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Motivation

e Introduces a novel learning agent: the cerebellum simulator.

e Study the successes and failures the cerebellum on
machine learning tasks.

e Characterize the cerebellum’s capabilities and limitations.

e Develop a set of guidelines to help understand what tasks
are amenable to cerebellar learning.
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Cerebellum Facts

Brain region that plays a#~ Y
role in motor control. = eSS

Located beneath the
cerebral hemispheres.

Highly regular structure in contrast to the convolutions of
the cerebral cortex.

10% of total brain volume but contains more neurons than
rest of brain put together. (Half of the total neurons in brain
are cerebellar granule cells)

Does not initiate movement, but instead is responsible for
fine tuning, timing, and coordinating fine motor skills.



Ataxia

Damage to the cerebellum

results not in paralysis, but
Instead produces disorders
filne movement, equilibrium,
posture and motor learning.

np
o
’\/\ v U u Top: Altered gate of woman with

cerebellar disease.

Jl\ Left: Attempt by cerebellar diseased
\} l patient to reproduce trace on top

Images: https://en.wikipedia.org/wiki/Ataxia




Synaptic Connectivity
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e Cerebellar connectivity is highly regular with an enormous
number of neurons but a limited number of neuron types.

e Arrows denote excitatory connections while circles denote
iInhibitory connections. Numbers indicate number of
simulated cells.



Mossy Fibers
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e Carry external information about the state of the world to
the rest of the cerebellum.



Climbing Fibers
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e [eaching signals originate in the Inferior Olive and are
transmitted via the Climbing Fibers.

e [eaching signals indicate the need for changes in synaptic
plasticity and ultimately behavior.



Nucleus Cells
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e Outputs from the nucleus cells form the basis of muscle
control.



Cerebellar Learning Mechanisms
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e | earning takes place by updating synaptic plasticity at two
sites: GR:Purkinje and MF:Nucleus.

e Synaptic plasticity is the ability of the connection or
synapses between two neurons to change in strength.



Learning Pathways
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e Direct pathway:
Aw!™ = 6™ MF; - 0FKJ(50) + 67 - MF; - 07K (50)

e Indirect pathway:
Aw?" = §7" - GR; - CF(100) + 67" - GR; - (1 — CF(100))
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Cerebellum Simulator

e Cellular level simulation of the cerebellum.

e Based on a previous simulator built by Buonomano and
Mauk®.

e Primary difference from previous simulator is a nearly 100x
Increase in the number of cells: from 12,000 to 1,048,567

e At this scale divergence/convergence ratios of granule cell
connectivity more closely approximate those in the brain.

e Developed and parallelized by Wenke Li.

'Dean V. Buonomano and Michael D. Mauk. Neural network model of the cerebellum: temporal discrimination and the timing
of motor responses. Neural Comput., 6:38-55, January 1994.



Parallel Implementation

e Relies on Nvidia Cuda GPUs to compute granule cell firings
In parallel.

e Traditional parallel programming approach (OpenMP etc)
were inadequate due to high memory bandwidth required
~128 GB/s for real-time operation.

e GPU computation provides necessary memory bandwidth as
well as several hundred cores.

e A single Nvidia Fermi GTX580 GPU brings the simulation to
50% real-time speed.



Outline

e [ntroduction: Biology of the cerebellum
e Cerebellum Simulator
e EXxperimental Domains

Cartpole

PID Control
Robocup Balance
Pattern Recognition
Audio Recognition

O O O O O

e (Conclusions



Eyelid Conditioning

e Rabbits learn to close their
eyes in response to a tone
being played.

e Lesioning of cerebellum
renders animals incapable of
learning responses’.

e Unpaired CS+US results in
extinction.

e Simulator tuned from to
match experimental data
collected from rabbits.

;McCormick et al. (1981)
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Inverted Pendulum Balancing

e ODbjective: keep an inverted pole
balanced for as long as possible.

e Forces are applied to the cart
along the axis of movement.

[

e Differs from Eyelid conditioning in L,
that forces now need to applied in |
two directions.

LT rrrrrrrrrrrrrrrrrrrrrry

Image: https://en.wikipedia.org/wiki/Inverted _pendulum



Inverted Pendulum Balancing

e Main challenge: How best to interface the
cerebellum simulator to the inverted
pendulum domain?

e Three main questions:
1.
2.
&

ow to encode state of cart & pole?
ow and when to deliver error signals?
ow to interpret outputs as forces?

Image: https://en.wikipedia.org/wiki/Inverted pendulum



Mossy Fibers
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e Carry external information about the state of the world to
the rest of the cerebellum.



State Signal Interface
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e Challenge: Convey Pole Angle, Pole Velocity, Cart Position,
and Cart Velocity.

e 1024 Mossy Fibers (MFs) available.

e \When at rest MFs fire with a low background frequency.

e \When excited, MF firing rate increases.

e Need to selectively excite MFs.



Boolean State Encoding

e Has 3 receptive zones (tiles).

e Increases firing rates of MFs in
the active zone.

e Conveys rough information about
the location of the pole.




Gaussian State Encoding

e Multiple receptive zones (tiles).

e Assign MFs values in 'input
space.’

e Each MF fires proportional to how
close the pole angle value is to its

value in input space.

e Conveys fine-grained information
about the location of the pole.



State Signal Interface

e 1024 total Mossy Fibers (MFs) process input.

e \We assign 30 random MFs each to encode pole angle, pole
velocity, cart position, and cart velocity.

e L astly we have 30 MFs which fire with high frequency
regardless of state.

e MFs for each state variable are randomly distributed
throughout the 1024, so the cerebellum must decided which
MFs carry signal and which do not.

e Both Boolean and Gaussian encodings have proved
successful.



Error Signal Interface
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e Four Climbing Fibers transmit error input.

e Inverted pendulum domain receives error with probability
proportional to how far the pole differs from upright.

e Errors are boolean in nature, so at each timestep if error is
received either all 4 climbing fibers activate or none.



Output Signal Interface

Stellate
Cells e
o , Inferior Error
l e oive €
1024 1,048,567 Purkinje T
Golgi € o Granule Cells |
Nucleus | Output
\/ Tl 8 Cells —L)
Input Mossy
Fibers < Bgz:?:t 128
|

e Output is produced by 8 Nucleus Cells.

e Combine NC firings into a single output force in range [0,1]:
NumberFiringNCs / 8.

e This provides a single output force, but Inverted Pendulum
requires two opposing forces.



Microzones
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e Frequently need to control 2 or more effectors
e Group common input cells and duplicate only

the output networks
e [hese output networks are called “Microzones™



Full Cerebellum-Cartpole Interface
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e Directional error signals are delivered to corresponding
Microzones, encouraging greater force output.



Interface Summary
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Q-Learning Comparison
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e Q-Learning uses same state & error encoding.
e Requires 1,000-10,000 trials before comparative
performance is achieved.



Extinction
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e Error signals delivered at end of trial result in
cycles of learning & unlearning (extinction)

e Reliable performance requires regular error
signals even if performance is good
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PID Control

e Setpoint control generalizes the pendulum
balancing domain (vertical setpoint)

e Typically setpoint control tasks solved by PID
controllers

e Focus on simulated autonomous vehicle
acceleration control



Velocity Control Architecture
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e Randomly generated current/target velocity in range [0,11] m/s
e Each trial lasts 10 seconds simulated time
e Reward = 10 * Sum(abs(target velocity - current velocity))



Velocity Control Results
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Results averaged over 10 trials and smoothed with a 50 episode sliding window.



Velocity Control Analysis
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Cerebellum is slower than PD controller to
reach the target point.



Velocity Control Conclusions

e Cerebellum can perform PID/setpoint control
tasks to some degree of precision

e These tasks feature supervised error signals
which occur regularly
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Simulated Robocup Balance

e Domain: Robocup
3D Simulator

e Obijective: Dynamic
Balance

e Difference from
previous domains:
Delayed error signals



Large Soccer Ball - 10x mass, 6x size, 10m/s

e Objective: Don't fall after impact!

e Control: Hip Joints - allow the robot to lean
forwards & backwards

e Sensing: Timer counting down to the shot



Complexity

Task requires the robot to lean forwards in
anticipation of impact, then lean backwards
shortly thereafter.

Failure to do either will result in a fall.

Simple policy can solve this task: Lean
forwards .5 seconds before impact, then
return to neutral.
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e EXxperiments run with 3 different Error Signals:
o Difference from known solution (Manual Encoding)

O Gyroscope errors

o Accelerometer errors
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http://www.youtube.com/watch?v=jClYGFzUntM

Balance Results

Error Encoding |Manual Gyro Accelerometer
No Fall 40.4% 4% 2.4%

Fall Back 52.4% 95.2% 87.2%

Fall Forwards |7 .29, 4.4%, 10.4%

Experiments run up to 250 trials. Single run per result.

e \Why do the Gyro and Accelerometer-based error
signals perform so much worse than Manual?




Delayed Rewards
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e How to analyze cerebellar learning with these
different encodings?



Granule Weight Measure
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e Analyzes how each MF affects output forces by

examining the weights of connected Granule
Cells



Granule Weight Measure
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Each MF connected to 1024 Granule Cells
Initial MF—GR Connection weights ~= 1
Expected Sum Connected GR weights ~= 1000
Weights change as the cerebellum learns



Granule Weight Measure
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GWM (Mossy Fiber m) =
Sum over connected granule cells g:
weight(g)
Minus expected sum of granule weights (~1000)



Granule Weight Measure
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e High GWM indicates that whenever m is active,

output will be low
e Low GWM predicts high cerebellar output
forces for associated MF input m
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Dynamic Balance Conclusions

e Simulated Cerebellar balance pretty shoddy
e Shouldn’t be this way... Something Missing?

e Cerebellum alone cannot perform credit
assignment

e Cerebellum needs supervised error signals - it
IS not a Reinforcement Learner

e Basal Ganglia hypothesized to do RL

*Complementary roles of basal ganglia and cerebellum in learning and motor control. Doya ‘00. Opinion
in Neurobiology.
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Pattern Recognition

e Alright, the cerebellum is a supervised
learner

e \What types of patterns (functions) of state
input can it identify?

e Start with static patterns and next move to
temporal patterns



Static Pattern Recognition: Identity
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Static Pattern Recognition:
Disjunction
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Static Pattern Recognition:
Conjunction
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Static Pattern Recognition: Negation
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Static Pattern Recognition: XOR
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Static Pattern Recognition: NAND

l)'- 1 I 1 1 .ll
ys )[J ﬁ ] ).
I [
I [
| L
| R
200 + | I
[
! 0.6
A - )
p ]
g 150 é
U | P~
g | 710.5 =
:_‘ | ' 2
2 ' | L
&= | {04 ©
> I 104 o
% 100 | , %n
el | ~
= | (%’
I B 40.3
I
_ I
ol | [
| 4 0.2
I [
I [
I [
[l - | i _1 ! _1 “1
1] 500 1000 1500 2000 2500 3000

Time (milliseconds)

Not Recognized



Temporal Pattern Recognition
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Alternating XOR
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When tones are played in alternating timesteps,
recognition is lost



Pattern Recognition Conclusions

e Cerebellum can recognize all boolean
functions of 1-2 variables except NAND

e [emporal pattern recognition is extremely
limited
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Audio Recognition

e Test cerebellum’s pattern recognition
capabilities in a real world domain

e Objective: distinguish between two different
audio clips

e Clips are transformed by FFT and then
converted to MF activations



Audlo Preparatlon
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Training

Audio clips were played in alternation

Two Microzones trained - one to recognize
each different clip

Training: While a clip is playing, the
associated MZ gets periodic error signals

Test: A clip is played back and the associated
MZ should exhibit high force output



Average Cerebellar Force

Audio Recognition Results
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Can you identify piano/violin?
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Harder Audio Recognition

0 500 1000 1500 2000
1000

300
600

100

Mossy Fiber Number

200

Time (milliseconds)

0 500 1000 1500 2000
1000

300

600

400

Mossy Fiber Number

200

Time (milliseconds)

Piano



Audio Recognition Results

Violin.wav Plano.wav
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Audio Recognition Conclusions

e Cerebellum can identify different audio
signals provided their frequencies are
sufficiently separated (e.g. different static
patterns)

e More advanced audio recognition requires
temporal pattern recognition and proves
difficult for the cerebellum
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Guidelines for Cerebellar Tasks

e T[asks need supervised error signals that
occur regularly regardless of performance.

e Nearly all static patterns of state input are
recognized (except NAND). Temporal
patterns generally not recognized.

e Overcoming limitations of cerebellar learning
likely requires integration of additional brain
regions.



