Lecture 03-12: Physical Layer OFDM 2

CS 356R Intro to Wireless Networks

Mikyung Han

Outline

Hecap OFDM basics

Simple OFDM example

3

Final step is to add everything up in time domain and send!

What would OFDM modulation equation look like?

OFDM sender equation

• Let each bit in subcarrier C_k be X_k

• In BPSK,
$$X_k \in \{1, -1\}$$

- Let T be the symbol time
- Modulate them with orthogonal frequencies

$$\mathbf{x}(\mathbf{t}) = \sum_{k=1}^{n} \mathbf{X}_{k} e^{i2\pi (k/T) t}$$

Equation for the final signal x(t) should look familiar \odot

Outline

I. Recap OFDM basics
2. Implementing OFDM

Generalized Equation for OFDM

Note FFT of rectangular pulse is a sinc function

- Rectangular pulse function with period period T from [-T/2,T/2]
- FFT of this pulse is sinc(π Tf) where sinc(x) is defined as sin(x)/x

When carrier spacing $\Delta f = I/T$ each carrier become orthogonal to one another

Modulating with carrier frequency f_k shifts from 0-centered signal into a signal centered at f_k

By setting carrier frequencies as $f_{base} + k/T$ we can make carriers orthogonal

Recall: Generalized Equation for OFDM

Let's sample $x(t) = \sum_{k=0}^{n-1} X_k e^{i2\pi (k/T) t}$

• Let x_i be the jth sample of x(t)

 $x_i = \sum_{k=0}^{n-1} X_k e^{i2\pi (k/T)t_j}$ where $t_j = j\Delta t = j^{th}$ sample time • Given T is symbol time and n is the number of samples • Sampling interval $\Delta t = \frac{T}{n}$ and sampling rate Fs $= \frac{1}{\Delta t} = \frac{n}{T}$ Time

12

OFDM time domain sample $x_i = \sum_{k=0}^{n-1} X_k e^{i2\pi (k/T)t}$

- t_j/T = $j\Delta t/T = j\Delta t/(n \Delta t) = j/n$
- Thus, we can rewrite as $x_j = \sum_{k=0}^{n-1} X_k e^{i2\pi jk/n}$

DFT and IDFT Note OFDM $x_j = \sum_{k=0}^{n-1} X_k e^{i2\pi jk/n}$

- x_j is jth time domain sample out of n samples of period P $\circ x_0 \times_1 \times_2 \dots \times_{n-1}$ are n time domain samples
- DFT of x_j's is $X_{k} = \sum_{j=0}^{n-1} x_{j} e^{-i (2\pi/n)jk}$ • IDFT of X_k's is $x_{j} = \frac{1}{n} \sum_{k=0}^{n-1} X_{k} e^{i (2\pi/n)jk}$

Identical! Thus OFDM modulation can be implemented via IFFT where IFFT is a fast implementation of IDFT

OFDM sender can be implemented via IFFT

15

Receiver-side OFDM demodulation is implemented via FFT

 \hat{X}_k are the decomposed coefficients of each frequency components of x(t)

Comparing to "manual" implementation

• If we did NOT have FFT then... this is what we need in receiver side

• BPSK example used

802. I I a Wifi Example

- Total bandwidth Bw == sampling rate Fs
- Sampling rate Fs = N/T
 - T is the symbol periodN is the number of samples
- Total bandwidth $Bw = N \Delta f$
 - N is also the number of carriers
 Δf is the bandwidth of each carrier

802. I I a Wifi Example

- Total bandwidth Bw = 20 MHz
- Sampling rate is also 20 MHz
- If N = 64

• Carrier spacing $\Delta f = 20MHz/64$ = 312.5 KHz

 $_{\circ}$ Symbol time T = 1/ Δf = 3.2 microsec

• Tolerable delay spread is rougly 1-2 microsec • More on delay spread later

Fuller Story: OFDM sender with I/Q modulation

Fuller Story: OFDM receiver with I/Q modulation

