

 Automatically create SPARQL endpoint for legacy
relational databases.

 Real-time consistency between the relational and RDF
data

 Making maximal use of existing SQL infrastructure
 Research question: Do existing commercial SQL

query engines already subsume all the algorithms
needed to support effective SPARQL execution on
relational data?

2

•  Compile Time
1.  Create Putative Ontology (PO)
2.  Create Virtual Triple Store

•  Run Time
3. Naïve SPARQL to SQL translation
4. SQL Optimizer is the rewriter

•  Future
5. Putative Ontology to Domain Ontology mapping

3

4

Data

Schema

TripleView
Putative
Ontology

1

2

SPARQL

SPARQL
to SQL

SQL Query
Optimizer

Query Plan

RDF

3

4

OWL

5

Data

Schema

TripleView
Putative
Ontology

1

2

SPARQL

SPARQL
to SQL

SQL Query
Optimizer

Query Plan

RDF

3

4

OWL

•  Putative: “commonly regarded as such”

•  Putative Ontology (PO): automatic syntactic
transformation from a data source schema to an
ontology
–  data or information source ontology

•  Evidence: SQL schema from E-R models make
“interesting” ontologies

6

FOL rules transform SQL DDL to OWL
•  Full mapping in Datalog

–  Stratified and safe

•  Proof of total coverage of all key combinations

7

•  Tirmizi, S. H., Sequeda, J.F., and Miranker, D.P.
Translating SQL Applications to the Semantic
Web. In Proceedings of the 19th international Conference on
Database and Expert Systems Applications (DEXA2008).

•  Sequeda, J.F. (1), Tirmizi , S.H.(1), Corcho, O. (2),
Miranker, D.P. (1). "Direct Mapping SQL Databases
to the Semantic Web: A Survey". The University of
Texas at Austin, Department of Computer Sciences(1),
Universidad Politecnica de Madrid(2). Report#
TR-09-04 (regular tech report). January 19th, 2009. 35
pages.
ftp://ftp.cs.utexas.edu/pub/techreports/tr09-04.pdf

8

9

SID Name

1 Juan

2 Hamid

CID Name

1 CS386

2 CS379H

Student Course

1 2

2 1

enrolled

Student Course

enrolledIn

domain range

Student Course

10

create table STUDENT{
SID integer primary key,
NAME varchar not null }

create table ENROLLED{
 Student integer foreign key
references STUDENT(SID),
 Course integer foreign key
references COURSE(CID),
 constraint REG_PK primary key
(Student, Course)}

create table COURSE{
CID integer primary key,
NAME varchar not null } <owl:Class rdf:ID="Course"/>

<owl:ObjectProperty rdf:ID="enrolledIn">
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#Course"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Student"/>

BinRel(r,s,t) 
 ←
 Rel(r) ∧ FK(xtr,r,_,t) ∧ FK(xsr,r,_,s) ∧ xtr≠xsr ∧ A3r(y,r) ∧ 
¬NonFK(y,r) ∧ FK(z,r,_,u) ∧ 9ey(z,r,u)∈{9ey(xsr,r,s),9ey(xtr,r,t)}

Class(r) 
← Rel(r) ∧ ¬BinRel(r,_,_)

ObjP(r,s,t) 
 ←
 BinRel(r,s,t) ∧ Rel(s) ∧ Rel(t) ∧ ¬BinRel(s,_,_) ∧ ¬BinRel(t,_,_)

Proof of total coverage of all key combinations

•  PK: a relation only has a Primary Key
•  C-PK: a relation only has a composite Primary Key
•  S-FK: a relation only has one Foreign Key
•  N-FK: a relation has at least two or more Foreign Keys

Grammar
•  E  PK + T | C-PK +T
•  E  S-FK
•  E  N-FK
•  T  S-FK | N-FK

12

The tree describes the complete space of relations when all possible
combinations of primary and foreign keys are considered.

(Rule sets 2, 5)

Space of 
rela4ons

0 FKs
FK=PK
FK≠PK

∃i FKi=PK
¬(∃i FKi=PK)
∃i FKi=PK

FKi∪FKj=PK (i≠j)
Otherwise

Has non‐FK aBributes
All aBributes in FKs

All aBributes in FKs

Has non‐FK aBributes
1 FK

2 FKs

>2 FKs

(Rule sets 2, 5, 6)
(Rule sets 2, 4, 5) 

(Rule sets 2, 4, 5, 6) 

(Rule sets 2, 4, 5) 

(Rule sets 2, 4, 6) 

(Rule set 3) 

(Rule sets 2, 4) 

(Rule sets 2, 4, 5) 

(Rule sets 2, 4) 

All Key Combinations Enumerated
•  PK + S-FK: a relation has a Primary Key and only one Foreign Key

–  PK = S-FK: the Foreign Key is the Primary Key
–  PK ∩ S-FK = 0: the Foreign Key and the Primary Key do not share any attributes

•  PK + N-FK: a relation has a Primary Key and two (2) Foreign Keys
–  PK ∩ N-FK = 0: the Foreign Key and the Primary Key do not share any attributes
–  PK N-FK: one of the Foreign Keys is also the Primary Key

•  PK + N-FK: a relation has a Primary Key and more than two (> 2) Foreign Keys
–  PK ∩ N-FK = 0: the Foreign Key and the Primary Key do not share any attributes
–  PK N-FK: one of the Foreign Keys is also the Primary Key

•  C-PK + S-FK: a relation has a Composite Primary Key and only one Foreign Key.
–  C-PK ∩ S-FK = 0: the Foreign Key and the Primary Key do not share any attributes
–  S-FK C-PK: the Foreign Key is part of the Primary Key

•  C-PK + N-FK: a relation has a Composite Primary Key and two (2) Foreign Keys
–  C-PK ∩ N-FK = 0: all the Foreign Keys and the Primary Key do not share any attributes
–  N-FK C-PK: all the Foreign Keys are part of the Primary Key
–  C-PK ∩ N-FK 0, C-PK – N-FK 0, N-FK – C-PK 0: The Foreign Keys and Primary Key share

common attributes
•  C-PK + N-FK: a relation has a Composite Primary Key and more than two (> 2) Foreign Keys

–  C-PK ∩ N-FK = 0: all the Foreign Keys and the Primary Key do not share any attributes
–  N-FK C-PK: all the Foreign Keys are part of the Primary Key
–  C-PK ∩ N-FK 0, C-PK – N-FK 0, N-FK – C-PK 0: The Foreign Keys and Primary Key share

common attributes

€

⊂

€

⊂

€

⊂

€

⊆

€

⊆€

≠

€

≠

€

≠

€

≠

€

≠

€

≠

•  Reads the Data Dictionary
–  Specific to each vendor

•  Currently supporting Microsoft SQL Server and
MySQL

14

•  Quality of the PO depends on the SQL DDL
–  Is it normalized?
–  Are all the constraints explicit?

•  If the Quality is sufficient, all we need to do is rename
•  Need to map the Putative Ontology to a Domain

Ontology
•  Evidence: SQL schema from E-R models make

“interesting” ontologies
•  SQL schemas made without any previous modeling

make “poor” ontologies

15

16

Data

Schema

TripleView
Putative
Ontology

1

2

SPARQL

SPARQL
to SQL

SQL Query
Optimizer

Query Plan

RDF

3

4

OWL

•  Represent all relational data as triples using a view
definition
–  Promise of avoiding self joins (optimizer will do this)

•  Triple table approach: one table with three columns
(s,p,o)
–  No symbol/lookup table. Strings are in the view

•  Actually, the view is (s,spk, p, o, opk) where spk and
opk are the index values
–  Optimizer needs to know the index values

17

•  Create SELECT statements that output triples

SELECT “Product”+id as s, id as spk, “product_label” as p, label as o, null
as opk FROM Product

SELECT “Product”+ProductID as s, ProductID as spk, “product_productfeature”
as p, “ProductFeature”+ProductFeatureID as o, ProductFeatureID as opk
FROM ProductFeatureProduct

•  Use the PO as basis to create all the SELECT
statements 18

S SPK P O OPK

Product1 1 product_label Label of Product 1 null

Product2 2 product_label Label of Product 2 null

S SPK P O OPK

Product1 1 product_productfeature ProductFeature45 45

Product1 1 product_productfeature ProductFeature98 98

•  Triple View is a union of all the SELECT statementss
CREATE VIEW TripleView(s,spk, p, o, opk) as

SELECT “Product”+id as s, id as spk, “rdf:type” as p, “Product” as o, null

as opk FROM Product

UNION

SELECT “Product”+id as s, id as spk, “label” as p, label as o, null as opk

FROM Product

UNION

SELECT “Product”+ProductID as s, ProductID as spk, “product_productfeature”

as p, “ProductFeature”+ProductFeatureID as o, ProductFeatureID as opk
FROM ProductFeatureProduct

UNION …

•  BSBM generates ~80 select statements in order to
represent all relational data as triples

19

20

Data

Schema

TripleView
Putative
Ontology

1

2

SPARQL

SPARQL
to SQL

SQL Query
Optimizer

Query Plan

RDF

3

4

OWL

SPARQL Query

SELECT ?product ?label

WHERE{

?product producttype_product

ProductType47.

?product product_label ?label.

?product product_productfeature

ProductFeature76.

?product product_productfeature

ProductFeature4242.

?product product_propertyNum1 ?v.

FILTER (?v >500)

}

SQL Query on the Triple View

SELECT t1.o as product, t2.o as
label

FROM TripleView t1, t2, t3, t4, t5

WHERE

 t1.p = ‘producttype_product’

and t1.opk = 47

and t2.p = ‘product_label’

and t3.spk = t1.spk

and t3.p = ‘product_productfeature’

and t3.opk = 76

and t4.spk = t1.spk

and t4.p = ‘product_productfeature’

and t4.opk = 4242

and t5.spk = t1.spk

and t5.p = ‘product_propertyNum1’

and t5.o > 500

21

Syntactic transformation from a SPARQL query to an equivalent SQL query
on the Triple View

22

Data

Schema

TripleView
Putative
Ontology

1

2

SPARQL

SPARQL
to SQL

SQL Query
Optimizer

Query Plan

RDF

3

4

OWL

23

TripleView(1, label, ABC) :- Product(1,ABC, _, _)

TripleView(1, propNum1, 1) :- Product(1,_, 1, _)

TripleView(1, propNum1, 2) :- Product(1,_, _, 2)

SQL Query on the TripleView
Query(X, Y):-TripleView(X, label, Y),

TripleView(X, propNum1, 1),

TripleView(X, propNum2, 2)

SQL Query on the Relational Data
SELECT id, label FROM product

WHERE propNum1 = 1 and propNum2 = 2

Query(X, Y) :- Product(X, Y, 1, 2)

Evaluate SQL Query on the TripleView
Query(X,Y):-Product(X,Y,1,_),Product(X,Y,_, 2)

Query(X,Y):- Product(X, Y, 1, 2)

•  TripleView Plan •  Optimal Plan

24

25

Data

Schema

Data

Schema

TripleView

SQL
Optimizer

TripleView

Schema

Data

Generate Create
View

Putative
Ontology

SPARQL
to SQL

Query
Plan

Compile Time Run Time

•  Running on Microsoft SQL Server
•  Jess Rule Engine
•  Initial test on BSBM on 1 million triples, execution time

is close to running time of native SQL queries on
relational data

26

•  Shifted problem to ontology-to-ontology mapping
–  Version 0: query only the Putative Ontology
–  Version 1: Manually mapping layer between Domain

Ontology to Putative Ontology
–  Version 2: Automatic identify mappings

•  Testing on Oracle, PostgreSQL, Virtuoso
•  Road Map

–  Dec 2009: Version 0
–  Feb 2010: Version 1 running on other RDBMS

27

Powered by The Miranker Lab

Research
In
Bioinformatics and the
Semantic Web

