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Abstract—It is generally agreed that there is no valid reason to 
use a long connection chain for remote login such as SSH 
connection. Most of the stepping-stone detection algorithms 
installed on a host were designed to protect the victim of a third 
party downstream from where the algorithm is running. It is much 
more important for a host to protect itself from being a victim. This 
project uses an approximated round-trip time to distinguish a long 
connection chain from a short one. Several measures were studied 
to distinguish long chains from short ones.  An estimated roundtrip 
time was defined to measure the chain length. Preliminary result 
suggests shows that the proposed algorithm can distinguish long 
connection chains from short ones with relatively low false rate.
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I. INTRODUCTION

In order for intruders to steal information from a host, it 
is necessary for the intruders to remotely login to the host.  
To avoid being detected, most of intruders use long 
connection chains of stepping-stones to reach their 
destination host (called the victim host). Existing malicious 
stepping-stone chain detection research has been 
concentrated on detecting intermediate hosts [1-8].  
Detecting malicious connection chain is much more 
challenging from a victim's perspective than at stepping-
stones. This is due to the fact that a stepping-stone can 
perform timing and correlation analysis with all of the 
information sent between the attacker and victim. The 
packets from the intermediate host to the victim and back 
form a closed loop. Previous research approaches were able 
to detect a growing downstream connection chain in real 
time.  

However, these stepping stone detection methods have 
several drawbacks. First, most of the benefits go to the host 
at the end of the chain, most likely an unknown third party. 
Secondly, the stepping stone is only able to gauge the 
maliciousness of a connection by the number of 
downstream hops it detects [1]. If the stepping stone is very 

near the victim in the connection chain, it may not be unable 
to distinguish a malicious chain from a benign connection. 

Victim-based detection, attempting to address the issues 
outlined above, has many difficulties of its own. First, there 
is no straightforward method of estimating the full round-
trip time (RTT) for the length of the connection chain. This 
is due primarily due to the nature of tunneled SSH 
connections, and the fact that SSH is an interactive terminal 
session.  This means that over the course of an SSH session, 
there is no point in time at which the server sends data to 
the client and the client's machine automatically sends a 
reply back to the server.  Even if such a feature did exist, it 
is likely that the client-response would come from the 
nearest host in the connection chain.  Stepping Stone 
detection, in contrast, relied upon the time difference 
between the attacker sending data downstream, and a 
response from the server passing back upstream (“reply 
echo time”). 

II. OUR APPROACH

While it may not be possible to determine the upstream 
full round-trip time with the same certainty as the 
downstream, it is possible to find the time difference 
between the server sending a reply to the client and the 
client sending the next packet to the server with relative 
certainty. This time difference usually represents the full 
round trip time plus the time it takes the user to generate the 
next packet (via keystroke). 

Time Diff = Time to send an Echo packet + 
User Delay Time + 
Time to send the next packet,

       = Full Round Trip Time +
       User Delay Time.

Here, the Echo Time of the previous echo and Send Time of 
the next packets combined to form an approximate round-
trip time. 

Therefore, if the time it takes for the user to press the 
next key, i. e., the user delay time, is subtracted from the 
time difference, the full round trip time remains. Our 
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approach seeks to estimate the user delay time in order to 
find the full round trip time. More specifically, our 
algorithm finds the time difference between the client's 
enter keystroke to submit a command and the client's next 
keystroke to start a new command. It then analyzes this time 
gap based on several other features of the connection and 
attempts to determine the full round trip time and ultimately 
the length of the client's connection chain. 

It is not an easy task to estimate the user delay since the 
time gap between typing varies significantly even for the 
same user. We chose to analyze not all but some special 
gaps. We selected the time gap between the end of a 
command and the beginning of the next command because 
of the expectation that a user will often need to see the 
command's output before starting to type the next command. 
For example, it is often necessary to see the file listing 
returned by a directory listing (“ls”) command before 
selecting which directory to change into (“cd”). Other 
possible time gaps such as the gap between individual 
keystrokes would have been equally valid for analysis; 
however, our algorithm is designed to ignore these gaps 
because of the possibility that clients, when using a long 
connection chain, may not wait for each character to appear 
on their terminal before typing the next. This would result 
in an unusually short delay, often shorter than the actual full 
round trip time. This is probably the most difficult part of 
the analysis. Imagine that a packet is echoed back from one 
end of the chain while a packet from the originating host is 
already on the way. The two packets may cross each other 
somewhere in the middle of the connection chain. At the 
receiving end, the time difference of these two packets is 
very small. 

While it might seem that user delay times would be 
dramatically larger than full round trip times, we found that 
for long connection chains, the full round trip times can be 
on par with the user delay times that we selected. For 
example, using a ten hop chain of reasonably fast hosts (40 
milliseconds round trip time), there would be a 400 
millisecond delay which is approximately equal to the delay 
of certain pairs of commands for many of our recorded 
users.

As mentioned earlier, our algorithm seeks to estimate the 
length of a connection chain by finding the full round trip 
time. This is found by subtracting the estimated user delay 
time from the time gap between the enter key-press and the 
next keystroke. The user delay time is estimated to be the 
client's average typing speed. While this estimation does not 
account for the time the user might spend reading/thinking 
before starting to type, our approach seeks to target those 
pairs of commands which require minimal cognitive delay. 
By subtracting the estimated user delay from the total gap 
time, we are left with the estimated full round trip time.  

Unavoidably some users will wait long periods of time 
between certain pairs of commands. For this reason, 

estimated full round trip times greater than a threshold value 
of two seconds were discarded.  

In order to accurately detect measures such as the user 
typing speed, and the occurrence of a new command, it was 
necessary to examine certain characteristics of an SSH 
session.  Despite the fact that all of the data in an SSH 
session is encrypted, much information can still be gathered 
simply by monitoring the quantity, characteristics, and 
timing of packets. Session characteristics which allowed the 
detection of keystrokes, new commands, and nearest hop 
round trip time will all be discussed. Note that all the data 
about user delay is taken at the victim host, not at the source 
of the chain. 

Keystroke Detection. The TCP header of all packets in 
TCP sessions (SSH packets included) holds information 
about, among other things, the source port, destination port, 
sequence number, and acknowledgment number of the 
packet among other pieces of information. The latter two 
numbers were used extensively to detect nearly all of the 
desired SSH session characteristics.

In a normal flow of information at the start of a TCP 
session, the client will connect to the server with a SYN 
packet, telling the server its sequence number. The server 
will then respond with a SYN ACK packet, providing its 
own sequence number and setting its acknowledgment 
equal to the client's next sequence number. The client will 
then (a) send a reply (echo) packet together with an 
acknowledgement (ACK) of the received packet, or (b) 
respond with an ACK packet if no response is ready within 
a certain period of time. The sequence number of the sender 
is used as the acknowledgement number of the echoing 
host.  

After the three way TCP handshake has been completed, 
the fourth and final packet demonstrates the client sending 
another packet to the server. In the context of an SSH 
connection each character typed by the client generates a 
series of packets, similar to the ones above. The next packet 
would indicate that the client has typed another character. 
This can most reliably be detected by the fact that the last 
two packets have identical sequence or acknowledgment 
numbers.  

In this way, our algorithm was able to detect when the 
client had entered the first keystroke after finishing a 
command. Additionally, by analyzing the time gaps 
between individual keystrokes, it is possible to find a user's 
average typing speed. Because people will generally pause 
while typing, gaps which were far larger than current 
average typing speed were discarded. Similarly, time gaps 
which were far smaller than the current average were also 
eliminated. 

Command Detection. New command detection is 
slightly more difficult and less reliable than keystroke 
detection. The intuition behind command detection is that 
after the client enters a command, the amount of data that is 
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sent back will be large enough to exceed one block size for 
the encryption algorithm being used. Note that the DES 
block size is 64 bytes, so all data less than 64 bytes in size 
will be padded to take up 64 bytes, such as an individual 
character.  Data larger than the block size, such as a 
directory listing, will be padded to the next block size, and 
will thus be reported as being a packet with a larger 
payload. 

Additionally, these post-command packets exhibit the 
characteristic that each packet's sequence number is the 
same as the last packet's acknowledgment number. Because 
this, our algorithm is able to distinguish the series of 
packets denoting the return of a command from the series of 
packets generated has the user continued typing new 
characters. However, the number of packets generated in 
response to a new command can vary greatly. For example, 
“ls /usr/bin/” generates 290 post command packets 
while simply pressing enter at an empty prompt only 
generates five. Network latency and user typing speed can 
also cause the number of post command packets to vary. 
Our approach flagged a new command after observing four 
post command packets. In practice we found this to be quite 
accurate and reliable.

Near Hop Round Trip Time (nRTT) Detection. The
last necessary piece of information to our algorithm was the 
round trip time to the nearest hop in the connection chain. 
This information was rather easy to gather due to the nature 
of the TCP session. After every data packet sent by the 
client to the server, the server replies with an 
acknowledgment to the last host in the connection chain. 
The last host then automatically sends an acknowledgment 
back to the server, completing the sequence of packets. The 
round trip time to the nearest host can then be found by 
examining the time difference between the server sending 
the acknowledgment to the last host in the chain and the 
client replying with its own acknowledgment. Since the 
nearest host upstream from the victim machine is 
communicating with the victim, the IP address can be found 
in the packet header. Thus this is the only host on the chain 
that one can access from the victim host. 

Estimated RTT. We define a measure, called estimated
roundtrip time, to distinguish a long chain from a short one. 
We start out with the time gap between an echo packet and 
the next send packet received at the victim’s host. We then 
subtract the average user delay (as defined earlier) from this 
quantity. Out objective is to see if the “estimated round-trip 
time” (eRTT) can be used to differentiate the chain length. 
This definition will be used for the rest of the paper. More 
work is needed to find a better measure. 

III. EXPERIMENTAL METHODOLOGY

A total of seven computers were used to build chains and 
collect data. The computers ran various varieties of Linux 
and all were connected to the Internet via high speed 

connections. Two computers located at the University of 
Houston were used to listen for incoming connections 
(victim) and to initiate connection chains (attacker). The 
other five computers were located in various regions of the 
US and primarily served as intermediate hosts in the 
building of connection chains.  

SSH session data was collected on a machine running the 
Slackware 12.1 Linux distribution. A total of 61 SSH 
sessions contributed by four different users were recorded 
and analyzed. These sessions consisted of the user logging 
into an SSH tunnel containing from zero to eight 
intermediate hops and executing a series of commands. Five 
different routes or chains of hosts were used. Each route 
employed a unique combination of hosts. 

To simulate natural typing, users were given “objectives” 
to accomplish rather than a list of commands to type. Some 
example objectives were writing a short program, searching 
for text in a group of files, and creating a “tar” archive. 
Sessions generally tended to last around five minutes 
although some took up to fifteen. Clearly the users were 
slow at the beginning since they may be unclear of the 
intention of the instruction. After a few attempts, their speed 
stabilized.  We discarded the first few data collections since 
they don’t represent a true user behavior. 

Our initial effort was to compare the eRRT and the 
nRTT to see if the ratio can be used as an indication of how 
long the chain is.  Theoretically, if our eRTT is close to 
RTT, and the nRTT is a good representation of the network, 
the ratio should be a good estimator of the chain length. 
However, the result of this approach does not give us good 
result. Work is continuing on better estimating the chain 
length. It turns out that eRTT itself is a better measure to 
use.

Graph of the eRTT of chains with one intermediate hop 
to chains with eight intermediate hops is shown in Figure 1. 
Each marker represents a new command. The eRTT of each 
chain is determined by our algorithm described above. In 
each experiment, the number of packets collected varies 
from 31 to 100. We took the last 20 packets from each 

Figure 1: Estimated RTT between length-1 and length-
8 Chains

667



experiment since they are more stable than the beginning of 
the packet stream. The top five series in Figure 1 represent 
chains of length 8 and the bottom five represent chains of 
length 1. On average, the eRTT rating of a length-8 chain is 
about 200% higher than that of length-1 chains.  

Figure 2: Percentage Correctly Ranked with 
different chain length difference 

Rank Checking.  It is very difficult for us to correctly 
determine the length of a chain. It is, however, mush easier 
to determine which one of many chains is a long chain. In 
real situation, the chance of have two intruders attacking the 
same host is low. The purpose of the rank checking is to see 
if our algorithm can correctly identify the longer chain 
when given chains of various lengths. Rank checking was 
first employed upon the sessions. The objective of this 
analysis was to compare two sessions of different length 
and correctly rank the longer chain over the shorter. This 
ranking was accomplished by finding a representative value 
for each of the sessions, higher values indicating more 
suspicious connections. The median of the eRTT of each 
session is used to represent the session. Using this approach, 
each of the user sessions was compared to all other sessions 
of all other lengths. Each column in Table 1 below 
represents the number of intermediate hosts in the 
connection chain. Each cell contains the percentage of 
correctly ranked sessions. For example, the cell at Row 2 
and Column 5 represent the success rate (84%) when a 
chain of 2 hops is compare with a chain of 5 hops. Each cell 
is the average of at least 5 experiments.  

It might be noted that each of the zero chains had a 100% 
success rate. This is because all of the zero chains (those 
with no intermediate stepping-stone hosts) were direct 
connections over the local area network. The local 
connection is mush faster than a chain connected to a host 
off campus. For this reason they are omitted from Figure 2 
below. Also note that a chain of i-hops consists of (i+1)
SSH logins. Here we average the success rate of detection 
based on the difference of the chain of 1 to 7 hops. The 
figure indicates that the success rate for a difference of 3 is 
about 84%. Even if the difference is 1, the success rate is 
about 67%.

Ranking analysis fails to indicate the degree of 
separation between two different incoming SSH sessions. In 
order to truly determine the success of our approach, it is 

necessary that the long chains be substantially separated 
(easily differentiable) from the short ones. Short chains 
were (somewhat arbitrarily) defined as those connections 
containing from zero to two intermediate hops and long 
chains were defined as connections containing from six and 
eight intermediate hops. Representative points for all long 
chain sessions were plotted in decreasing order while 
representative points for all short chains were plotted in 
increasing order. The result is summarized in Figure 3. In 
this Figure, we collected data from 15 long chains and 15 
short chains. The data are arranged in decreasing order for 
the long chains and increasing order for the short chains. 

If an absolute threshold (doted line) was selected at the 
intersection point of the long and short chains, our 
algorithm would have correctly identified 13 of 15 long 
chains and 13 of 15 short chains, yielding a false positive 
rate of 13% and a false negative rate of 13%. 

However, the consequences are higher for every false 
negative than for each false positive detected. More harm is 
done in preventing one legitimate user from accessing the 
system than from allowing one illegitimate user access. For 
this reason, if a threshold was set just above all of the short 
chains (~.0195), the algorithm would have correctly 
identified 8 of 15 long chains while keeping all short chains 
safe. This would be associated with a 47% false negative 
rate and a 0% false positive rate. Each host probably has to 
conduct experiments to determine the best threshold value 
to separate long and short chains. The system administrator 
may have to determine the tolerable level of false positive 

Figure 3: Comparison of eRTT of short vs. long chains 
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and false negative. 

IV. CONCLUSION

We have proposed a new approach to detect long SSH 
connection chains at the victim host. Our method of 
detection centers around analyzing the delay between the 
time a user presses enter to finish a command and the time 
that the user types the next character. Taking into account 
the user's typing speed, it is possible to estimate if the user 
is connected through a long or a short chain. Preliminary 
results show that 86% of long chains can be correctly 
identified with a false positive rate of 13%. 

Our approach differs from previous work in that 
previous methods could only detect long downstream 
connections from the perspective of a stepping stone. All 
benefits of detecting such suspicious connections would go 
to the end hosts, who are likely unaffiliated with the 
implementer of the software.  

There are however several limitations to our approach. 
First, while 61 total sessions were recorded and analyzed, 
they were only contributed by four different users. A much 
broader sampling of users would have been desirable. Also, 
because our algorithm hinges on the assumption that a 
human is ultimately typing into the terminal, none of our 
chain length predictions would remain valid if a computer 
or script were entering commands. Additionally, our 
approach assumes that the user is typing normally. It is quite 
possible that an intruder, being aware of the specifics of our 
detection algorithm, would be able to intentionally alter his 
typing speed or command delay in order to hinder accurate 
detection. Lastly, our approach flags all incoming 
connections from the LAN as legitimate which would 
present a weakness if an attacker was able to successfully 
compromise another computer on the LAN and then attack 
our machine. Some future work might investigate the effects 
of X11 or other graphical sessions on our algorithm. 
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