Lecture 07-03: Network Layer Routing in Mesh Network

CS 356R Intro to Wireless Networks

Mikyung Han

Responsible for

application specific needs

process to process data transfer

host to host data transfer across different network

data transfer between physically adjacent nodes

bit-by-bit or symbol-by-symbol delivery

2

2

I. What is Wireless Mesh Network?

Multi-hop Wireless Networks

	Stationary Nodes	Mobile Nodes
Motivating scenario	Community wireless networks (<u>Mesh Networks</u>)	Battlefield networks
Key challenge	Improving Network Capacity	Handling mobility, limited power.

Wireless mesh networks provides Internet connection for the community with lower cost

Mesh routers should be deployed throughout the community

Typically assumes using 802.11 WiFi

Routing challenges in mesh network

- How to determine "best routes" over wireless links
- Links are lossy
- Transmissions among nodes create interference
- Routing metric

What should be the "cost" of the links?

I. What is Wireless Mesh Network?
2. Routing metrics in mesh networks

Potential metrics in wireless mesh routing

- End-to-end delay
- Per-link delivery ratio
- Throughput of a path's bottleneck link

End-to-end delay

- Pick a route that has lowest end-to-end delay
- Would it work?

End-to-End delay depends on the traffic + interference

How about measuring something per-link?

Per-link delivery ratio

• Ex) Consider 2 hop path: src – mesh router - dst $_{\circ}$ 0.7 × 0.8 = 0.56

Per-link delivery ratio can be misleading

- A perfect 2 hop route vs 1-hop route with 10% loss
 - Ex1) 2 hop path: src mesh router dst
 - | × | = |
 - Ex2) I hop direct path

• 0.9

Perfect 2 hop is NOT better than I hop with 10%. Why?

Throughput of a path's bottleneck link

• A perfect 2 hop route vs I-hop route with 10% loss

- Ex1) 2 hop path: src mesh router dst
 - Say both throughput is IMbps, so bottleneck throughput is I Mbps
- Ex2) I hop direct path with 10% loss
 - 0.9 Mbps

Higher per-link throughput does not translate to overall throughput

ETX: a better metric in wireless mesh network

- d_f = forward delivery rate
- d_r = reverse delivery rate
- ETX of a link = $\frac{1}{d_f * dr}$
- ETX of a path: sum of the ETX values of the links over that path

ETX: a better metric in wireless mesh network

• Let's consider expected number of data transmissions required

- Link with 50% loss: 2
- $_{\circ}$ Link with 75% loss: 4

• In 802.11 WiFi, ACK is followed by DATA

 \circ delivery rate = 1 – loss rate

 $_{\circ}$ DATA travels forward direction: d_f = forward delivery rate

 $_{\circ}$ ACK travels reverse direction: d_r = reverse delivery rate

ETX pros and cons

• Pros

 $_{\circ}$ Better than vanilla hop count as it accounts for bi-directional loss rate

• Easily be incorporated into routing protocols

• Cons

Only considers loss rate

- Does not account for other factors (mobility, power, interference)
- Prone to oscillation and may select sub-optimal paths

I. What is Wireless Mesh Network?

2. Routing metrics in mesh networks

3. Opportunistic routing

What is opportunistic routing?

- In traditional routing, we commit to a single path for given src dst
 Src -> A -> B -> C -> Dst
- In opportunistic routing, we leverage broadcast nature of wireless link

• Whoever happens to hear the packet let it forward!

- I. What is Wireless Mesh Network?
- 2. Routing metrics in mesh networks
- 3. Opportunistic routing
- 4. Network coding

When RI and R2 receives the same pkt they need to figure out who sends what

Keeping track of who got what and deciding of who sends what is challenging

Can we somehow by-pass that?

• Yes! We can use network coding!

Network coding: each node produces linear combination of pkt received and forwards the coded pkt

• PI and P2 are raw uncoded packets (batch size 2)

Can we perform network coding with different flows?

- Yes!
- Two flows sharing the same set of intermediate node

Can we do network coding in physical layer?

- Yes
- <u>https://www.cs.utexas.edu/~lili/papers/pub/mobicomll-crma.pdf</u>

- I. What is Wireless Mesh Network?
- 2. Routing metrics in mesh networks
- 3. Opportunistic routing
- 4. Network coding
- 9. Leveraging multiple radios

I. What is Wireless Mesh Network?

2. Routing metrics in mesh networks

3. Leveraging multiple radios

What else can we leverage in mesh network to improve performance?

Nodes with a single radio cannot transmit and receive simultaneously

With multi-radio, nodes can transmit and receive simultaneously

Two radios should be tuned to non-interfering channels