original sampled signal f

- I. Fourier Series Definition
- 2. Power Spectral Density
- 3. Inverse Discrete Fourier Transform

4. Matlab Denoise Exercise using FFT and IFFT