
Detecting Stepping-Stone Intruders with Long Connection Chains

Wei Ding1, Matthew J. Hausknecht2, Shou-Hsuan Stephen Huang1, Zach Riggle3

1 Department of Computer Science, University of Houston, Houston, TX, USA
2 Department of Computer Science, Emory University, Atlanta, GA, USA

3 Department of Computer Science, Michigan State University, East Lansing, MI, USA
shuang@cs.uh.edu

Abstract—It is generally agreed that there is no valid reason to
use a long connection chain for remote login such as SSH
connection. Most of the stepping-stone detection algorithms
installed on a host were designed to protect the victim of a third
party downstream from where the algorithm is running. It is much
more important for a host to protect itself from being a victim. This
project uses an approximated round-trip time to distinguish a long
connection chain from a short one. Several measures were studied
to distinguish long chains from short ones. An estimated roundtrip
time was defined to measure the chain length. Preliminary result
suggests shows that the proposed algorithm can distinguish long
connection chains from short ones with relatively low false rate.

Keywords: Intrusion Detection, Stepping-Stone, Security,
Connection Chain.

I. INTRODUCTION

In order for intruders to steal information from a host, it
is necessary for the intruders to remotely login to the host.
To avoid being detected, most of intruders use long
connection chains of stepping-stones to reach their
destination host (called the victim host). Existing malicious
stepping-stone chain detection research has been
concentrated on detecting intermediate hosts [1-8].
Detecting malicious connection chain is much more
challenging from a victim's perspective than at stepping-
stones. This is due to the fact that a stepping-stone can
perform timing and correlation analysis with all of the
information sent between the attacker and victim. The
packets from the intermediate host to the victim and back
form a closed loop. Previous research approaches were able
to detect a growing downstream connection chain in real
time.

However, these stepping stone detection methods have
several drawbacks. First, most of the benefits go to the host
at the end of the chain, most likely an unknown third party.
Secondly, the stepping stone is only able to gauge the
maliciousness of a connection by the number of
downstream hops it detects [1]. If the stepping stone is very

near the victim in the connection chain, it may not be unable
to distinguish a malicious chain from a benign connection.

Victim-based detection, attempting to address the issues
outlined above, has many difficulties of its own. First, there
is no straightforward method of estimating the full round-
trip time (RTT) for the length of the connection chain. This
is due primarily due to the nature of tunneled SSH
connections, and the fact that SSH is an interactive terminal
session. This means that over the course of an SSH session,
there is no point in time at which the server sends data to
the client and the client's machine automatically sends a
reply back to the server. Even if such a feature did exist, it
is likely that the client-response would come from the
nearest host in the connection chain. Stepping Stone
detection, in contrast, relied upon the time difference
between the attacker sending data downstream, and a
response from the server passing back upstream (“reply
echo time”).

II. OUR APPROACH

While it may not be possible to determine the upstream
full round-trip time with the same certainty as the
downstream, it is possible to find the time difference
between the server sending a reply to the client and the
client sending the next packet to the server with relative
certainty. This time difference usually represents the full
round trip time plus the time it takes the user to generate the
next packet (via keystroke).

Time Diff = Time to send an Echo packet +
User Delay Time +
Time to send the next packet,

 = Full Round Trip Time +
 User Delay Time.

Here, the Echo Time of the previous echo and Send Time of
the next packets combined to form an approximate round-
trip time.

Therefore, if the time it takes for the user to press the
next key, i. e., the user delay time, is subtracted from the
time difference, the full round trip time remains. Our

2009 Fifth International Conference on Information Assurance and Security

978-0-7695-3744-3/09 $25.00 © 2009 IEEE

DOI 10.1109/IAS.2009.123

665

approach seeks to estimate the user delay time in order to
find the full round trip time. More specifically, our
algorithm finds the time difference between the client's
enter keystroke to submit a command and the client's next
keystroke to start a new command. It then analyzes this time
gap based on several other features of the connection and
attempts to determine the full round trip time and ultimately
the length of the client's connection chain.

It is not an easy task to estimate the user delay since the
time gap between typing varies significantly even for the
same user. We chose to analyze not all but some special
gaps. We selected the time gap between the end of a
command and the beginning of the next command because
of the expectation that a user will often need to see the
command's output before starting to type the next command.
For example, it is often necessary to see the file listing
returned by a directory listing (“ls”) command before
selecting which directory to change into (“cd”). Other
possible time gaps such as the gap between individual
keystrokes would have been equally valid for analysis;
however, our algorithm is designed to ignore these gaps
because of the possibility that clients, when using a long
connection chain, may not wait for each character to appear
on their terminal before typing the next. This would result
in an unusually short delay, often shorter than the actual full
round trip time. This is probably the most difficult part of
the analysis. Imagine that a packet is echoed back from one
end of the chain while a packet from the originating host is
already on the way. The two packets may cross each other
somewhere in the middle of the connection chain. At the
receiving end, the time difference of these two packets is
very small.

While it might seem that user delay times would be
dramatically larger than full round trip times, we found that
for long connection chains, the full round trip times can be
on par with the user delay times that we selected. For
example, using a ten hop chain of reasonably fast hosts (40
milliseconds round trip time), there would be a 400
millisecond delay which is approximately equal to the delay
of certain pairs of commands for many of our recorded
users.

As mentioned earlier, our algorithm seeks to estimate the
length of a connection chain by finding the full round trip
time. This is found by subtracting the estimated user delay
time from the time gap between the enter key-press and the
next keystroke. The user delay time is estimated to be the
client's average typing speed. While this estimation does not
account for the time the user might spend reading/thinking
before starting to type, our approach seeks to target those
pairs of commands which require minimal cognitive delay.
By subtracting the estimated user delay from the total gap
time, we are left with the estimated full round trip time.

Unavoidably some users will wait long periods of time
between certain pairs of commands. For this reason,

estimated full round trip times greater than a threshold value
of two seconds were discarded.

In order to accurately detect measures such as the user
typing speed, and the occurrence of a new command, it was
necessary to examine certain characteristics of an SSH
session. Despite the fact that all of the data in an SSH
session is encrypted, much information can still be gathered
simply by monitoring the quantity, characteristics, and
timing of packets. Session characteristics which allowed the
detection of keystrokes, new commands, and nearest hop
round trip time will all be discussed. Note that all the data
about user delay is taken at the victim host, not at the source
of the chain.

Keystroke Detection. The TCP header of all packets in
TCP sessions (SSH packets included) holds information
about, among other things, the source port, destination port,
sequence number, and acknowledgment number of the
packet among other pieces of information. The latter two
numbers were used extensively to detect nearly all of the
desired SSH session characteristics.

In a normal flow of information at the start of a TCP
session, the client will connect to the server with a SYN
packet, telling the server its sequence number. The server
will then respond with a SYN ACK packet, providing its
own sequence number and setting its acknowledgment
equal to the client's next sequence number. The client will
then (a) send a reply (echo) packet together with an
acknowledgement (ACK) of the received packet, or (b)
respond with an ACK packet if no response is ready within
a certain period of time. The sequence number of the sender
is used as the acknowledgement number of the echoing
host.

After the three way TCP handshake has been completed,
the fourth and final packet demonstrates the client sending
another packet to the server. In the context of an SSH
connection each character typed by the client generates a
series of packets, similar to the ones above. The next packet
would indicate that the client has typed another character.
This can most reliably be detected by the fact that the last
two packets have identical sequence or acknowledgment
numbers.

In this way, our algorithm was able to detect when the
client had entered the first keystroke after finishing a
command. Additionally, by analyzing the time gaps
between individual keystrokes, it is possible to find a user's
average typing speed. Because people will generally pause
while typing, gaps which were far larger than current
average typing speed were discarded. Similarly, time gaps
which were far smaller than the current average were also
eliminated.

Command Detection. New command detection is
slightly more difficult and less reliable than keystroke
detection. The intuition behind command detection is that
after the client enters a command, the amount of data that is

666

sent back will be large enough to exceed one block size for
the encryption algorithm being used. Note that the DES
block size is 64 bytes, so all data less than 64 bytes in size
will be padded to take up 64 bytes, such as an individual
character. Data larger than the block size, such as a
directory listing, will be padded to the next block size, and
will thus be reported as being a packet with a larger
payload.

Additionally, these post-command packets exhibit the
characteristic that each packet's sequence number is the
same as the last packet's acknowledgment number. Because
this, our algorithm is able to distinguish the series of
packets denoting the return of a command from the series of
packets generated has the user continued typing new
characters. However, the number of packets generated in
response to a new command can vary greatly. For example,
“ls /usr/bin/” generates 290 post command packets
while simply pressing enter at an empty prompt only
generates five. Network latency and user typing speed can
also cause the number of post command packets to vary.
Our approach flagged a new command after observing four
post command packets. In practice we found this to be quite
accurate and reliable.

Near Hop Round Trip Time (nRTT) Detection. The
last necessary piece of information to our algorithm was the
round trip time to the nearest hop in the connection chain.
This information was rather easy to gather due to the nature
of the TCP session. After every data packet sent by the
client to the server, the server replies with an
acknowledgment to the last host in the connection chain.
The last host then automatically sends an acknowledgment
back to the server, completing the sequence of packets. The
round trip time to the nearest host can then be found by
examining the time difference between the server sending
the acknowledgment to the last host in the chain and the
client replying with its own acknowledgment. Since the
nearest host upstream from the victim machine is
communicating with the victim, the IP address can be found
in the packet header. Thus this is the only host on the chain
that one can access from the victim host.

Estimated RTT. We define a measure, called estimated
roundtrip time, to distinguish a long chain from a short one.
We start out with the time gap between an echo packet and
the next send packet received at the victim’s host. We then
subtract the average user delay (as defined earlier) from this
quantity. Out objective is to see if the “estimated round-trip
time” (eRTT) can be used to differentiate the chain length.
This definition will be used for the rest of the paper. More
work is needed to find a better measure.

III. EXPERIMENTAL METHODOLOGY

A total of seven computers were used to build chains and
collect data. The computers ran various varieties of Linux
and all were connected to the Internet via high speed

connections. Two computers located at the University of
Houston were used to listen for incoming connections
(victim) and to initiate connection chains (attacker). The
other five computers were located in various regions of the
US and primarily served as intermediate hosts in the
building of connection chains.

SSH session data was collected on a machine running the
Slackware 12.1 Linux distribution. A total of 61 SSH
sessions contributed by four different users were recorded
and analyzed. These sessions consisted of the user logging
into an SSH tunnel containing from zero to eight
intermediate hops and executing a series of commands. Five
different routes or chains of hosts were used. Each route
employed a unique combination of hosts.

To simulate natural typing, users were given “objectives”
to accomplish rather than a list of commands to type. Some
example objectives were writing a short program, searching
for text in a group of files, and creating a “tar” archive.
Sessions generally tended to last around five minutes
although some took up to fifteen. Clearly the users were
slow at the beginning since they may be unclear of the
intention of the instruction. After a few attempts, their speed
stabilized. We discarded the first few data collections since
they don’t represent a true user behavior.

Our initial effort was to compare the eRRT and the
nRTT to see if the ratio can be used as an indication of how
long the chain is. Theoretically, if our eRTT is close to
RTT, and the nRTT is a good representation of the network,
the ratio should be a good estimator of the chain length.
However, the result of this approach does not give us good
result. Work is continuing on better estimating the chain
length. It turns out that eRTT itself is a better measure to
use.

Graph of the eRTT of chains with one intermediate hop
to chains with eight intermediate hops is shown in Figure 1.
Each marker represents a new command. The eRTT of each
chain is determined by our algorithm described above. In
each experiment, the number of packets collected varies
from 31 to 100. We took the last 20 packets from each

Figure 1: Estimated RTT between length-1 and length-
8 Chains

667

experiment since they are more stable than the beginning of
the packet stream. The top five series in Figure 1 represent
chains of length 8 and the bottom five represent chains of
length 1. On average, the eRTT rating of a length-8 chain is
about 200% higher than that of length-1 chains.

Figure 2: Percentage Correctly Ranked with
different chain length difference

Rank Checking. It is very difficult for us to correctly
determine the length of a chain. It is, however, mush easier
to determine which one of many chains is a long chain. In
real situation, the chance of have two intruders attacking the
same host is low. The purpose of the rank checking is to see
if our algorithm can correctly identify the longer chain
when given chains of various lengths. Rank checking was
first employed upon the sessions. The objective of this
analysis was to compare two sessions of different length
and correctly rank the longer chain over the shorter. This
ranking was accomplished by finding a representative value
for each of the sessions, higher values indicating more
suspicious connections. The median of the eRTT of each
session is used to represent the session. Using this approach,
each of the user sessions was compared to all other sessions
of all other lengths. Each column in Table 1 below
represents the number of intermediate hosts in the
connection chain. Each cell contains the percentage of
correctly ranked sessions. For example, the cell at Row 2
and Column 5 represent the success rate (84%) when a
chain of 2 hops is compare with a chain of 5 hops. Each cell
is the average of at least 5 experiments.

It might be noted that each of the zero chains had a 100%
success rate. This is because all of the zero chains (those
with no intermediate stepping-stone hosts) were direct
connections over the local area network. The local
connection is mush faster than a chain connected to a host
off campus. For this reason they are omitted from Figure 2
below. Also note that a chain of i-hops consists of (i+1)
SSH logins. Here we average the success rate of detection
based on the difference of the chain of 1 to 7 hops. The
figure indicates that the success rate for a difference of 3 is
about 84%. Even if the difference is 1, the success rate is
about 67%.

Ranking analysis fails to indicate the degree of
separation between two different incoming SSH sessions. In
order to truly determine the success of our approach, it is

necessary that the long chains be substantially separated
(easily differentiable) from the short ones. Short chains
were (somewhat arbitrarily) defined as those connections
containing from zero to two intermediate hops and long
chains were defined as connections containing from six and
eight intermediate hops. Representative points for all long
chain sessions were plotted in decreasing order while
representative points for all short chains were plotted in
increasing order. The result is summarized in Figure 3. In
this Figure, we collected data from 15 long chains and 15
short chains. The data are arranged in decreasing order for
the long chains and increasing order for the short chains.

If an absolute threshold (doted line) was selected at the
intersection point of the long and short chains, our
algorithm would have correctly identified 13 of 15 long
chains and 13 of 15 short chains, yielding a false positive
rate of 13% and a false negative rate of 13%.

However, the consequences are higher for every false
negative than for each false positive detected. More harm is
done in preventing one legitimate user from accessing the
system than from allowing one illegitimate user access. For
this reason, if a threshold was set just above all of the short
chains (~.0195), the algorithm would have correctly
identified 8 of 15 long chains while keeping all short chains
safe. This would be associated with a 47% false negative
rate and a 0% false positive rate. Each host probably has to
conduct experiments to determine the best threshold value
to separate long and short chains. The system administrator
may have to determine the tolerable level of false positive

Figure 3: Comparison of eRTT of short vs. long chains

668

and false negative.

IV. CONCLUSION

We have proposed a new approach to detect long SSH
connection chains at the victim host. Our method of
detection centers around analyzing the delay between the
time a user presses enter to finish a command and the time
that the user types the next character. Taking into account
the user's typing speed, it is possible to estimate if the user
is connected through a long or a short chain. Preliminary
results show that 86% of long chains can be correctly
identified with a false positive rate of 13%.

Our approach differs from previous work in that
previous methods could only detect long downstream
connections from the perspective of a stepping stone. All
benefits of detecting such suspicious connections would go
to the end hosts, who are likely unaffiliated with the
implementer of the software.

There are however several limitations to our approach.
First, while 61 total sessions were recorded and analyzed,
they were only contributed by four different users. A much
broader sampling of users would have been desirable. Also,
because our algorithm hinges on the assumption that a
human is ultimately typing into the terminal, none of our
chain length predictions would remain valid if a computer
or script were entering commands. Additionally, our
approach assumes that the user is typing normally. It is quite
possible that an intruder, being aware of the specifics of our
detection algorithm, would be able to intentionally alter his
typing speed or command delay in order to hinder accurate
detection. Lastly, our approach flags all incoming
connections from the LAN as legitimate which would
present a weakness if an attacker was able to successfully
compromise another computer on the LAN and then attack
our machine. Some future work might investigate the effects
of X11 or other graphical sessions on our algorithm.

ACKNOWLEDGEMENT

The research is supported in part by a Research
Experience for Undergraduates (REU) Grant from the
National Science Foundation (CNS-0755500) awarded to
the University of Houston.

REFERENCES

[1] J. Yang and S.-H. S. Huang, "A real-time algorithm to detect
long connection chains of interactive terminal sessions," in
Proceedings of the 3rd international conference on
Information security Shanghai, China: ACM, 2004.

[2] D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit,
and S. Staniford, "Multiscale Stepping-Stone Detection:
Detecting Pairs of Jittered Interactive Streams by Exploiting
Maximum Tolerable Delay " in 5th International Symposium
on Recent Advances in Intrusion Detection. vol. LNCS 2516:
Springer, 2002, pp. 17-35.

[3] Y. Kuo and S.-H. S. Huang, "An Algorithm to Detect
Stepping-Stones in the Presence of Chaff Packets," in
International Conference on Parallel and Distributed
Systems (to appear), 2008.

[4] Y.-W. Kuo and S.-H. S. Huang, "Stepping-stone detection
algorithm based on order preserving mapping," in
International Conference on Parallel and Distributed
Systems, Hsinchu, Taiwan, 2007, pp. 1-8.

[5] Y. Zhang and V. Paxson, "Detecting stepping stones," in
Proceedings of the 9th conference on USENIX Security
Symposium - Volume 9, Denver, Colorado, 2000, pp. 171-
184.

[6] L. Zhang, A. G. Persaud, A. Johnson, and Y. Guan,
"Detection of stepping stone attack under delay and chaff
perturbations," in 25th IEEE International Conference on
Performance, Computing, and Communications Conference
(IPCCC), 2006, p. 10 pp.

[7] T. He and L. Tong, "A Signal Processing Perspective to
Stepping-stone Detection," in CISS, Princeton, NJ, 2006, pp.
687-692.

[8] T. He and L. Tong, "Detecting encrypted stepping-stone
connections," IEEE Transactions on Signal Processing, vol.
55, pp. 1612-1623, May 2007.

[9] K. H. Yung, "Detecting Long Connection Chains of
Interactive Terminal Sessions" in Recent Advances in
Intrusion Detection, Lecture Notes in Computer Science
2516, 2002, pp. 1-16.

669

