THE UNIVERSITY OF

TEXAS

AT AUSTIN

Ultrawrap: Using SQL Views for
RDB2RDF

Juan F. Sequeda!, Conor Cunningham? Rudy Depena!

and Daniel P. Miranker!
'Department of Computer Sciences - The University of Texas at Austin

“Microsoft Corporation

Goals

v' Automatically create SPARQL endpoint for legacy
relational databases.

v’ Real-time consistency between the relational and RDF
data

v’ Making maximal use of existing SQL. infrastructure

» Research question: Do existing commercial SQIL,

query engines already subsume all the algorithms
needed to support effective SPARQL execution on
relational data?

THE UNIVERSITY OF
AT N

lllllllllllllllll

Ultrawrap Architecture

Compile Time

1. Create Putative Ontology (PO)

2. Create Virtual Triple Store

Run Time

3. Naive SPARQL to SQL translation
4. SQL Optimizer 1s the rewriter
Future

5. Putative Ontology to Domain Ontology mapping

Ultrawrap Architecture

OWL SPARQL RDF
A ﬁ?, ~
SPARQL
to SQL
: y 2, . ﬁ
Putative :‘t F—— 3 SQL Que

Ontolog i TripleView :> Optimizerry

@ ! @4

Query Plan —

TTTTTTTTTTTTTT

Step 1: Creating a Putative Ontology

SPARQL RDF
ﬁ3 /\
SPARQL
to SQL

SQL Query
Optimizer

@4

Query Plan —

lllllllllllllllll

THE UNIVERSITY OF
A N

Ontology Quality? I.e. putative

Putative: “commonly regarded as such”

Putative Ontology (PO): automatic syntactic
transformation from a data source schema to an
ontology

— data or information source ontology

Evidence: SQL schema from E-R models make
“interesting” ontologies

Formal Results

FOL rules transtform SQL DDL to OWL
* Full mapping in Datalog

— Stratified and safe

* Proof of total coverage of all key combinations

TTTTTTTTTTTTT

THE UNIVERSITY OF
AT AUSTIN

Documentation

e Tirmizi, S. H., Sequeda, J.F., and Miranker, D.P.
Translating SQL Applications to the Semantic
Web. In Proceedings of the 19th international Conference on
Database and Expert Systems Applications (DEXA2008).

* Sequeda, J.F. (1), Tirmizi , S.H.(1), Corcho, O. (2),
Miranker, D.P. (1). "Direct Mapping SQL Databases
to the Semantic Web: A Survey'. The University of
Texas at Austin, Department of Computer Sciences(1),
Universidad Politecnica de Madrid(2). Report#
TR-09-04 (regular tech report). January 19th, 2009. 35
pages.
ftp://ftp.cs.utexas.edu/pub/techreports/tr09-04.pdf

8

Example From the Transformation System

§ 5o
1

2

Student

Juan

Hamid

|

Name

enrolled

1 2

2 1

1
2

Course

CS386
CS379H

Student

domain

Course

enrolledin

range

THE UNIVERSITY OF
AT AUSTIN

Transformation System

Rel(r) A FK(xtr,r,_,t) A FK(xsr,r,_,s) A xtr=xsr A Attr(y,r) A

BinRel
inRel(rs,t) ~NonFK(y,r) A FK(z,r,_,u) A fkey(z,r,u)E{fkey(xsrrs),fkey(xtr,rt)}

Class(r) eRel(r) A =BinRel(r,_,)

create table STUDENT({ <owl:Class rdf:ID="Student"/>
SID integer primary key, E:::j>

NAME varchar not null }

create table COURSE {

CID integer primary key, [:::j>

NAME varchar not null } <owl:Class rdf:ID="Course"/>

ObjP(r,s,t) < BinRel(r,s,t) A Rel(s) A Rel(t) A =BinRel(s, ,) A -BinRel(t,_,)

create table ENROLLED {
Student integer foreign key

references STUDENT (SID), <owl:0ObjectProperty rdf:ID="enrolledIn">
Course integer foreign key [:::>. <rdfs:domain rdf:resource="#Student"/>

references COURSE (CID), <rdfs:range rdf:resource="#Course"/>
constraint REG PK primary key </owl:ObjectProperty>

(Student, Course) }
10

Proof of total coverage of all key combinations

* PK: a relation only has a Primary Key

* C-PK: a relation only has a composite Primary Key

* S5-FK: a relation only has one Foreign Key

* N-FK: a relation has at least two or more Foreign Keys

Grammar

« E2>PK+T]| CPK+T
« E 2 S-FK

« E 2> N-FK

T2 S-FK | N-FK

THE UNIVERSITY OF
A IN

LR(0) Item set construction represents all possibilities

0 FKs | (Rule sets 2, 5)

FK=PK (Rule sets 2, 5, 6)
1 FK <
FK=PK (Rule sets 2, 4, 5)

Ji FK.=PK (Rule sets 2, 4, 5, 6)
Has non-FK attributes<
Space of - (3i FK;=PK) (Rule sets 2, 4, 5)
relations
2 FKs 3i FK=PK (Rule sets 2, 4, 6)
All attributes in FKs FK;UFK=PK (i=j) (Rule set 3)
Otherwise (Rule sets 2, 4)

Has non-FK attributes| (Rule sets 2, 4, 5)
>2 Fs <
All attributes in FKs | (Rule sets 2, 4)

The tree describes the complete space of relations when all possible
combinations of primary and foreign keys are considered.

THE UNIVERSITY OF
AT N

All Key Combinations Enumerated

PK + S-FK: a relation has a Primary Key and only one Foreign Key

— PK =S-FK: the Foreign Key is the Primary Key

— PK N S-FK = 0: the Foreign Key and the Primary Key do not share any attributes
¢ PK+ N-FK: a relation has a Primary Key and two (2) Foreign Keys
— PK N N-FK = 0: the Foreign Key and the Primary Key do not share any attributes

— PKCN-FK: one of the Foreign Keys is also the Primary Key
¢ PK + N-FK: a relation has a Primary Key and more than two (> 2) Foreign Keys
— PK N N-FK = 0: the Foreign Key and the Primary Key do not share any attributes
— PKC N-FK: one of the Foreign Keys is also the Primary Key
¢ C-PK + S-FK: a relation has a Composite Primary Key and only one Foreign Key.
— C-PK N S-FK = 0: the Foreign Key and the Primary Key do not share any attributes
— S-FKC C-PK: the Foreign Key is part of the Primary Key
¢ C-PK + N-FK: a relation has a Composite Primary Key and two (2) Foreign Keys
— C-PK N N-FK = 0: all the Foreign Keys and the Primary Key do not share any attributes
— N-FK ¢ C-PK: all the Foreign Keys are part of the Primary Key

— C-PK N N-FK #0, C-PK - N-FK# 0, N-FK — C-PK # 0: The Foreign Keys and Primary Key share
common attributes

¢ C-PK + N-FK: a relation has a Composite Primary Key and more than two (> 2) Foreign Keys
— C-PK N N-FK = 0: all the Foreign Keys and the Primary Key do not share any attributes
— N-FK CC-PK: all the Foreign Keys are part of the Primary Key
— C-PK N N-FK#0, C-PK — N-FK# 0, N-FK — C-PK# 0: The Foreign Keys and Primary Key share

common attributes

THE UNIVERSITY OF
AT N

rrrrrrrrrrrrrrr

Ultrawrap creates PO automatically

* Reads the Data Dictionary

— Specific to each vendor

* Currently supporting Microsoft SQL Server and
MySQL

14

THE UNIVERSITY OF
AT AUSTIN

Quality of a Putative Ontology

* Quality of the PO depends on the SQL DDL

— Is it normalized?

— Are all the constraints explicit?
* If the Quality is sufficient, all we need to do is rename

* Need to map the Putative Ontology to a Domain
Ontology

* Evidence: SQL schema from E-R models make
“interesting’” ontologies

* SQL schemas made without any previous modeling
make “poor” ontologies

15

lllllllllllllll

Step 2. Create Virtual Triple Store

OWL

SPARQL

ﬁ?’
SPARQL
to SQL

SQL Query
Optimizer

@4

Query Plan

RDF

16

Step 2. Create Virtual Triple Store

* Represent all relational data as triples using a view
definition

— Promise of avoiding self joins (optimizer will do this)

| ¢ Triple table approach: one table with three columns
(8,P,0)
— No symbol/lookup table. Strings are in the view
* Actually, the view is (s,spk, p, 0, opk) where spk and
opk are the index values

— Optimizer needs to know the index values

TEXAS 17

THE UNIVERSITY OF
AT AUSTIN

Step 2. Create Virtual Triple Store

* Create SELECT statements that output triples

SELECT “Product”+id as s, id as spk, “product label” as p, label as o, null
as opk FROM Product

Productl 1 product_label Label of Product1 null
Product2 2 product_label Label of Product2 null

SELECT “Product”+ProductID as s, ProductID as spk, “product productfeature”
as p, “ProductFeature”+ProductFeaturelID as o, ProductFeatureID as opk
FROM ProductFeatureProduct

Productl 1 product_productfeature ProductFeature45 45

Productl 1 product_productfeature ProductFeature98 98

e Use the PO as basis to create all the SELLECT
statements

18

Step 2. Create Virtual Triple Store

* Triple View is a union of all the SELECT statementss

CREATE VIEW TripleView(s,spk, p, o, opk) as

SELECT “Product”+id as s, id as spk, “rdf:type” as p, “Product” as o, null
as opk FROM Product

UNION

SELECT “Product”+id as s, id as spk, “label” as p, label as o, null as opk
FROM Product

UNION

SELECT “Product”+ProductID as s, ProductID as spk, “product productfeature”
as p, “ProductFeature”+ProductFeatureID as o, ProductFeatureID as opk
FROM ProductFeatureProduct

UNION ..

* BSBM generates ~80 select statements in order to
represent all relational data as triples

THE UNIVERSITY OF
AT N

Step 3: Naive SPARQL to SQL Translation

o e, o
A 13 A

: y 2, . ﬁ
Putative :r; F—— 3 SQL Que
Ontolog i TripleView :> Optimizerry

@ ! @4

Query Plan I

THE UNIVERSITY OF
AT AUSTIN

Step 3: Naive SPARQL to SQL Translation

SPARQL Query SQL Query on the Triple View
SELECT ?product ?label SELECT tl.o as product, t2.o as
WHERE { label
?product producttype product FROM TripleView tl1, t2, t3, t4, t5
ProductTypeéd7. WHERE
?product product label ?label. tl.p = ‘producttype product’
?product product productfeature and tl.opk = 47
ProductFeature76. and t2.p = ‘product_ label’
?product product productfeature and t3.spk = tl.spk
ProductFeature4242. and t3.p = ‘product productfeature’
?product product propertyNuml ?v. and t3.opk = 76
FILTER (?v >500) and td4.spk = tl.spk
} and t4.p = ‘product productfeature’
and t4.opk = 4242
and t5.spk = tl.spk
and t5.p = ‘product propertyNuml’

and t5.0 > 500

Syntactic transformation from a SPARQL query to an equivalent SQL query

on the Triple View
21

Step 4: SQL Query Optimizer is the Rewrite system

OWL

Putatlve
4—»* —

SPARQL
;

SPARQL
to SQL

RDF

22

THE UNIVERSITY OF
AT AUSTIN

Step 4: SQL Query Optimizer is the Rewrite system

TripleView(1l, label, ABC) :- Product(l,ABC, ,)
TripleView(l, propNuml, 1) :- Product(l, , 1,)
. TripleView(1l, propNuml, 2) :- Product(l, , , 2)

SQL Query on the TripleView

Query (X, Y):-TripleView(X, label, Y),
TripleView(X, propNuml, 1),
TripleView(X, propNum2, 2)

SQL Query on the Relational Data

SELECT id, label FROM product
WHERE propNuml = 1 and propNum2 = 2
Query (X, Y) :- Product(X, Y, 1, 2)

Evaluate SQL Query on the TripleView
Query(X,Y):-Product(X,Y,1,),Product(X,Y, , 2)
Query(X,Y):- Product(X, Y, 1, 2)

23

Step 4: SQL Query Optimizer is the Rewrite system

* TripleView Plan * Optimal Plan

B
Sub Cost: 0.0249674 =
Cost0(00 Sub Cost: 0.02671954
T Cost: 0 (0%)
@
IPhysical Op: Compute
Scalar @
lLogical Op: Compute Scalar
Sub Cost: 0.0249674 Physical Op: Nested Loops
T Logical Op: Inner Join
e Sub Cost: 0.02671954
Cost: 0.0000263 (0.1%
Physical Op: Nested Loops (!
Logical Op: Inner Join
Sub Cost: 0.024967087
Cost: 0.0000134 (0.05%) i)
Physical Op: Nested Loops
&) Logical Op: Inner Join
Physical Op: Filter Physical Op: Nested Loops z::ccg;%gog]él:g)egg;)
Logical Op: Filter Logical Op: Inner Join 5 .
Sub Cost: 0.007025483 Sub Cost: 0.017928164
Cost: 0.0000015 (0.01%) Cost: 0.0000134 (0.05%)
e
a] Physical Op: Nested Loops
Physical Op: Nested Loops Physical Op: Filter Logical Op: Inner Join
Logical Op: Inner Join Logical Op: Filter Sub Cost: 0.0073275836
Sub Cost: 0.010555173 Sub Cost: 0.0073595527 Cost: 0.0000236 (0.09%)
Cost: 0.0000131 (0.05%) Cost: 0.0000021 (0.01%)

i
Physical Op: Index Seek
Logical Op: Index Seek
Sub Cost: 0.003288198
Cost: 0.0032882 (12.31%)

[
Physical Op: Compute
[Scalar
Logical Op: Compute Scalar
Sub Cost: 0.006920628

15
Physical Op: Nested Loops
Logical Op: Inner Join
Sub Cost: 0.006920314
Cost: 0.0000134 (0.05%)

Physical Op: Index Seek Physical Op: Index Seek
Logical Op: Index Seek Logical Op: Index Seek
Sub Cost: 0.003285454 Sub Cost: 0.003621421
Cost: 0.0032855 (13.16%) Cost: 0.0036214 (14.5%)

THE UNIVERSITY OF

TEXAS 24

AT AUSTIN

Ultrawrap Architecture Summary

Putative

Ontology
SPARQL

3
SQL
Optimizer

ﬂ
View
AN
Query
d L Plan
(27 D)

~ -

| TripleView |
—— S
Schema Schema

Data Data

N~

|
£
i

TEXAS Compile Time Run Time

Current Implementation

* Running on Microsoft SQL Server
* Jess Rule Engine

* Initial test on BSBM on 1 million triples, execution time
is close to running time ot native SQL queries on
relational data

Query 1 2 3 4 5 6 7 8 9 10 11 12
Jena SDB 441 | 433 | 627 | 7.12 1236 | 145 | 11.94 | 6.69 8.38 5.39 2776 | 4.34
Sesame 249 1 0.86 | 3.52 | 3.78 7.31 1.76 | 15.51 | 3.02 1.17 3.63 1.49 | 0.65

Virtuoso RDF Views | 8.29 | 2.77 | 9.79 | 16.13 1.89 0.09 | 16.59 | 6.83 2.14 | 6.96 9.50 | 3.44

D2R Server 5.03 | 528 | 793 | 7.63 | 22273 | 0.94 | 10.96 | 12.46 | 13.37 | 7.16 | 30.61 | 2.55

Ultrawrap 1 1.00 | 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 | 1.00

Native SQL 0.94 |1 0.67 | 090 | 0.80 1.09 0.62 | 0.67 | 0.72 1.03 1.02 0.94 | 0.30

26

Current Work

* Shifted problem to ontology-to-ontology mapping
— Version 0: query only the Putative Ontology

— Version 1: Manually mapping layer between Domain

Ontology to Putative Ontology

— Version 2: Automatic identify mappings
* Testing on Oracle, PostgreSQL, Virtuoso

* Road Map

— Dec 2009: Version 0
— Feb 2010: Version 1 running on other RDBMS

THE UNIVERSITY OF
A N

THE UNIVERSITY OF
AT AUSTIN

Thank You

LuE RasE Bowa. Care 20060

NATIONAL CHAMPIONSHIP

Powered by The Miranker Lab

Research

In

Bioinformatics and the
Semantic Web

