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Preface

“He who loves practice without theory is like the sailor who boards ship without
a rudder and compass and never knows where he may be cast.”

Leonardo da Vinci (1452–1519)

Computer programming has been, largely, an intuitive activity. Program-
mers are taught to understand programming in operational terms, i.e., how a
computer executes a program. As the field has matured, we see many effec-
tive theories for designing and reasoning about computer programs in specific
domains. Such theories reduce the mental effort, and the amount of experimen-
tation needed to design a product. They are as indispensable for their domains
as calculus is for solving scientific and engineering problems. I am attracted
to effective theories primarily because they save labor (for the human and the
computer), and secondarily because they give us better assurance about the
properties of programs.

The original inspiration to design a computer science course which illustrates
the applications of effective theories in practice came from Elaine Rich and J
Moore. I prepared a set of notes and taught the course in the Spring and Fall
of 2003. The choice of topics and the style of presentation are my own. I have
made no effort to be comprehensive.

Greg Plaxton has used my original notes and made extensive revisions; I am
grateful to him. I am also grateful to the graduate teaching assistants, especially
Thierry Joffrain, for helping me revise the notes.

Austin, Texas Jayadev Misra
August 2006
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Chapter 1

Text Compression

1.1 Introduction

Data compression is useful and necessary in a variety of applications. These
applications can be broadly divided into two groups: transmission and storage.
Transmission involves sending a file, from a sender to a receiver, over a channel.
Compression reduces the number of bits to be transmitted, thus making the
transmission process more efficient. Storing a file in a compressed form typically
requires fewer bits, thus utilizing storage resources (including main memory
itself) more efficiently.

Data compression can be applied to any kind of data: text, image (such as
fax), audio and video. A 1-second video without compression takes around 20
megabytes (i.e., 170 megabits) and a 2-minute CD-quality uncompressed mu-
sic (44,100 samples per second with 16 bits per sample) requires more than 84
megabits. Impressive gains can be made by compressing video, for instance, be-
cause successive frames are very similar to each other in their contents. In fact,
real-time video transmission would be impossible without considerable compres-
sion. There are several new applications that generate data at prodigious rates;
certain earth orbiting satellites create around half a terabyte (1012) of data per
day. Without compression there is no hope of storing such large files in spite of
the impressive advances made in storage technologies.

Lossy and Lossless Compression Most data types, except text, are com-
pressed in such a way that a very good approximation, but not the exact content,
of the original file can be recovered by the receiver. For instance, even though
the human voice can range up to 20kHz in frequency, telephone transmissions
retain only up to about 5kHz.1 The voice that is reproduced at the receiver’s
end is a close approximation to the real thing, but it is not exact. Try lis-

1A famous theorem, known as the sampling theorem, states that the signal must be sampled
at twice this rate, i.e., around 10,000 times a second. Typically, 8 to 16 bits are produced for
each point in the sample.

9



10 CHAPTER 1. TEXT COMPRESSION

tening to your favorite CD played over a telephone line. Video transmissions
often sacrifice quality for speed of transmission. The type of compression in
such situations is called lossy, because the receiver cannot exactly reproduce
the original contents. For analog signals, all transmissions are lossy; the degree
of loss determines the quality of transmission.

Text transmissions are required to be lossless. It will be a disaster to change
even a single symbol in a text file.2 In this note, we study several lossless
compression schemes for text files. Henceforth, we use the terms string and text
file synonymously.

Error detection and correction can be applied to uncompressed as well as
compressed strings. Typically, a string to be transmitted is first compressed
and then encoded for errors. At the receiver’s end, the received string is first
decoded (error detection and correction are applied to recover the compressed
string), and then the string is decompressed.

What is the typical level of compression? The amount by which a text
string can be compressed depends on the string itself. A repetitive lyric like “Old
McDonald had a farm” can be compressed significantly, by transmitting a single
instance of a phrase that is repeated.3 I compressed a postscript file of 2,144,364
symbols to 688,529 symbols using a standard compression algorithm, gzip; so,
the compressed file is around 32% of the original in length. I found a web site4

where The Adventures of Tom Sawyer, by Mark Twain, is in uncompressed
form at 391 Kbytes and compressed form (in zip format) at 172 Kbytes; the
compressed file is around 44% of the original.

1.2 A Very Incomplete Introduction to Informa-
tion Theory

Take a random string of symbols over a given alphabet; imagine that there is
a source that spews out these symbols following some probability distribution
over the alphabet. If all symbols of the alphabet are equally probable, then
you can’t do any compression at all. However, if the probabilities of different
symbols are non-identical —say, over a binary alphabet “0” occurs with 90%
frequency and “1” with 10%— you may get significant compression. This is
because you are likely to see runs of zeros more often, and you may encode such
runs using short bit strings. A possible encoding, using 2-bit blocks, is: 00 for
0, 01 for 1, 10 for 00 and 11 for 000. We are likely to see a large number of
“000” strings which would be compressed by one bit, whereas for encoding “1”
we lose a bit.

2There are exceptions to this rule. In some cases it may not matter to the receiver if extra
white spaces are squeezed out, or the text is formatted slightly differently.

3Knuth [30] gives a delightful treatment of a number of popular songs in this vein.
4http://www.ibiblio.org/gutenberg/cgi-bin/sdb/t9.cgi/t9.cgi?entry=74

&full=yes&ftpsite=http://www.ibiblio.org/gutenberg/
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In 1948, Claude E. Shannon [45] published “A Mathematical Theory of Com-
munication”, in which he presented the concept of entropy, which gives a quan-
titative measure of the compression that is possible. I give below an extremely
incomplete treatment of this work.

Consider a finite alphabet; it may be binary, the Roman alphabet, all the
symbols on your keyboard, or any other finite set. A random source outputs a
string of symbols from this alphabet; it has probability pi of producing the ith
symbol. Productions of successive symbols are independent, that is, for its next
output, the source selects a symbol with the given probabilities independent of
what it has produced already. The entropy, h, of the alphabet is given by

h = −
∑
i pi (log pi)

where log stands for logarithm to base 2. (We use the convention that 0 log 0 =
0.) Shannon showed that for lossless transmission of a (long) string of n symbols,
you need at least nh bits, i.e., h bits on the average to encode each symbol of
the alphabet. And, it is possible to transmit at this rate!

Figure 1.1 below shows the entropy function for an alphabet of size 2 where
the probabilities of the two symbols are p and (1 − p). Note that the curve is
symmetric in p and (1 − p), and its highest value, 1.0, is achieved when both
symbols are equiprobable.

1.0

0.0 0.5 1.0
p

entropy

Figure 1.1: Entropy function: −p log p− (1− p) log (1− p)

Let us compute a few values of the entropy function. Suppose we have the
binary alphabet where the two symbols are equiprobable. Then, as is shown in
Figure 1.1,

h = −0.5× (log 0.5)− 0.5× (log 0.5)
= − log 0.5
= 1

That is, you need 1 bit on the average to encode each symbol, so you cannot
compress such strings at all! Next, suppose the two symbols are not equiprob-
able; “0” occurs with probability 0.9 and “1” with 0.1. Then,

h = −0.9× (log 0.9)− 0.1× (log 0.1)
= 0.469

The text can be compressed to less than half its size. If the distribution is even
more lop-sided, say 0.99 probability for “0” and 0.01 for “1”, then h = 0.080; it
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is possible to compress the file to 8% of its size. Note that Shannon’s theorem
does not say how to achieve this bound; we will see some schemes that will
asymptotically achive this bound.

Exercise 1
Show that for an alphabet of size m where all symbols are equally probable, the
entropy is logm. 2

Next, consider English text. The source alphabet is usually defined as the
26 letters and the space character. There are then several models for entropy.
The zero-order model assumes that the occurrence of each character is equally
likely. Using the zero-order model, the entropy is h = log 27 = 4.75. That is, a
string of length n would have no less than 4.75× n bits.

The zero-order model does not accurately describe English texts: letters
occur with different frequency. Six letters — ‘e’, ‘t’, ‘a’, ‘o’, ‘i’, ‘n’— occur
over half the time; see Tables 1.1 and 1.2. Others occur rarely, such as ‘q’
and ‘z’. In the first-order model, we assume that each symbol is statistically
independent (that is, the symbols are produced independently) but we take
into account the probability distribution. The first-order model is a better
predictor of frequencies and it yields an entropy of 4.219 bits/symbol. For a
source Roman alphabet that also includes the space character, a traditional
value is 4.07 bits/symbol.

Letter Frequency Letter Frequency Letter Frequency Letter Frequency
a 0.08167 b 0.01492 c 0.02782 d 0.04253
e 0.12702 f 0.02228 g 0.02015 h 0.06094
i 0.06966 j 0.00153 k 0.00772 l 0.04025
m 0.02406 n 0.06749 o 0.07507 p 0.01929
q 0.00095 r 0.05987 s 0.06327 t 0.09056
u 0.02758 v 0.00978 w 0.02360 x 0.00150
y 0.01974 z 0.00074

Table 1.1: Frequencies of letters in English texts, alphabetic order

Higher order models take into account the statistical dependence among the
letters, such as that ‘q’ is almost always followed by ‘u’, and that there is a
high probability of getting an ‘e’ after an ‘r’. A more accurate model of English
yields lower entropy. The third-order model yields 2.77 bits/symbol. Estimates
by Shannon [46] based on human experiments have yielded values as low as 0.6
to 1.3 bits/symbol.

Compression Techniques from Earlier Times Samuel Morse developed a
code for telegraphic transmissions in which he encoded the letters using a binary
alphabet, a dot (·) and a dash (–). He assigned shorter codes to letters like ‘e’(·)
and ‘a’(· –) that occur more often in texts, and longer codes to rarely-occurring
letters, like ‘q’(– – · –) and ‘j’(· – – –).
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Letter Frequency Letter Frequency Letter Frequency Letter Frequency
e 0.12702 t 0.09056 a 0.08167 o 0.07507
i 0.06966 n 0.06749 s 0.06327 h 0.06094
r 0.05987 d 0.04253 l 0.04025 c 0.02782
u 0.02758 m 0.02406 w 0.02360 f 0.02228
g 0.02015 y 0.01974 p 0.01929 b 0.01492
v 0.00978 k 0.00772 j 0.00153 x 0.00150
q 0.00095 z 0.00074

Table 1.2: Frequencies of letters in English texts, descending order

The Braille code, developed for use by the blind, uses a 2× 3 matrix of dots
where each dot is either flat or raised. The 6 dots provide 26 = 64 possible
combinations. After encoding all the letters, the remaining combinations are
assigned to frequently occurring words, such as “and” and “for”.

1.3 Huffman Coding

We are given a set of symbols and the probability of occurrence of each symbol
in some long piece of text. The symbols could be {0, 1} with probability 0.9
for 0 and 0.1 for 1, Or, the symbols could be {a, c, g, t} from a DNA sequence
with appropriate probabilities, or Roman letters with the probabilities shown in
Table 1.1. In many cases, particularly for text transmissions, we consider fre-
quently occurring words —such as “in”, “for”, “to”— as symbols. The problem
is to devise a code, a binary string for each symbol, so that (1) any encoded
string can be decoded (i.e., the code is uniquely decodable, see below), and (2)
the expected code length —probability of each symbol times the length of the
code assigned to it, summed over all symbols— is minimized.

Example Let the symbols {a, c, g, t} have the probabilities 0.05, 0.5, 0.4, 0.05
(in the given order). We show three different codes, C1, C2 and C3, and the
associated expected code lengths in Table 1.3.

Symbol Prob. C1 avg. length C2 avg. length C3 avg. length
a 0.05 00 0.05× 2 = 0.1 00 0.05× 2 = 0.1 000 0.05× 3 = 0.15
c 0.5 0 0.5× 1 = 0.5 01 0.5× 2 = 1.0 1 0.5× 1 = 0.5
g 0.4 1 0.4× 1 = 0.4 10 0.4× 2 = 0.8 01 0.4× 2 = 0.8
t 0.05 11 0.05× 2 = 0.1 11 0.05× 2 = 0.1 001 0.05× 3 = 0.15

exp. length = 1.1 2.0 1.6

Table 1.3: Three different codes for {a, c, g, t}
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Code C1 is not uniquely decodable because cc and a will both be encoded by
00. Code C2 encodes each symbol by a 2 bit string; so, it is no surprise that the
expected code length is 2.0 in this case. Code C3 has variable lengths for the
codes. It can be shown that C3 is optimal, i.e., it has the minimum expected
code length.

1.3.1 Uniquely Decodable Codes and Prefix Codes

We can get low expected code length by assigning short codewords to every
symbol. If we have n symbols we need n distinct codewords. But that is not
enough. As the example above shows, it may then be impossible to decode a
piece of text unambiguously. A code is uniquely decodable if every string of
symbols is encoded into a different string.

A prefix code is one in which no codeword is a prefix of another.5 The
codewords 000, 1, 01, 001 for {a, c, g, t} constitute a prefix code. A prefix code
is uniquely decodable: if two distinct strings are encoded identically, either their
first symbols are identical (then, remove their first symbols, and repeat this step
until they have distinct first symbols), or the codeword for one first symbol is a
prefix of the other first symbol, contradicting that we have a prefix code.

It can be shown —but I will not show it in these notes— that there is an
optimal uniquely decodable code which is a prefix code. Therefore, we can limit
our attention to prefix codes only, which we do in the rest of this note.

A prefix code can be depicted by a labeled binary tree, as follows. Each leaf
is labeled with a symbol (and its associated probability), a left edge by 0 and a
right edge by 1. The codeword associated with a symbol is the sequence of bits
on the path from the root to the corresponding leaf. See Figure 1.2 for a prefix
code for {a, c, g, t} which have associated probabilities of 0.05, 0.5, 0.4, 0.05 (in
the given order).

The length of a codeword is the corresponding pathlength. The weighted
pathlength of a leaf is the probability associated with it times its pathlength.
The expected code length is the sum of the weighted pathlengths over all leaves.
Henceforth, the expected code length of a tree will be called its weight, and a
tree is best if its weight is minimum. Note that there may be several best trees
for the given probabilities.

Since the symbols themselves play no role —the probabilities identify the
associated symbols— we dispense with the symbols and work with the proba-
bilities only. Since the same probability may be associated with two different
symbols, we have a bag, i.e., a multiset, of probabilities. Also, it is immaterial
that the bag elements are probabilities; the algorithm applies to any bag of
nonnegative numbers. We use the set notation for bags below.

Exercise 2

Try to construct the best tree for the following values {1, 2, 3, 4, 5, 7, 8}.
The weight of the best tree is 78. 2

5String s is a prefix of string t if t = s ++ x, for some string x, where ++ denotes concate-
nation.
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a t

g

c

0 1

0 1

0 1

000 001

01

1

Figure 1.2: Prefix code for {a, c, g, t}

Remark: In a best tree, there is no dangling leaf; i.e., each leaf is labeled with
a distinct symbol. Therefore, every internal node (i.e., nonleaf) has exactly two
children. Such a tree is called a full binary tree.

Exercise 3

Show two possible best trees for the alphabet {0, 1, 2, 3, 4} with probabilities
{0.2, 0.4, 0.2, 0.1, 0.1}. The trees should not be mere rearrangements of each
other through reflections of subtrees. 2

Solution One possible solution is shown below.

0.1 0.1

0.2

0.2

0.4

0.20.4 0.2

0.1 0.1

Figure 1.3: Two different best trees over the same probabilities

1.3.2 Constructing An Optimal Prefix Code

Huffman has given an extremely elegant algorithm for constructing a best tree
for a given set of symbols with associated probabilities.6

The optimal prefix code construction problem is: given a bag of nonnegative
numbers, construct a best tree. That is, construct a binary tree and label its

6I call an algorithm elegant if it is easy to state and hard to prove correct.
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leaves by the numbers from the bag so that the weight, i.e., the sum of the
weighted pathlengths to the leaves, is minimized.

The Huffman Algorithm If bag b has a single number, create a tree of one
node, which is both a root and a leaf, and label the node with the number.
Otherwise (the bag has at least two numbers), let u and v be the two smallest
numbers in b, not necessarily distinct. Let b′ = b − {u, v} ∪ {u + v}, i.e., b′ is
obtained from b by replacing its two smallest elements by their sum. Construct
a best tree for b′. There is a leaf node in the tree labeled u + v; expand this
node to have two children that are leaves and label them with u and v.

Illustration of Huffman’s Algorithm Given a bag {0.05, 0.5, 0.4, 0.05},
we obtain successively

b0 = {0.05, 0.5, 0.4, 0.05} , the original bag
b1 = {0.1, 0.5, 0.4} , replacing {0.05, 0.05} by their sum
b2 = {0.5, 0.5} , replacing {0.1, 0.4} by their sum
b3 = {1.0} , replacing {0.5, 0.5} by their sum

The trees corresponding to these bags are shown in Figure 1.4:

0.5 0.5

0.1 0.4

0.05 0.05

Best tree for b0

1.0

0.5 0.5

0.1 0.4

Best tree for b1

1.0

0.5 0.5
Best tree for b2

1.0
1.0

Best tree for b3

Figure 1.4: Illustration of Huffman algorithm
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1.3.3 Proof of Correctness

We prove that Huffman’s algorithm yields a best tree.

Lemma 1: Let x and y be two values in a bag where x < y. In a best tree
for the bag, Y ≤ X, where X and Y are the pathlengths to x and y.

Proof: Let T be a best tree. Switch the two values x and y in T to obtain a new
tree T ′. The weighted pathlengths to x and y in T are xX and yY , respectively.
And, they are xY and yX, respectively, in T ′. Weighted pathlengths to all other
nodes in T and T ′ are identical. Since T is a best tree, weight of T is less than
equal to that of T ′. Therefore,

xX + yY ≤ xY + yX
⇒ {arithmetic}

yY − xY ≤ yX − xX
⇒ {arithmetic}

(y − x)Y ≤ (y − x)X
⇒ {since x < y, (y − x) > 0; arithmetic}

Y ≤ X

Lemma 2: Let u and v be two smallest values, respectively, in bag b. Then,
there is a best tree for b in which u and v are siblings.

Proof: Let T be a best tree for b. Let U and V be the pathlengths to u and v,
respectively. Let the sibling of u be x and X be the pathlength to x. (In a best
tree, u has a sibling. Otherwise, delete the edge to u, and let the parent of u
become the node corresponding to value u, thus lowering the cost.)

If v = x, the lemma is proven. Otherwise, v < x.

v < x
⇒ {from Lemma 1}

X ≤ V
⇒ {u ≤ v and v < x. So, u < v. from Lemma 1}

X ≤ V and V ≤ U
⇒ {X = U , because x and u are siblings}

X = V

Switch the two values x and v (they may be identical). This will not alter
the weight of the tree because X = V , while establishing the lemma.

Lemma 3: Let T be an optimal tree for bag b in which u and v are siblings.
Let T ′ be all of T except the two nodes u and v; see Figure 1.5. Then T ′ is a
best tree for bag b′ = b− {u, v} ∪ {u+ v}.

Proof: Let W (T ) and W (T ′) be the weighted pathlengths of T and T ′, respec-
tively. Let the pathlength to u+ v in T ′ be p. Then the pathlengths to u and v
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T’

u v

u+v

Figure 1.5: The entire tree is T for b; its upper part is T ′ for b′.

in T are p + 1. The weighted pathlengths to all other nodes are identical in T
and T ′; let the combined pathlengths to all other nodes be q. Then

W (T )
= {definition of weighted pathlength of T}

q + (p+ 1)× u+ (p+ 1)× v
= {arithmetic}

q + p× (u+ v) + (u+ v)
= {definition of weighted pathlength of T ′}

W (T ′) + (u+ v)

Since T is the best tree for b, T ′ is the best tree for b′. Otherwise, we may
replace T ′ by a tree whose weight is lower than W (T ′), thus reducing W (T ), a
contradiction since T is the best tree.

We combine Lemma 2 and 3 to get the following theorem, which says that
Huffman’s algorithm constructs a best tree.

Theorem: Given is a bag b. Let u and v be two smallest values in b. And,
b′ = b− {u, v} ∪ {u+ v}. There is a best tree T for b such that

1. u and v are siblings in T , and

2. T ′ is a best tree for b′, where T ′ is all of T except the two nodes u and v;
see Figure 1.5.

Exercise 4

1. What is the structure of the Huffman tree for 2n, n ≥ 0, equiprobable
symbols?

2. Show that the tree corresponding to an optimal prefix code is a full binary
tree.

3. In a best tree, consider two nodes labeled x and y, and let the correspond-
ing pathlengths be X and Y , respectively. Show that
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x < y ⇒ X ≥ Y

4. Prove or disprove (in the notation of the previous exercise)

x ≤ y ⇒ X ≥ Y , and
x = y ⇒ X ≥ Y

5. Consider the first n fibonacci numbers (start at 1). What is the structure
of the tree constructed by Huffman’s algorithm on these values?

6. Prove that the weight of any tree is the sum of the values in the non-leaf
nodes of the tree. For example in Figure 1.4, the weight of the final tree is
1.6, and the sum of the values in the non-leaf nodes is 1.0+0.5+0.1 = 1.6.

Observe that a tree with a single leaf node and no non-leaf node has weight
0, which is the sum of the values in the non-leaf nodes (vacuously).

Does the result hold for non-binary trees?

7. Show that the successive values computed during execution of Huffman’s
algorithm (by adding the two smallest values) are nondecreasing.

8. Combining the results of the last two exercises, give an efficient algorithm
to compute the weight of the optimal tree; see Section 1.3.4.

9. (Research) As we have observed, there may be many best trees for a given
bag. We may wish to find the very best tree that is a best tree and in which
the maximum pathlength to any node is as small as possible, or the sum
of the pathlengths to the leaves is minimized. The following procedure
achieves both of these goals simultaneously: whenever there is a tie in
choosing values, always choose an original value rather than a combined
value. Show the correctness of this method and also that it minimizes the
maximum pathlength as well as the sum of the pathlengths among all best
trees. See Knuth [28], Section 2.3.4.5, page 404. 2

How Good is Huffman Coding? We know from Information theory (see
Section 1.2) that it is not possible to construct code whose weight is less than
the entropy, but it is possible to find codes with this value (asymptotically).
It can be shown that in any alphabet where the probabilities of symbols are
non-zero and the entropy is h, the Huffman code with weight H satisfies:

h ≤ H < h+ 1

So, the ratio (H − h)/h will be very low if h is large.
However, in another sense, Huffman coding leaves much to be desired. The

probabilities are very difficult to estimate if you are compressing something
other than standard English novels. How do you get the frequencies of symbols
in a postscript file? And, which ones should we choose as symbols in such a file?
The latter question is very important because files tend to have bias toward
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certain phrases, and we can compress much better if we choose those as our
basic symbols.

The Lempel-Ziv code, described in the following section addresses some of
these issues.

1.3.4 Implementation

During the execution of Huffman’s algorithm, we will have a bag of elements
where each element holds a value and it points to either a leaf node —in case
it represents an original value— or a subtree —if it has been created during
the run of the algorithm. The algorithm needs a data structure on which the
following operations can be performed efficiently: (1) remove the element with
the smallest value and (2) insert a new element. In every step, operation (1)
is performed twice and operation (2) once. The creation of a subtree from two
smaller subtrees is a constant-time operation, and is left out in the following
discussion.

A priority queue supports both operations. Implemented as a heap, the
space requirement is O(n) and each operation takes O(log n) time, where n is the
maximum number of elements. Hence, the O(n) steps of Huffman’s algorithm
can be implemented in O(n log n) time.

If the initial bag is available as a sorted list, the algorithm can be imple-
mented in linear time, as follows. Let leaf be the list of initial values sorted in
ascending order. Let nonleaf be the list of values generated in sequence by the
algorithm (by summing the two smallest values in leaf ∪ nonleaf ).

The important observation is that

• (monotonicity) nonleaf is an ascending sequence.

You are asked to prove this in part 7 of the exercises in Section 1.3.3.
This observation implies that the smallest element in leaf ∪ nonleaf at any

point during the execution is the smaller of the two items at the heads of leaf and
nonleaf . That item is removed from the appropriate list, and the monotonicity
property is still preserved. An item is inserted by adding it at the tail end of
nonleaf , which is correct according to monotonicity.

It is clear that leaf is accessed as a list at one end only, and nonleaf at
both ends, one end for insertion and the other for deletion. Therefore, leaf may
be implemented as a stack and nonleaf as a queue. Each operation then takes
constant time, and the whole algorithm runs in O(n) time.

1.4 Lempel-Ziv Coding

As we have noted earlier, Huffman coding achieves excellent compression when
the frequencies of the symbols can be predicted, and when we can identify the
interesting symbols. In a book, say Hamlet, we expect the string Ophelia to
occur quite frequently, and it should be treated as a single symbol. Lempel-
Ziv coding does not require the frequencies to be known a priori. Instead, the
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sender scans the text from left to right identifying certain strings (henceforth,
called words) that it inserts into a dictionary. Let me illustrate the procedure
when the dictionary already contains the following words. Each word in the
dictionary has an index, simply its position in the dictionary.

index word
0 〈〉
1 t
2 a
3 ta

Suppose the remaining text to be transmitted is taaattaaa. The sender
scans this text from left until it finds a string that is not in the dictionary. In
this case, t and ta are in the dictionary, but taa is not in the dictionary. The
sender adds this word to the dictionary, and assigns it the next higher index,
4. Also, it transmits this word to the receiver. But it has no need to transmit
the whole word (and, then, we will get no compression at all). The prefix of
the word excluding its last symbol, i.e., ta, is a dictionary entry (remember, the
sender scans the text just one symbol beyond a dictionary word). Therefore, it
is sufficient to transmit (3, a), where 3 is the index of ta, the prefix of taa that
is in the dictionary, and a is the last symbol of taa.

The receiver recreates the string taa, by loooking up the word with index
3 and appending a to it, and then it appends taa to the text it has created
already; also, it updates the dictionary with the entry

index word
4 taa

Initially, the dictionary has a single word, the empty string, 〈〉, as its only
(0th) entry. The sender and receiver start with this copy of the dictionary and
the sender continues its transmissions until the text is exhausted. To ensure
that the sender can always find a word which is not in the dictionary, assume
that the end of the file, written as #, occurs nowhere else in the string.

Example Consider the text taccagtaccagtaccacta#. The dictionary and the
transmissions are shown in Table 1.4. 2

It should be clear that the receiver can update the dictionary and recreate
the text from the given transmissions. Therefore, the sequence of transmissions
constitutes the compressed file. In the small example shown above, there is
hardly any compression. But for longer files with much redundancy, this scheme
achieves excellent results. Lempel-Ziv coding is asymptotically optimal, i.e., as
the text length tends to infinity, the compression tends to the optimal value
predicted by information theory.

The dictionary size is not bounded in this scheme. In practice, the dictionary
is limited to a fixed size, like 4096 (so that each index can be encoded in 12
bits). Beyond that point, the transmissions continue in the same manner, but
the dictionary is not updated. Also, in practical implementations, the dictionary
is initially populated by all the symbols of the alphabet.
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index word transmission
0 〈〉 none
1 t (0, t)
2 a (0, a)
3 c (0, c)
4 ca (3, a)
5 g (0, g)
6 ta (1, a)
7 cc (3, c)
8 ag (2, g)
9 tac (6, c)
10 cac (4, c)
11 ta# (6,#)

Table 1.4: Transmission of taccagtaccagtaccacta# using Lempel-Ziv Code

There are a number of variations of the Lempel-Ziv algorithm, all having
the prefix LZ. What I have described here is known as LZ78 [54]. Many popular
compression programs —Unix utility “compress”, “gzip”, Windows “Winzip”—
are based on some variant of the Lempel-Ziv algorithm. Another algorithm, due
to Burrows and Wheeler [9], is used in the popular “bzip” utility.

Implementation of the Dictionary We develop a data structure to imple-
ment the dictionary and the two operations on it: (1) from a given string find
the (shortest) prefix that is not in the dictionary, and (2) add a new entry to
the dictionary. The data structure is a special kind of tree (sometimes called a
“trie”). Associated with each node of the tree is a word of the dictionary and its
index; associated with each branch is a symbol, and branches from a node have
different associated symbols. The root node has the word 〈〉 (empty string) and
index 0 associated with it. The word associated with any node is the sequence
of symbols on the path to that node. Initially, the tree has only the root node.

Given a text string, the sender starts matching its symbols against the sym-
bols at the branches, starting at the root node. The process continues until a
node, n, is reached from which there is no branch labelled with the next in-
put symbol, s. At this point, index of n and the symbol s are transmitted.
Additionally, node n is extended with a branch labelled s.

The receiver does not need to maintain the tree. The receiver merely main-
tains an array D, where D(i) is the string of index i in the tree.

The tree shown in Figure 1.6 results from the string taccagtaccagtaccacta#.
The first 8 dictionary entries result from the prefix taccagtaccag. Now consider
transmission of the remaining portion of the string, taccacta#. The prefix ta
matches the symbols along the path up to the node with index 6. Therefore,
index 6 and the next symbol, c, are transmitted, the tree is updated by adding
a branch out of node 6, labelled c, and the new node acquires the next index at
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that point, 9. Transmission of the remaining portion of the string follows the
same procedure.

0, <>

1,t 2,a 3,c

4,ca6,ta 7,cc

t a

a a c

c

9,tac

c

5,g

10,cac11,ta#

#

g

c

8,ag

g

Figure 1.6: Trie resulting from transmission of taccagtaccagtaccacta#

Exercise 5

1. Is it necessary to maintain the word at each node?

2. If your input alphabet is large, it will be non-trivial to look for a branch
out of a node that is labeled with a specific symbol. Devise an efficient
implementation of the tree in this case.

3. Suppose that the string Ophelia appears in the text as a separate word
(surrounded by white speces), but none of its prefixes do. What is the
minimum number of times this string must be seen before it is encoded as
a word? 2

Acknowledgment I am grateful to Thierry Joffrain for helping me write part
of Section 1.2.
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Chapter 2

Error Detection and
Correction

2.1 Introduction

The following description from Economist, July 3rd, 2004, captures the essence
of error correction and detection, the subject matter of this chapter. “On July
1st [2004], a spacecraft called Cassini went into orbit around Saturn —the
first probe to visit the planet since 1981. While the rockets that got it there are
surely impressive, just as impressive, and much neglected, is the communications
technology that will allow it to transmit its pictures millions of kilometers back
to Earth with antennae that use little more power than a light-bulb.

To perform this transmission through the noisy vacuum of space, Cassini
employs what are known as error-correcting codes. These contain internal tricks
that allow the receiver to determine whether what has been received is accurate
and, ideally, to reconstruct the correct version if it is not.”

First, we study the logical operator exclusive-or, which plays a central role
in error detection and correction. The operator is written as ⊕ in these notes.
It is a binary operator, and its truth table is shown in Table 2.1. Encoding true
by 1 and false by 0, we get Table 2.2, which shows that the operator is addition
modulo 2, i.e., addition in which you discard the carry.

In all cases, we apply ⊕ to bit strings of equal lengths, which we call words.
The effect is to apply ⊕ to the corresponding bits independently. Thus,

F T
F F T
T T F

Table 2.1: Truth table of exclusive-or

25
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0 1
0 0 1
1 1 0

Table 2.2: Exclusive-or as addition modulo 2

0 1 1 0
⊕

1 0 1 1
=

1 1 0 1

2.1.1 Properties of Exclusive-Or

In the following expressions x, y and z are words of the same length, 0 is a word
of all zeros, and 1 is a word of all ones. x denotes the word obtained from x by
complementing each of its bits.

• ⊕ is commutative: x⊕ y = y ⊕ x

• ⊕ is associative: (x⊕ y)⊕ z = x⊕ (y ⊕ z)

• zero and complementation: x⊕ 0 = x, x⊕ 1 = x

• inverse: x⊕ x = 0, x⊕ x = 1

• distributivity over complementation: (x⊕ y) = (x⊕ y)

• Complementation: (x⊕ y) = x⊕ y

From the inverse property, we can regard ⊕ as subtraction modulo 2.
Exclusive-or of a set of 0s and 1s depends only on the number of 1s. The

result is 0 iff the number of 1s is even.

2.1.2 Dependent Set

A nonempty set of words, W , is dependent iff Ŵ = 0, where Ŵ is the exclusive-
or of all the words in W . Dependent sets are used in two applications later in
these notes, in Sections 2.5 and 2.7.3.

Observation W is dependent iff for every partition of W into subsets X and
Y , X̂ = Ŷ .
Proof: Let X and Y be any partition of W .

Ŵ = 0

≡ {X,Y is a partition of W ; so Ŵ = X̂ ⊕ Ŷ }
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X̂ ⊕ Ŷ = 0

≡ {add Ŷ to both sides of this equation}
X̂ ⊕ Ŷ ⊕ Ŷ = Ŷ

≡ {Ŷ ⊕ Ŷ = 0 and X̂ ⊕ 0 = X̂}
X̂ = Ŷ 2

The proof of the following observation is similar to the one above and is
omitted.

Observation W is dependent iff there is a partition of W into subsets X and
Y , X̂ = Ŷ . 2

Note: The two observations above say different things. The first one says
that if W is dependent then for all partitions into X and Y we have X̂ = Ŷ ,
and, conversely, if for all partitions into X and Y we have X̂ = Ŷ , then W
is dependent. The second observation implies a stronger result than the latter
part of the first observation: if there exists any (not all) partition into U and V
such that Û = V̂ , then W is dependent. 2

Exercise 6

1. Show that (x ⊕ y = x ⊕ z) ≡ (y = z). As a corollary, prove that
(x⊕ y = 0) ≡ (x = y).

2. What is the condition on x and u so that (x⊕ u) < x, where x and u are
numbers written in binary?

3. Let W ′ be a set obtained from a dependent set W by either removing an
element or adding an element. Given W ′ determine W .

Solution to Part 2 of this Exercise Since (x ⊕ u) < x, there is a bit
position where x has a 1 and x⊕u has a 0, and all bits to the left of this bit are
identical in x and x⊕ u. So, x is of the form α1β and x⊕ u is of the form α0γ.
Then, taking their exclusive-or, see Table 2.3, we find that u has a string of
zeros followed by a single 1 and then another string (β ⊕ γ). Comparing x and
u in that table, x has a 1 in the position where the leading 1 bit of u appears.
This is the only relevant condition. It is not necessary that x be larger than u;
construct an example where x < u . 2

x = α 1 β
x⊕ u = α 0 γ
u = 0s 1 β ⊕ γ

Table 2.3: Computing x⊕ (x⊕ u)



28 CHAPTER 2. ERROR DETECTION AND CORRECTION

Exercise 7

Some number of couples attend a party at which a black or white hat is placed
on every one’s head. No one can see his/her own hat, but see all others. Every
one is asked to guess the color of his/her hat (say, by writing on a piece of
paper). The persons can not communicate in any manner after the hats are
placed on their heads. Devise protocols by which:

1. Either every one guesses correctly or every one guesses incorrectly.

2. Some one in each couple guesses correctly.

3. (Generalization of 2) Every male or every female guesses correctly.

Solution Let H be the exclusive-or of all hat colors, and h the color of hat of
a specific person and s the exclusive-or of all hat colors he/she can see. Clearly,
H = h ⊕ s, or h = H ⊕ s. Therefore, if a person knows the correct value of
H, then he/she can guess the hat color correctly by first computing s and then
H ⊕ s.

1. Every one guesses H to be 0. Then if H = 0, every one is correct and if
H = 1 every one is wrong.

2. Each couple need only look at each other, and not all others, to solve
this. A couple forms a group of two. One of them guesses the exclusive-
or of their two hats to be 0 and the other 1; so one of them is correct.
Effectively, for two people A and B, A guesses the hat color to be same as
B’s and B guesses it to be opposite of A’s.

3. The females take H to be 0 and the males take it to be 1.

A more general problem Let there be N persons and let the number of
hat colors be t, 1 ≤ t ≤ N (previously, t = 2). Not every color may appear
on someone’s head. The value of t is told to the group beforehand. Devise a
protocol such that bN/tc persons guess their hat colors correctly.

For a solution see,
http://www.cs.utexas.edu/users/misra/Notes.dir/N-colorHats.pdf

Exercise 8

There are 100 men standing in a line, each with a hat on his head. Each hat is
either black or white. A man can see the hats of all those in front of him, but
not his own hat nor of those behind him. Each man is asked to guess the color
of his hat, in turn from the back of the line to the front. He shouts his guess
which every one can hear. Devise a strategy to maximize the number of correct
guesses.

A possible strategy is as follows. Number the men starting at 0 from the
back to the front. Let the guess of 2i be the color of (2i+1)’s hat, and (2i+1)’s
guess is what he heard from 2i. So, (2i+ 1)’s guess is always correct; thus, half
the guesses are correct. We do considerably better in the solution, below.
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Solution Assume every person is a man (for grammatical succinctness). Every
one computes exclusive-or of all the guesses he has heard (G) and all the hats
he can see (S), and guesses G⊕ S. For the man at the back of the line G = 0,
and for the front person S = 0. We claim that the guesses are correct for every
one, except possibly, the man at the back of the line.

Consider the diagram in Figure 2.1 that shows two men a and a′ in the line,
where a is just ahead of a′. Person a hears G and sees S; person a′ hears G′

and sees S′. Let the hat color of a be h. We show that the guess of a, G ⊕ S,
is h. Therefore, every one guesses correctly who has someone behind him.

GS

S’ G’
Front Back

a’

a

Figure 2.1: What a and a′ see and hear

G⊕ S
= {G = G′⊕ guess of a′. And, guess of a′ = G′ ⊕ S′}

G′ ⊕G′ ⊕ S′ ⊕ S
= {G′ ⊕G′ = 0. And, S′ = S ⊕ h}

S ⊕ h⊕ S
= {simplifying}

h

Exercise 9

(A Mathematical Curiosity) Let S be a finite set such that if x and y are in S,
so is x⊕ y. First, show that the size of S is a power of 2. Next, show that if the
size of S exceeds 2 then S is dependent.

Solution See
http://www.cs.utexas.edu/users/misra/Notes.dir/NoteEWD967.pdf

Exercise 10

Let w1, w2, . . . , wN be a set of unknown words. Let Wi be the exclusive-or of
all the words except wi, 1 ≤ i ≤ N . Given W1,W2, . . . ,WN , can you determine
the values of w1, w2, . . . , wN? You can only apply ⊕ on the words. You may
prefer to attack the problem without reading the following hint.

Hint:
1. Show that the problem can be solved when N is even.
2. Show that the problem cannot be solved when N is odd.

A more general problem:
Investigate how to solve a general system of equations that use ⊕ as the only
operator. For example, the equations may be:
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w1 ⊕ w2 ⊕ w4 = 1 0 0 1 1
w1 ⊕ w3 = 1 0 1 1 0
w2 ⊕ w3 = 0 0 0 0 1
w3 ⊕ w4 = 1 1 0 1 1

Solution Let S denote the exclusive-or of all the unknowns, i.e., S = w1 ⊕
w2 ⊕ . . .⊕ wN . Then Wi = S ⊕ wi.

1. For even N :

W1 ⊕W2 ⊕ . . .⊕WN

= {Wi = S ⊕ wi}
(S ⊕ w1)⊕ (S ⊕ w2)⊕ . . .⊕ (S ⊕ wN )

= {Regrouping terms}
(S ⊕ S ⊕ . . .⊕ S) ⊕ (w1 ⊕ w2 ⊕ . . .⊕ wN )

= {the first operand has an even number of S}
0⊕ (w1 ⊕ w2 ⊕ . . .⊕ wN )

= {the last operand is S}
S

Once S is determined, we can compute each wi because

S ⊕Wi

= {Wi = S ⊕ wi}
S ⊕ S ⊕ wi

= {S ⊕ S = 0}
wi

2. For odd N : We show that any term that we compute is exclusive-or of
some subset of w1, w2, . . . , wN , and the subset size is even. Therefore, we
will never compute a term that represents, say, w1 because then the subset
size is odd.

To motivate the proof, suppose we have N = 5, so W1 = w2⊕w3⊕w4⊕w5,
W2 = w1⊕w3⊕w4⊕w5, W3 = w1⊕w2⊕w4⊕w5, W4 = w1⊕w2⊕w3⊕w5,
W5 = w1 ⊕ w2 ⊕ w3 ⊕ w4. Initially, each of the terms, W1, W2 etc., is
represented by a subset of unknowns of size 4. Now, suppose we compute
a new term, W1⊕W4; this represents w2⊕w3⊕w4⊕w5⊕w1⊕w2⊕w3⊕w5,
which is same as w1 ⊕ w4, again a subset of even number of terms.

The proof is as follows. Initially the proposition holds because each Wi

is the exclusive-or of all but one of the unknowns, namely wi; so the
corresponding subset size is N − 1, which is even since N is odd.

Whenever we apply ⊕ to any two terms: (1) either their subsets have
no common unknowns, so the resulting subset contains all the unknowns
from both subsets, and its size is the sum of both subset sizes, which is
even, or (2) the subsets have some number of common unknowns, which
get cancelled out from both subsets, again yielding an even number of
unknowns for the resulting subset. 2
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2.2 Small Applications

2.2.1 Complementation

To complement some bit of a word is to flip it, from 1 to 0 or 0 to 1. To
selectively complement the bits of x where y has a 1, simply do

x := x⊕ y

From symmetry of the right side, the resulting value of x is also a complemen-
tation of y by x. If y is a word of all 1s, then x ⊕ y is the complement of (all
bits of) x; this is just an application of the law: x⊕ 1 = x.

Suppose we want to construct a word w from x, y and u as follows. Wherever
u has a 0 bit choose the corresponding bit of x, and wherever it has 1 choose
from y, see the example below.

u = 0 1 0 1
x = 1 1 0 0
y = 0 0 1 1
w = 1 0 0 1

Then w is, simply, ((x⊕ y) ∧ u)⊕ x, where ∧ is applied bit-wise.

Exercise 11

Prove this result. 2

2.2.2 Toggling

Consider a variable x that takes two possible values, m and n. We would like to
toggle its value from time to time: if it is m , it becomes n and vice versa. There
is a neat way to do it using exclusive-or. Define a variable t that is initially set
to m⊕ n and never changes.

toggle:: x := x⊕ t

To see why this works, check out the two cases: before the assignment, let
the value of x be m in one case and n in the other. For x = m, the toggle sets
x to m⊕ t, i.e., m⊕m⊕ n, which is n. The other case is symmetric.

Exercise 12

Variable x assumes the values of p, q and r in cyclic order, starting with p.
Write a code fragment to assign the next value to x, using ⊕ as the primary
operator in your code. You will have to define additional variables and assign
them values along with the assignment to x.



32 CHAPTER 2. ERROR DETECTION AND CORRECTION

Solution Define two other variables y and z whose values are related to x’s
by the following invariant:

x, y, z = t, t⊕ t′, t⊕ t′′

where t′ is the next value in cyclic order after t (so, p′ = q, q′ = r and r′ = p),
and t′′ is the value following t′. The invariant is established initially by letting

x, y, z = p, p⊕ q, p⊕ r

The cyclic assignment is implemented by

x := x⊕ y;
y := y ⊕ z;
z := y ⊕ z

Show that if x, y, z = t, t ⊕ t′, t ⊕ t′′ before these assignments, then x, y, z =
t′, t′ ⊕ t′′, t′ ⊕ t after the assignments (note: t′′′ = t). 2

2.2.3 Exchange

Here is a truly surprising application of ⊕. If you wish to exchange the val-
ues of two variables you usually need a temporary variable to hold one of the
values. You can exchange without using a temporary variable. The following
assignments exchange the values of x and y.

x := x⊕ y;
y := x⊕ y;
x := x⊕ y

To see that this program actually exchanges the values, suppose the values
of x and y are X and Y before the exchange. The following annotated program
shows the values they have at each stage of the computation; I have used back-
ward substitution to construct this annotation. The code is to the left and the
annotation to the right in a line.

y = Y, (x⊕ y)⊕ y = X, i.e., x = X, y = Y
x := x⊕ y;

x⊕ (x⊕ y) = Y, (x⊕ y) = X, i.e., y = Y, (x⊕ y) = X
y := x⊕ y;

x⊕ y = Y, y = X
x := x⊕ y

x = Y, y = X

2.2.4 Storage for Doubly-Linked Lists

Each node x in a doubly-linked list stores a data value, a left pointer, x .left , to
a node and a right pointer, x .right , to a node. One or both pointers may be
nil, a special value. A property of the doubly-linked list is that for any node x
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x .left 6= nil ⇒ x .left .right = x
x .right 6= nil ⇒ x .right .left = x

Typically, each node needs storage for the data value and for two pointers.
The storage for two pointers can be reduced to the storage needed for just one
pointer; store x .left ⊕ x .right at x. How do we retrieve the two pointer values
from this one value? During a computation, node x is reached from either the
left or the right side; therefore, either x .left or x .right is known. Applying ⊕ to
the known pointer value and x .left ⊕ x .right yields the other pointer value; see
the treatment of toggling in Section 2.2.2. Here, nil should be treated as 0.

We could have stored x .left + x .right and subtracted the known value from
this sum; exclusive-or is faster to apply and it avoids overflow problems.

Sometimes, nodes in a doubly-linked list are reached from some node outside
the list; imagine an array each of whose entries points to a node in a doubly-
linked list. The proposed pointer compression scheme is not useful then because
you can reach a node without knowing the value of any of its pointers.

Note: These kinds of pointer manipulations are often prevented by the
compiler of a high-level language through type checks. I don’t advocate such
manipulations except when you are programming in an assembly language, and
you need to squeeze out the last drop of performance. Even then see if there
are better alternatives; often a superior data structure or algorithm gives you
far better performance than clever tricks!1 2

2.2.5 The Game of Nim

The game of Nim is a beautiful illustration of the power of the exclusive-or
operator.

The game is played by two players who take turns in making moves. Initially,
there are several piles of chips and in a move a player may remove any positive
number of chips from a single pile. A player loses when he can’t make a move,
i.e., all piles are empty. We develop the conditions for a specific player to win.

Suppose there is a single pile. The first player wins by removing all chips
from that pile. Now suppose there are two piles, each with one chip, call this
initial state (1,1). The first player is forced to empty out one pile, and the
second player then removes the chip from the other pile, thus winning the game.
Finally, consider two piles, one with one chip and the other with two chips. If
the first player removes all chips from either pile, he loses. But if he removes
one chip from the bigger pile, he creates the state (1,1) which leads to a defeat
for the second player, from the previous argument.

The Underlying Mathematics Consider the number of chips in a pile as
a word (a bit string) and take the exclusive-or of all the words. Call the state

1“The competent programmer is fully aware of the strictly limited size of his own skull;
therefore he approaches the programming task in full humility, and among other things he
avoids clever tricks like the plague”. From “The Humble Programmer” by Edsger W. Dijkstra,
1972 Turing Award lecture [15].
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losing if the result is 0, winning otherwise. Thus, the state (1,1) results in 0, a
losing state, whereas (1,2) gives 0 1 ⊕ 1 0 = 1 1, which is a winning state. The
final state, where all piles are empty, is a losing state. The mnemonics, losing
and winning, signify the position of a player: a player who has to make a move
in a winning state has a winning strategy, i.e., if he makes the right moves he
wins no matter what his opponent does; a player in a losing state will definitely
lose provided his opponent makes the right moves. So, one of the players has a
winning strategy based on the initial state. Of course, either player is allowed
to play stupidly and squander a winning position.

The proof of this result is based on the following state diagram. We show
that any possible move in a losing state can only lead to a winning state, thus
a player who has to move in this state cannot do anything but hope that his
opponent makes a mistake! A player in a winning state has at least one move to
transform the state to losing; of course, he can make a wrong move and remain
in the winning state, thus handing his opponent the mistake he was hoping for.
Next, we prove the claims made in this diagram.

all moves

there is a move

winninglosing

Figure 2.2: State transitions in the game of Nim

A move reduces a pile of p chips to q chips, 0 ≤ q < p. Let the exclusive-or
of the remaining piles be s. Before the move, exclusive-or of all piles was s⊕ p.
After the move it is s⊕ q. First, we show that in a losing state, i.e., s⊕ p = 0,
all possible moves establish a winning state, i.e., s⊕ q 6= 0.

s⊕ q
= {p⊕ p = 0}

s⊕ q ⊕ p⊕ p
= {s⊕ p = 0}

p⊕ q
6= {p 6= q}

0

Now, we show that there is a move in the winning state to take it to losing
state. Let the exclusive-or of all piles be u, u 6= 0. Let x be any pile that has a
1 in the same position as the leading 1 bit of u (show that x exists). So,

u = 0′s 1 γ
x = α 1 β

The winning move is to replace x by x ⊕ u. We show that (1) x ⊕ u < x,
and (2) the exclusive-or of the resulting set of piles is 0, i.e., the state after the
move is a losing state.
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Proof of (1): x⊕u = α 0(β⊕γ). Comparing x and x⊕u, we have x⊕u < x.
Proof of (2): The exclusive-or of the piles before the move is u; so, the

exclusive-or of the piles except x is x ⊕ u. Hence, the exclusive-or of the piles
after the move is (x⊕ u)⊕ (x⊕ u), which is 0.

Exercise 13

In a winning state let y be a pile that has a 0 in the same position as the leading
bit of u. Show that removing any number of chips from y leaves a winning state.

Solution The forms of u and y are as follows.

u = 0s 1 γ
y = α 0 β

Suppose y is reduced to y′ and the exclusive-or of the resulting set is 0. Then
u⊕ y⊕ y′ = 0, or y′ = u⊕ y. Hence, y′ = α 1 (β ⊕ γ). So, y′ > y; that is , such
a move is impossible. 2

2.3 Secure Communication

The problem in secure communication is for a sender to send a message to a
receiver so that no eavesdropper can read the message during transmission. It
is impossible to ensure that no one else can see the transmission; therefore,
the transmitted message is usually encrypted so that the eavesdropper cannot
decipher the real message. In most cases, the sender and the receiver agree on
a transmission protocol; the sender encrypts the message in such a fashion that
only the receiver can decrypt it.

In this section, I describe a very simple encryption (and decryption) scheme
whose only virtue is simplicity. Usually, this form of transmission can be bro-
ken by a determined adversary. There are now very good methods for secure
transmission, see Rivest, Shamir and Adelman [44].

The sender first converts the message to be sent to a bit string, by replacing
each symbol of the alphabet by its ascii representation, for instance. This string
is usually called the plaintext. Next, the plaintext is broken up into fixed size
blocks, typically around 64 bits in length, which are then encrypted and sent.
For encryption, the sender and the receiver agree on a key k, which is a bit
string of the same length as the block. To send a string x, the sender transmits
y, where y = x ⊕ k. The receiver, on receiving y, computes y ⊕ k which is
(x⊕ k)⊕ k, i.e., x, the original message. An eavesdropper can only see y which
appears as pure gibberish. The transmission can only be decrypted by some
one in possession of key k.

There are many variations on this simple scheme. It is better to have a
long key, much longer than the block length, so that successive blocks are en-
crypted using different strings. When the bits from k run out, wrap around and
start reusing the bits of k from the beginning. Using a longer key reduces the
possibility of the code being broken.
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This communication scheme is simple to program; in fact, encryption and
decryption have the same program. Each operation is fast, requiring time pro-
portional to a block length for encryption (and decryption). Yet, the scheme
has significant drawbacks. Any party who has the key can decode the message.
More important, any one who can decode a single block can decode all blocks
(assuming that the key length is same as the block length), because given x and
y where y = x ⊕ k, k is simply x ⊕ y. Also, the sender and the receiver will
have to agree on a key before the transmission takes place, so the keys have to
be transmitted first in a secure manner, a problem known as key exchange. For
these reasons, this scheme is not used in high security applications.

Exercise 14

The following technique has been suggested for improving the security of trans-
mission. The sender encrypts the first block using the key k. He encrypts
subsequent blocks by using the previous encrypted block as the key. Is this
secure? How about using the plaintext of the previous block as the key? Sup-
pose a single block is deciphered by the eavesdropper; can he then decipher all
blocks, or all subsequent blocks? 2

2.4 Oblivious Transfer

This is an interesting variation of the secure communication problem. Alice has
two pieces of data m0 and m1. Bob requests one of these data from Alice. The
restriction is that Alice should not know which data has been requested (so,
she has to send both data in some encoded form) and Bob should be able to
extract the data he has requested, but know nothing about the data he has not
requested.

We solve the problem using a trusted third party, Charles, who merely sup-
plies additional data to both Alice and Bob. Charles creates two pieces of data,
r0 and r1, and sends both to Alice; she will use these data as masks for m0 and
m1. Also, Charles creates a single bit d, and sends d and rd to Bob.

Now, suppose Bob needs mc, c ∈ {0, 1}. Then he sends e, where e = c⊕ d.
Alice responds by sending a pair (f0, f1), where fi = mi ⊕ re⊕i. That is,
f0 = m0⊕ re and f1 = m1⊕ re. Bob computes fc⊕ rd; we show that this is mc.

fc ⊕ rd
= mc ⊕ re⊕c ⊕ rd
= mc ⊕ rc⊕d⊕c ⊕ rd
= mc ⊕ rd ⊕ rd
= mc

We claim that Alice does not know c, because she receives e which tells her
nothing about c. And, Bob does not know mc from the data he receives from
Alice. All he can do is apply exclusive-or with rd. If Bob computes fc ⊕ rd he
gets
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fc ⊕ rd
= mc ⊕ re⊕c ⊕ rd
= mc ⊕ rc⊕d⊕c ⊕ rd
= mc ⊕ r1⊕d ⊕ rd
= mc ⊕ rd ⊕ rd
= mc ⊕ r0 ⊕ r1

Since r0 and r1 are arbitrary data, this has no further simplification.

In Section 3.4, Page 67, there is a solution to this problem avoiding the
trusted third party, using message encryption.

2.5 RAID Architecture

The following scenario is common in corporate data centers. A large database,
consisting of millions of records, is stored on a number of disks. Since disks may
fail, data is stored on backup disks also. One common strategy is to partition
the records of the database and store each partition on a disk, and also on a
backup disk. Then, failure of one disk causes no difficulty. Even when multiple
disks fail, the data can be recovered provided both disks for a partition do not
fail.

There is a different strategy, known as RAID, that has gained popularity
because it needs only one additional disk beyond the primary data disks, and
it can tolerate failure of any one disk.

Imagine that the database is a matrix of bits, where each row represents a
record, and each column a specific bit in all records. Store each column on a
separate disk and store the exclusive-or of all columns on a backup disk. Let ci
denote the ith column, 1 ≤ i ≤ N , in the database. Then the backup column,
c0 is given by c0 = c1 ⊕ . . . ⊕ cN . Therefore, the set of columns, c0 . . . cN , is
a dependent set, see Section 2.1.2. Then, any column ci, 0 ≤ i ≤ N , is the
exclusive-or of the remaining columns. Therefore, the contents of any failed
disk can be reconstructed from the remaining disks.

2.6 Error Detection

Message transmission is vulnerable to noise, which may cause portions of a
message to be altered. For example, message 1 1 0 0 1 may become 1 0 1 0 1.
In this section, we study methods by which a receiver can determine that the
message has been altered, and thus request retransmission. In the next section,
we discuss methods by which a receiver can correct (some of) the errors, thus
avoiding retransmission.

A long message is typically broken up into fixed size blocks. If the message
can not be broken up exactly, say a 460 bit message being put into 64 bit
blocks, extra bits, which can be distinguished from the real ones, are added at
the end of the message so that the string fits exactly into some number of blocks.
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Henceforth, each block is transmitted independently, and we concentrate on the
transmission of a single block.

2.6.1 Parity Check Code

Consider the following input string where spaces separate the blocks.

011 100 010 111

The sender appends a bit at the end of each block so that each 4-bit block
has an even number of 1s. This additional bit is called a parity bit, and each
block is said to have even parity. After addition of parity bits, the input string
shown above becomes,

0110 1001 0101 1111

This string is transmitted. Suppose two bits are flipped during transmission,
as shown below; the flipped bits are underlined.

0110 1000 0101 0111

Note that the flipped bit could be a parity bit or one of the original ones.
Now each erroneous block has odd parity, and the receiver can identify all such
blocks. It then asks for retransmissions of those blocks.

If two bits (or any even number) of a block get flipped, the receiver cannot
detect the error. This is a serious problem, so simple parity check is rarely
used. In practice, the blocks are much longer (than 3, shown here) and many
additional bits are used for error detection.

Is parity coding any good? How much is the error probability reduced if
you add a single parity bit? First, we compute the probability of having one
or more error in a b bit block, and then compute the probability of missing
errors even after adding a single parity bit. The analysis here uses elementary
probability theory.

Let p be the probability of error in the transmission of a single bit2. The
probability of correct transmission of a single bit is q, where q = 1 − p. The
probability of correct transmission of a b bit block is qb. Therefore, without
parity bits the probability that there is an undetected error in the block is
1− qb. For p = 10−4 and b = 12, this probability is around 1.2× 10−3.

With the addition of a parity bit, we have to send b+1 bits. The probability
of n errors in a block of b+ 1 bits is

(
b+ 1
n

)
pn × q(b+1−n)

2I am assuming that all errors are independent, a thoroughly false assumption when burst
errors can arise.
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1 0 1 1 1
0 1 1 1 1
1 1 1 0 1
0 0 1 1 0
0 0 0 1 1

Table 2.4: Adding parity bits to rows and columns

This can be understood as follows. First,

(
b+ 1
n

)
is the number of different

ways of choosing n bits out of b+ 1 bits (this is a binomial coefficient), pn is the
probability of all these bits becoming erroneous, and q(b+1−n) is the probability
of the remaining bits being error-free.

We can not detect any even number of errors with a single parity bit. So,
the probability of undetected error is the sum of this term over all even values
of n, 0 < n ≤ b + 1. We can simplify calculations by noting that q is typically

very small; so we may ignore all except the first term, i.e., take

(
b+ 1

2

)
pn×

q(b+1−2) as the probability of undetected error. Setting b, p, q = 12, 10−4, 1 −
10−4, this probability is around 7.8× 10−7, several orders of magnitude smaller
than 1.2× 10−3.

2.6.2 Horizontal and Vertical Parity Check

A simple generalization of the simple parity check scheme is described next.
We regard the data as a matrix of bits, not just a linear string. For instance,
we may break up a 16 bit block into 4 subblocks, each of length 4. We regard
each subblock as the row of a matrix, so, column i is the sequence of ith bits
from each subblock. Then we add parity bits to each row and column, and a
single bit for the entire matrix. In Table 2.4, 4 subblocks of length 4 each are
transformed into 5 subblocks of length 5 each.

We can now detect odd number of errors in rows or columns . If two adjacent
bits in a row get altered, the row parity remains the same but the column parities
for the affected columns are altered.

The most common use of this scheme is in transmitting a sequence of ascii
characters. Each character is a 8-bit string, which we regard as a row. And 8
characters make up a block.

Exercise 15

Show an error pattern in Table 2.4 that will not be detected by this method. 2

Exercise 16

Develop a RAID architecture based on two-dimensional parity bits. 2
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2.7 Error Correction

In many practical situations, retransmission is expensive or impossible. For
example, when the sender is a spacecraft from a distant planet, the time of
transmission can be measured in days; so, retransmission adds significant delay,
and the spacecraft will have to store a huge amount of data awaiting any re-
transmission request. Even more impractical is to request retransmission of the
music on a CD whose artist is dead.

2.7.1 Hamming Distance

The Hamming distance —henceforth, simply called distance— between two
words is the number of positions where they differ. Thus the distance between
1 0 0 1 and 1 1 0 0 is 2. This is the number of 1s in 1 0 0 1 ⊕ 1 1 0 0, which is
0 1 0 1.

Distance is a measure of how similar two words are; smaller the distance
greater the similarity. Observe the following properties of distance. Below, x, y
and z are words and d(x, y) is the distance between x and y.

• (d(x, y) = 0) ≡ (x = y)

• d(x, y) ≥ 0

• d(x, y) = d(y, x)

• (Triangle Inequality) d(x, y) + d(y, z) ≥ d(x, z)

The first two properties are easy to see, by inspection. For the last property,
observe that it is sufficient to prove this result when x, y and z are single bits,
because the distance between bit strings are computed bit by bit. We can prove
d(x, y) + d(y, z) ≥ d(x, z) as follows3.

d(x, y) + d(y, z)
= {x, y and z are single bits. So, d(x, y) = x⊕ y}

(x⊕ y) + (y ⊕ z)
≥ {For bits a and b, a+ b ≥ a⊕ b. Let a = x⊕ y and b = y ⊕ z}

(x⊕ y)⊕ (y ⊕ z)
= {simplify}

x⊕ y ⊕ y ⊕ z
= {simplify}

x⊕ z
= {x and z are single bits. So, d(x, z) = x⊕ z}

d(x, z)

Hamming distance is essential to the study of error detection (Section 2.6)
and error correction (Section 2.7).

3This proof is due to Srinivas Nedunari, who was auditing this class during Spring 2008.
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Original With Parity Additional Bits
00 000 00000
01 011 01101
10 101 10110
11 110 11011

Table 2.5: Coding for error correction; parity bits are in bold

Exercise 17

Let x and y be non-negative integers, count(x) the number of 1s in the binary
representation of x, and even(x) is true iff x is even. We say that x has even
parity if count(x) is even, otherwise it has odd parity. Show that two words
of identical parity (both even or both odd) have even distance, and words of
different parity have odd distance.

Solution In the following proof we start with a property of count.

count(x) + count(y) has the same parity (even or odd) as count(x⊕ y)
⇒ {writing even(n) to denote that number n is even}

even(count(x) + count(y)) ≡ even(count(x⊕ y))
≡ {for any two integers p and q, even(p+ q) = (even(p) ≡ even(q));

let p be count(x) and q be count(y)}
(even(count(x)) ≡ even(count(y))) ≡ even(count(x⊕ y))

≡ {count(x⊕ y) = d(x, y)}
(even(count(x)) ≡ even(count(y))) ≡ even(d(x, y))

The term even(count(x)) stands for “x has even parity”. Therefore, the first
term in the last line of the above proof, (even(count(x)) ≡ even(count(y))),
denotes that x and y have identical parity. Hence, the conclusion in the above
proof says that the distance between x and y is even iff x and y have identical
parity. 2

2.7.2 A Naive Error-Correcting Code

When retransmission is not feasible, the sender encodes the messages in such a
way that the receiver can detect and correct some of the errors. As an example,
suppose that the sender plans to send a 2-bit message. Adding a parity bit
increases the block length to 3. Repeating the original 2-bit message after that
gives a 5-bit block, as shown in Table 2.5.

Each of the possible blocks —in this case, 5-bit blocks— is called a codeword.
Codewords are the only possible messages (blocks) that will be sent. So, if the
sender plans to send 11, he will send 11011. In the example of Table 2.5, there
are only four 5-bit codewords, instead of 32 possible ones. This means that it
will take longer to transmit a message, because many redundant bits will be
transmitted. The redundancy allows us to detect and correct errors.
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Codeword Received Word Hamming Distance
00000 11010 3
01101 11010 4
10110 11010 2
11011 11010 1

Table 2.6: Computing Hamming distance to codewords

Codeword Received Word Hamming Distance
00000 10010 2
01101 10010 5
10110 10010 1
11011 10010 2

Table 2.7: Hamming distance when there are two errors

For the given example, we can detect two errors and correct one error in
transmission. Suppose 11011 is changed to 11010. The receiver observes that
this is not a codeword, so he has detected an error. He corrects the error
by looking for the nearest codeword, the one that has the smallest Hamming
distance from the received word. The computation is shown in Table 2.6. As
shown there, the receiver concludes that the original transmission is 11011.

Now suppose two bits of the original transmission are altered, so that 11011
is changed to 10010. The computation is shown in Table 2.7. The receiver will
detect that there is an error, but based on distances, he will assume that 10110
was sent. We can show that this particular encoding can correct one error only.
The number of errors that can be detected/corrected depends on the Hamming
distance among the codewords, as given by the following theorem.

Theorem 1 Let h be the Hamming distance between the nearest two code-
words. It is possible to detect any number of errors less than h and correct any
number of errors less than h/2.

Proof: The statement of the theorem is as follows. Suppose codeword x is
transmitted and string y received.

1. if d(x, y) < h: the receiver can detect if errors have been introduced during
transmission.

2. if d(x, y) < h/2: the receiver can correct the errors, if any. It picks the
closest codeword to y, and that is x.

Proof of (1): The distance between any two distinct codewords is at least
h. The distance between x and y is less than h. So, either x = y or y is
not a codeword. Therefore, the receiver can detect errors as follows: if y is
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Block length h = 3 h = 5 h = 7
5 4 2 -
7 16 2 2
10 72-79 12 2
16 2560-3276 256-340 36-37

Table 2.8: Number of codewords for given block lengths and h

a codeword, there is no error in transmission, and if y is not a codeword, the
transmission is erroneous.

Proof of (2): We show that the closest codeword to y is x, i.e., for any other
codeword z, d(x, y) < d(y, z). We are given

d(x, y) < h/2
⇒ {arithmetic}

2× d(x, y) < h
⇒ {x and z are codewords; so, h ≤ d(x, z)}

2× d(x, y) < d(x, z)
⇒ {triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)}

2× d(x, y) < d(x, y) + d(y, z)
⇒ {arithmetic}

d(x, y) < d(y, z)

Exercise 18

Compute the nearest distance among the codewords in Table 2.5. 2

It is clear from Theorem 1 that we should choose codewords to maximize h.
But with a fixed block length, the number of codewords decreases drastically
with increasing h. Table 2.8 shows the number of codewords for certain values
of the block length and h. For example, if the block length is 7 and we insist
that the distance between codewords be at least 3, i.e., h = 3, then we can find
16 codewords satisfying this property. So, we can encode 4 bit messages in 7
bit codewords maintaining a distance of 3, which would allow us to detect 2
errors and correct 1 error. An entry like 72-79 (for block length 10 and h = 3)
denotes that the exact value is not known, but it lies within the given interval.
Note that the decrease along a row, as we increase the minimum distance while
keeping the block length same, is quite dramatic.

Exercise 19

Prove that the parity check code of Section 2.6.1 can be used to detect at most
one error, but cannot be used to correct any error. 2

2.7.3 Hamming Code

The coding scheme described in this section was developed by Hamming, a
pioneer in Coding theory who introduced the notion of Hamming distance. It
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0 0 1 1 1 1 0 1 0 1 1 0 1
d d d d d c d d d c d c c
13 12 11 10 9 8 7 6 5 4 3 2 1

* * * * * * * *

Table 2.9: Hamming code transmission

requires only logarithmic number of extra bits, called check bits, and it corrects
at most one error in a transmission. The novel idea is to transmit in the check
bits the positions where the data bits are 1. Since it is impractical to actually
transmit all the positions, we will instead transmit an encoding of them, using
exclusive-or. Also, since the check bits can be corrupted as easily as the data
bits, we treat check bits and data bits symmetrically; so, we also send the
positions where the check bits are 1s. More precisely, we regard each position
number in the transmitted string as a word, and encode the check bits in such
a way that the following rule is obeyed:

• HC Rule: the set of position numbers where the data bits and check
bits are 1 form a dependent set, i.e., the exclusive-or of these positions,
regarded as words, is 0 (see Section 2.1.2).

Let us look at an example where the HC rule has been applied.

Example Suppose we wish to send a message of 9 bits. We add 4 check bits
and transmit a 13-bit string, as shown in Table 2.9. The data bits are labeled
d and the check bits c. The positions where 1s appear are labeled by *. They
form a dependent set; check that

1 0 1 1 (=11)
⊕

1 0 1 0 (=10)
⊕

1 0 0 1 (=9)
⊕

1 0 0 0 (=8)
⊕

0 1 1 0 (=6)
⊕

0 1 0 0 (=4)
⊕

0 0 1 1 (=3)
⊕

0 0 0 1 (=1)
= 0 0 0 0 2
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The question for the sender is where to store the check bits (we have stored
them in positions 8, 4, 2 and 1 in the example above) and how to assign values
to them so that the set of positions is dependent. The question for the receiver
is how to decode the received string and correct a possible error.

Receiver Let P be the set of positions where the transmitted string has 1s
and P ′ where the received string has 1s. From the assumption that there is at
most one error, we have either P = P ′, P ′ = P ∪ {t}, or P = P ′ ∪ {t}, for some
position t; the latter two cases arise when the bit at position t is flipped from 0
to 1, and 1 to 0, respectively. From rule HC, P̂ = 0, where P̂ is the exclusive-or
of the words in P .

The receiver computes P̂ ′. If P = P ′, he gets P̂ ′ = P̂ = 0. If P ′ = P ∪ {t},
he gets P̂ ′ = P̂ ⊕ {t} = 0 ⊕ {t} = t. If P = P ′ ∪ {t}, he gets P̂ = P̂ ′ ⊕ {t}, or
P̂ ′ = P̂ ⊕ {t} = 0 ⊕ {t} = t. Thus, in both cases where the bit at t has been
flipped, P̂ ′ = t. If t 6= 0, the receiver can distinguish error-free transmission
from erroneous transmission and correct the error in the latter case.

Sender We have seen from the previous paragraph that there should not be
a position numbered 0, because then error-free transmission cannot be distin-
guished from one where the bit at position 0 has been flipped. Therefore, the
positions in the transmitted string are numbered starting at 1. Each position is
an n-bit word. And, we will employ n check bits.

Check bits are put at every position that is a power of 2 and the remaining
bits are data bits. In the example given earlier, check bits are put at positions
1, 2, 4 and 8, and the remaining nine bits are data bits. So the position of
any check bit as a word has a single 1 in it. Further, no two check bit position
numbers have 1s in the same place.

Let C be the set of positions where the check bits are 1s and D the positions
where the data bits are 1s. We know D, but we don’t know C yet, because
check bits have not been assigned values. We show next that C is uniquely
determined from rule HC.

From rule HC, Ĉ ⊕ D̂ = 0. Therefore, Ĉ = D̂. Since we know D, we can
compute D̂. For the example considered earlier, D̂ = 1101. Therefore, we have
to set the check bits so that Ĉ = 1101. This is done by simply assigning the
bit string Ĉ to the check bits in order from higher to lower positions; for the
example, assign 1 to the check bit at positions 8, 4 and 1, and 0 to the check
bit at position 2. The reason this rule works is that assigning a value v to the
check bit at position 2i, i ≥ 0, in the transmitted string has the effect of setting
the ith bit of Ĉ to v.

How many check bits do we need for transmitting a given number of data
bits? Let d be the number of data bits and c the number of check bits. With
c check bits, we can encode 2c positions, i.e., 0 through 2c − 1. Since we have
decided not to have a position numbered 0 (see the discussion at the end of
the “Receiver” and the beginning of the “Sender” paragraphs), the number of
positions is at most 2c − 1. We have, d+ c ≤ 2c − 1. Therefore, the number of
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data bits is no more than 2c − 1− c.

2.7.4 Reed-Muller Code

You have probably emailed photographs or sent faxes. Such transmissions are
always digital; text, image, audio, video are all converted first to bit strings and
then transmitted. The receiver converts the received string to its original form.
For text strings, conversion to and from bit strings is straightforward. For a
still image, like a photograph or scanned document, the image is regarded as
a matrix: a photograph, for instance may be broken up into 200 rows, each a
strip, and each row may again be broken up into columns. It is not unusual to
have over a million elements in a matrix for a photograph the size of a page.
Each matrix element is called a pixel (for picture element). Each pixel is then
converted to a bit string and the entire matrix is transmitted in either row-major
or column-major order.

The conversion of a pixel into a bit string is not entirely straightforward;
in fact, that is the subject matter of this section. In the most basic scheme,
each pixel in a black and white photograph is regarded as either all black or all
white, and coded by a single bit. This representation is acceptable if there are a
large number of pixels, i.e., the resolution is fine, so that the eye cannot detect
minute variations in shade within a pixel. If the resolution is low, say, an image
of the size of a page is broken up into a 80 × 110 matrix, each pixel occupies
around .01 square inch; the image will appear grainy after being converted at
the receiver.

The Mariner 4 spacecraft, in 1965, sent 22 photographs of Mars, each one
represented by a 200 × 200 matrix of pixels. Each pixel encoded 64 possible
levels of brightness, and was transmitted as a 6-bit string. A single picture,
consisting of 200 × 200 × 6 bits, was transmitted at the rate of slightly over 8
bits per second, thus requiring around 8 hours for transmission. The subsequent
Mariners, 6, 7 and 9, did a much better job. Each picture was broken down
to 700 × 832 pixels (i.e., 582,400 pixels per picture vs. 40,000 of Mariner 4)
and each pixel of 6 bits was encoded by 32 bits, i.e., 26 redundant bits were
employed for error detection and correction. The transmission rate was 16,200
bits per second. This takes around 18 minutes of transmission time per picture
of much higher quality, compared to the earlier 8 hours.

Our interest in this section is in transmitting a single pixel so that an error in
transmission can be detected and/or corrected. The emphasis is on correction,
because retransmission is not a desirable option in this application. We study
the simple Reed-Muller code employed by the later Mariners.

To motivate the discussion let us consider how to encode a pixel that has
8 possible values. We need only 3 bits, but we will encode using 8 bits, so as
to permit error correction. As pointed out in Section 2.7.2, error correcting
capability depends on the Hamming distance between the codewords. The 8-
bit code we employ has distance 4 between every pair of codewords; so, we
can detect 3 errors and correct 1. Error correction capability is low with 8-
bit codewords. The Mariners employed 32-bit codewords, where the inter-word
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distance is 16; so, 15 errors could be detected and 7 corrected.
The codewords for the 8-bit Reed-Muller code are shown as rows of the

matrix in Table 2.12. The rest of this section is devoted to the construction of
2n codewords, n ≥ 1, where the Hamming distance between any two codewords
is exactly 2n−1.

Hadamard Matrix

We will define a family of 0, 1 matrices H, where Hn is a 2n×2n matrix, n ≥ 0.
In the Reed-Muller code, we take each row of the matrix to be a codeword.

The family H is defined recursively.

H0 =
[

1
]

Hn+1 =

 Hn Hn

Hn Hn


where Hn is the bit-wise complementation of Hn. Matrices H1, H2 , and H3

are shown in Tables 2.10, 2.11, and 2.12.

H1 =

[
1 1
1 0

]

Table 2.10: Hadamard matrix H1

H2 =


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1


Table 2.11: Hadamard matrix H2

Hadamard matrices have many pleasing properties. The two that are of
interest to us are: (1) Hn is symmetric for all n, and (2) the Hamming distance
between any two distinct rows of Hn, n ≥ 1, is 2n−1. Since the matrices have
been defined recursively, it is no surprise that the proofs employ induction. I
will leave the proof of (1) to you. Let us prove (2).

We apply matrix algebra to prove this result. To that end, we replace a 0
by −1 and leave a 1 as 1. Dot product of two words x and y is given by

x · y = Σi(xi × yi)

Note that if xi = yi then xi×yi = 1 and otherwise, xi×yi = −1. Therefore,
x · y = 0 iff x and y differ at exactly half the positions (see exercise below).
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H3 =



1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0


Table 2.12: Hadamard matrix H3: 8-bit simple Reed-Muller code

To show that all pairs of distinct rows of Hn differ in exactly half the po-
sitions, we take the matrix product Hn × HT

n and show that the off-diagonal
elements, those corresponding to pairs of distinct rows of Hn, are all zero. That
is, Hn×HT

n is a diagonal matrix. Since Hn is symmetric, Hn = HT
n . We show:

Theorem: Hn ×Hn is a diagonal matrix, for all n, n ≥ 0.

Proof: Proof is by induction on n.

• n = 0 : H0 ×H0 =
[

1
]
×
[

1
]

=
[

1
]

• n+ 1, where n ≥ 0 :

Hn+1 ×Hn+1

= {definition of Hn+1} Hn Hn

Hn Hn

×
 Hn Hn

Hn Hn


= {matrix multiplication} Hn ×Hn +Hn ×Hn Hn ×Hn +Hn ×Hn

Hn ×Hn +Hn ×Hn Hn ×Hn +Hn ×Hn


= {Hn = −Hn} 2(Hn ×Hn) 0

0 2(Hn ×Hn)


From induction hypothesis, since Hn × Hn is diagonal, so is 2(Hn × Hn).

Therefore, the matrix above is diagonal.
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Exercise 20

Compute the Hamming distance of x and y in terms of x · y and the lengths of
the words. 2

Solution Let

m = the length of x (and also of y)
e = number of positions i where xi = yi
d = number of positions i where xi 6= yi

Thus, the Hamming distance is d. We have

e+ d = m, and
e− d = x · y, therefore
e+ d− (e− d) = m− x · y, or
d = (m− x · y)/2



50 CHAPTER 2. ERROR DETECTION AND CORRECTION



Chapter 3

Cryptography

3.1 Introduction

A central problem in secure communication is the following: how can two parties,
a sender and a receiver, communicate so that no eavesdropper can deduce the
meaning of the communication?

Suppose Alice has a message to send to Bob. Henceforth, we take a mes-
sage to be a string over a specified alphabet; the string to be transmitted is
usually called plaintext. The plaintext need not be a meaningful sentence. For
instance, it could be a password or a credit card number. Any message could
be intercepted by an eavesdropper, named Eve; so, it is not advisable to send
the message in its plaintext form. Alice will encrypt the plaintext to create a
ciphertext. Alice and Bob agree on a protocol, so that only Bob knows how to
decrypt, i.e., convert the ciphertext to plaintext.

The goal of encryption and decryption is to make it hard (or impossible)
for Eve to decrypt the ciphertext while making it easy for Alice to encrypt and
Bob to decrypt. This means that Bob has some additional information, called
a key, which Eve does not possess. When Alice and Bob share knowledge of the
key, they are using a symmetric key system. Modern public key cryptography
is asymmetric; encrypting uses a public key that is known to every one while
decrypting requires a private key known only to the receiver.

The communication medium is really not important. Alice could write her
message on a piece of paper (or on a clay tablet) and mail it physically; or she
could send the message by email. Alice and Bob could engage in a telephone
conversation in which only Alice speaks. Any communication medium is vul-
nerable, so security is achieved by choosing the encryption (and decryption)
algorithms carefully.

51
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3.2 Early Encryption Schemes

Secure communication has been important for at least 2,500 years, for military
and romantic matters. In the very early days, the messenger simply hid the
message, sometimes using invisible ink. As late as in the second world war, the
Germans would often shrink a page of plaintext to a very small dot, less than
1mm in diameter, using photographic techniques, and then hide the dot within
a full stop in a regular letter.

The aim of cryptography is not to hide the message but its meaning. Some
of the earliest efforts simply scrambled the letters of the plaintext; this is called
a transposition cypher. Thus, attack at dawn may be scrambled to kntadatacwat
with the spaces removed. Since there are n! permutations of n symbols it may
seem impossible for even a computer to do a brute-force search to decode such
messages. Bob, the intended recipient, can decrypt only if he is given the
scrambling sequence. Transposition cyphers are, actually, quite easy to break;
so they are rarely used except by schoolchildren.

3.2.1 Substitution Cyphers

A substitution cypher replaces a symbol (or a group of symbols) by another
symbol (or a group of symbols). In the simplest case, each symbol is paired
with another, and each occurrence of a symbol is replaced by its partner. Given
the substitution code in Table 3.1, attack at dawn becomes daadtw da kdcn.

a c d k n t w
d t k w n a c

Table 3.1: Substitution code for a subset of the Roman alphabet

Julius Caesar used a very simple form of substitution in communicating with
his generals. He replaced the ith symbol of the alphabet by symbol (i+3) mod n,
where n, the size of the alphabet, is 26. In general, of course, we can use
any permutation of the alphabet, not merely a shift, as Caesar did. Caesar
shift cypher is very easy to break; simply try all possible shifts. A general
permutation is harder to crack, but not much harder as we will see. In all cases,
the receiver must know the permutation in order to decrypt the message.

Cryptanalysis is the name given to unscrambling an intercepted message.
For a substitution cypher, the eavesdropper can attempt a cryptanalysis based
on the frequencies of letters in long plaintexts. Table 3.2 gives the frequencies
(probability of occurrence) of letters in a piece of English text; clearly, different
texts exhibit different frequencies, but the numbers given in the table are typical.

As can be seen in Table 3.2, e is the most common letter, followed by t
and a. The cryptanalysis strategy is to replace the most common letter in the
ciphertext by e, to see if it makes any sense. If not, then we try the remaining
letters in sequence. For the plaintext attack at dawn, which has been converted
to daadtw da kdcn, we first identify the most common letter in the ciphertext,
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Letter Frequency Letter Frequency Letter Frequency Letter Frequency
a 0.08167 b 0.01492 c 0.02782 d 0.04253
e 0.12702 f 0.02228 g 0.02015 h 0.06094
i 0.06966 j 0.00153 k 0.00772 l 0.04025

m 0.02406 n 0.06749 o 0.07507 p 0.01929
q 0.00095 r 0.05987 s 0.06327 t 0.09056
u 0.02758 v 0.00978 w 0.02360 x 0.00150
y 0.01974 z 0.00074

Table 3.2: Frequencies of letters in English text

d. Replacing each occurrence of d by e, the most common symbol, gives us the
following string (I have used uppercase letters to show the guesses):

EaaEtw Ea kEcn

Since the second word is a two letter word beginning with E, which is uncommon
except for proper names, we decide to abandon the guess that d is E. We try
replacing d by t, the next most common symbol, to get

TaaTtw Ta kTcn

Now, it is natural to assume that a is really o, from the word Ta. This gives:

TOOTtw TO kTcn

It is unlikely that we can make any progress with the first word. So, we start
fresh, with d set to the next most likely letter, a.

A variation of this scheme is to consider the frequencies of pairs of letters in
the ciphertext, in the hope of eliminating certain possibilities. In Table 3.3, we
take the two most common letters in the ciphertext, d and a, and compute the
number of times they are adjacent to certain other letters; check that d and a
are adjacent to each other 3 times and d and k are adjacent just once. We see
that the adjacency of d and a is quite common. We may reasonably guess that
one of d and a is a vowel. Because of the presence of the word da, both are not
vowels.

a c d k n t w
d 3 1 1 1
a 1 3

Table 3.3: Frequencies of pairs of letters

Cryptanalysis based on frequencies takes a lot of guesswork and backtrack-
ing. Computers are well suited to this task. It is not too difficult to write a
program that does the cryptanalysis on such cyphers. One difficulty is that if
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the ciphertext is short, the frequencies may not correspond to the letter fre-
quencies we expect. Consider a short text like quick quiz, which you may send
to a friend regarding the ease of a pop quiz in this class. It will be difficult to
decipher this one through frequency analysis, though the pair qu, which occurs
twice, may help.

Exercise 21

Would it improve security to encrypt the plaintext two times using substitution
cypher instead of just once? 2

3.2.2 Electronic Transmission

For electronic transmissions, the encryption and decryption can be considerably
more elaborate than the transposition or substitution codes. The first step in
any such transmission is to convert the message to be sent to a bit string, by
replacing each symbol of the alphabet by its ascii representation, for instance.
This string is now the plaintext. Next, the plaintext is broken up into fixed size
blocks, typically around 64 bits in length, which are then encrypted and sent.

A simple encryption scheme is as follows. Alice and Bob agree on a key k,
which is a bit string of the same length as the block. Encrypt x by y, where
y = x⊕ k, i.e., y is the exclusive or of x and k. Bob, on receiving y, computes
y ⊕ k which is (x ⊕ k) ⊕ k, i.e., x, the original message. Eve can only see y,
which appears as pure gibberish. The transmission can only be decrypted by
someone in possession of key k.

There are many variations of this simple scheme. It is better to have a
long key, much longer than the block length, so that successive blocks are en-
crypted using different strings. When the bits from k run out, wrap around and
start reusing the bits of k from the beginning. Using a longer key reduces the
possibility of the code being broken.

This communication scheme is simple to program; in fact, encryption and
decryption have the same program. Each operation is fast, requiring time pro-
portional to a block length for encryption (and decryption). Yet, the scheme
has significant drawbacks. If Eve can decode a single block, she can decode all
blocks (assuming that the key length is the same as the block length), because
given x and y where y = x ⊕ k, k is simply x ⊕ y. Also, Alice and Bob will
have to agree on a key before the transmission takes place, so the keys have to
be transmitted first in a secure manner, a problem known as key exchange. For
these and other reasons, this form of encryption is rarely used in high security
applications.

A major problem in devising a secure communication protocol is that Alice
may send several messages to Bob, and as the number of transmissions increase,
so is the probability of breaking the code. Therefore, it is advisable to use a
different key for each transmission. This idea can be implemented as follows.
Alice and Bob possess a common sequence of distinct keys, called a pad. Each
key in the pad is used for exactly one message transmission. Both parties discard
a key after it has been used; so, the pad is a one-time pad.



3.3. PUBLIC KEY CRYPTOGRAPHY 55

It can be shown that one-time pads are unbreakable. However, the major
difficulty is in sharing the pad. How can Alice and Bob agree on a pad to begin
with? In ancient times it was conceivable that they could agree on a common
book —say, the King James version of the Bible— and use successive strings
from the book as keys. However, the need to develop different pads for each
pair of communicants, and distribute the pads efficiently (i.e., electronically)
and securely, makes this scheme impractical.

Many military victories, defeats and political intrigues over the entire course
of human history are directly attributable to security/breakability of codes.
Lively descriptions appear in a delightful book by Singh [47].

3.3 Public Key Cryptography

The coding schemes given in the last section were symmetric, in the sense that
given the encryption mechanism it is easy to see how to decrypt a message.
Thus Alice and Bob, the sender and the receiver, both share the same secret,
the key. A consequence of this observation is that the key has to be transmitted
before any data can be transmitted.

A novel idea is for Bob to publicly announce a function f that is to be
used to encrypt any plaintext to be sent to him, i.e., Alice should encrypt x
to f(x) and then send the latter to Bob. Function f is the public key of Bob.
Upon receiving the message, Bob applies the inverse function f−1, a private key,
thus obtaining f−1(f(x)), i.e., x. Eve knows f ; so, theoretically, she can also
compute x. However, f is chosen so that it is computationally intractable to
deduce f−1 given only f , that is, the computation will take an extraordinarily
long time before Eve can deduce f−1. Bob, who designed f , also designed f−1

simultaneously. So, he can decrypt the message.
Let us examine some of the implications of using public key cryptography.

First, there is no need to exchange any key, because there are no shared secrets.
There is a publicly open database in which every one posts his own public key.
Any one may join or drop out of this community at any time. Alice sends a
message to Bob by first reading his key, f , from the database, applying f to the
plaintext x and then sending f(x) to him. Eve can see who sent the message
(Alice), who will receive the message (Bob), the public key of the recipient (f)
and the ciphertext (f(x)). Yet, she is powerless, because it will take her eons
to decode this message. Note that Alice also cannot decrypt any message sent
to Bob by another party.

Function f is called one-way because it is easy to apply —f(x) can be
computed easily from x— though hard to invert, that is, to compute x from
f(x) without using additional information. Let me repeat that it is theoretically
possible to compute x given f and f(x); simply try all possible messages y of
appropriate length as candidates for x, compute f(y), and then compare it
against f(x). This is not practical for any but the very shortest x because of
the number of possible candidates. If the function f is well-chosen, Eve has no
other way of decrypting the message. If the message is 64 bits long and she
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can check 1010 messages a second, it will still take around 58 years to check all
possible messages. She could, of course, be lucky, and get a break early in the
search; but, the probability of being lucky is quite low.

The notion of computational intractability was not available to the early
cryptanalysts; it is a product of modern computer science. We now know that
there are certain problems which, though decidable, are computationally in-
tractable in that they take huge amounts of time to solve. Normally, this is
an undesirable situation. We have, however, turned this disadvantage to an
advantage by putting the burden of solving an intractable problem on Eve, the
eavesdropper.

The idea of public key cryptography using one-way functions is due to Diffie
and Hellman [14]. Rivest, Shamir and Adelman [44] were the first to propose a
specific one-way function that has remained unbroken (or, so it is believed). In
the next section, I develop the theory behind this one-way function.

3.3.1 Mathematical Preliminaries

3.3.1.1 Modular Arithmetic

Henceforth, all variables are positive integers unless stated otherwise. We write
“x mod n” for the remainder of x divided by n. Two integers x and y that have
the same remainder after division by n are said to be congruent mod n; in that
case, we write

x
mod n≡ y

That is,

(x
mod n≡ y) ≡ (x mod n = y mod n)

So, x
mod n≡ y means x− y is divisible by n.

Note that congruence (mod n) is an equivalence relation over integers. Be-
low, we list a few properties of the congruence relation. Variables u, v, p, x and
y are positive integers.

• (P1)

u
mod p
≡ v,

x
mod p
≡ y

u+ x
mod p
≡ v + y,

u− x
mod p
≡ v − y,

u× x
mod p
≡ v × y

• (P2; Corollary) For all n, n ≥ 0,

x
mod p
≡ y

xn
mod p
≡ yn
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• (Modular Simplification Rule) Let e be any expression over integers that
has only addition, subtraction, multiplication and exponention as its op-
erators. Let e′ be obtained from e by replacing any subexpression t of e

by (t mod p). Then, e
mod p
≡ e′, i.e., e mod p = e′ mod p.

Note that an exponent is not a subexpression; so, it can’t be replaced by
its mod.

Examples

(20 + 5) mod 3 = ((20 mod 3) + 5) mod 3
((x× y) + g) mod p = (((x mod p)× y) + (g mod p)) mod p
xn mod p = (x mod p)n mod p
x2n mod p = (x2)n mod p = (x2 mod p)n mod p
xn mod p = xn mod p mod p, is wrong. 2

Relatively Prime Positive integers x and y are relatively prime iff gcd(x, y) =
1. Since gcd(0, x) = x for positive x, it follows that 0 and x are relatively prime
iff x = 1. Note that gcd(0, 0) is undefined.

• (P3) For p and q relatively prime,

(u
mod p
≡ v ∧ u

mod q
≡ v) ≡ (u

mod p×q
≡ v)

Exercise 22

Disprove each of the following conclusions.

u
mod p
≡ v,

x
mod p
≡ y

max(u, x)
mod p
≡ max(v, y),

ux
mod p
≡ vy

Solution Use p = 3, u, v = 2, 2 and x, y = 4, 1. 2

The following rule allows us to manipulate exponents, which we can’t do
using only the modular simplification rule (see the previous exercise).

• (P4; due to Fermat) bp−1 mod p = 1, where p is prime, and b and p are
relatively prime.

Exercise 23

With b and p as in (P4) show that for any nonnegative integer m

bm
mod p
≡ bm mod (p−1)
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Solution Write bm as bp−1 × bp−1 . . .× bm mod (p−1). Use (P4) to reduce each
bp−1 mod p to 1. 2

3.3.1.2 Extended Euclid Algorithm

We prove the following result: given nonnegative integers x and y, where both
integers are not zero, there exist integers a and b such that

a× x+ b× y = gcd(x, y).

This result is known as Bézout’s lemma. For example, let x, y = 12, 32. Then
gcd(x, y) = 4. And, a, b = 3,−1 satisfy the equation.

Note that a and b need not be positive, nor are they unique. In fact, verify
that for any solution (a, b), the pair given below is also a solution, where k is
any integer.

(a+ k × y/ gcd(x, y), b− k × x/ gcd(x, y))

We can prove Bézout’s lemma easily by applying induction on x+ y. Later,
we show how to extend Euclid’s algorithm to compute (a, b), which also consti-
tutes a constructive proof of the lemma.

• x = 0 and y > 0: Then gcd(x, y) = y. We have to display a and b such that

a× x+ b× y = y

Setting a, b = 0, 1 satisfies the equation. Similarly, if y = 0 and x > 0, set
a, b = 1, 0.

• x > 0 and y > 0: Without loss in generality, assume that x ≥ y. Since
x− y + y < x+ y, applying induction, there exist a′ and b′ such that

a′ × (x− y) + b′ × y = gcd(x− y, y)

Note that gcd(x, y) = gcd(x− y, y). Therefore,

a′ × (x− y) + b′ × y = gcd(x, y)

a′ × x+ (b′ − a′)× y = gcd(x, y)

Set a, b = a′, (b′ − a′) to prove the result.

Next, consider the classical Euclid algorithm for computing gcd. We will
modify this algorithm to compute a and b as well.
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u, v := x, y
{u ≥ 0, v ≥ 0, u 6= 0 ∨ v 6= 0, gcd(x, y) = gcd(u, v)}
while v 6= 0 do

u, v := v, u mod v
od

{gcd(x, y) = gcd(u, v), v = 0}
{gcd(x, y) = u}

One way of computing u mod v is to explicitly compute the quotient q,
q = bu/vc, and subtract v × q from u. Thus, u, v := v, u mod v is replaced
by

q := bu/vc;
u, v := v, u− v × q

To compute a and b as required, we augment this program by introducing
variables a, b and another pair of variables c, d, which satisfy the invariant

(a× x+ b× y = u) ∧ (c× x+ d× y = v)

An outline of the program is shown below.

u, v := x, y; a, b := 1, 0; c, d := 0, 1;
while v 6= 0 do

q := bu/vc;
α : {(a× x+ b× y = u) ∧ (c× x+ d× y = v)}
u, v := v, u− v × q;
a, b, c, d := a′, b′, c′, d′

β : {(a× x+ b× y = u) ∧ (c× x+ d× y = v)}
od

The remaining task is to calculate a′, b′, c′, d′ so that the given annotations
are correct, i.e., the invariant (a× x+ b× y = u) ∧ (c× x+ d× y = v) holds
at program point β. Using backward substitution, we need to show that the
following proposition holds at program point α.

(a′ × x+ b′ × y = v) ∧ (c′ × x+ d′ × y = u− v × q)

We are given that the proposition (a × x + b × y = u) ∧ (c × x + d × y = v)
holds at α. Therefore, we may set

a′, b′ = c, d

Now, we compute c′ and d′.

c′ × x+ d′ × y
= {from the invariant}

u− v × q
= {a× x+ b× y = u and c× x+ d× y = v}

(a× x+ b× y)− (c× x+ d× y)× q
= {algebra}

(a− c× q)× x+ (b− d× q)× y
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a b u c d v q
1 0 17 0 1 2668

0
0 1 2668 1 0 17

156
1 0 17 −156 1 16

1
−156 1 16 157 −1 1

16
157 −1 1 -2668 17 0

Table 3.4: Computation with the extended Euclid algorithm

So, we may set

c′, d′ = a− c× q, b− d× q

The complete algorithm is:

u, v := x, y; a, b := 1, 0; c, d := 0, 1;
while v 6= 0 do

q := bu/vc;
α : {(a× x+ b× y = u) ∧ (c× x+ d× y = v)}
u, v := v, u− v × q;
a, b, c, d := c, d, a− c× q, b− d× q
β : {(a× x+ b× y = u) ∧ (c× x+ d× y = v)}

od

At the termination of the algorithm,

a× x+ b× y
= {from the invariant}

u
= {u = gcd(x, y), from the annotation of the first program in page 59}

gcd(x, y)

Example Table 3.4 shows the steps of the algorithm for x, y = 17, 2668. 2

Exercise 24

Show that the algorithm terminates, and that α : {(a× x+ b× y = u) ∧ (c×
x+ d× y = v)} is a loop invariant. Use annotations shown in the program. 2

3.3.2 The RSA Scheme

A principal, Bob, joins the cryptosystem as follows.
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• Choose two large primes p and q, p 6= q. (There are efficient probabilistic
schemes for computing p and q).

• Let n = p× q. And, define φ(n) = (p− 1)× (q − 1). Any message below
n in value can be encrypted.

• Choose integers d and e (d is for decryption and e for encryption) such
that

1. 1 ≤ d < n, 1 ≤ e < n,

2. both d and e are relatively prime to φ(n), and

3. d× e
mod φ(n)
≡ 1.

It is customary to choose e, the encryption key, to be a small value (like
35) which is below n and relatively prime to φ(n). Once e is chosen, d is
uniquely determined, as follows.

Computation of d is based on the Extended Euclid algorithm of page 58.
Set x := e and y := φ(n) in the formula a× x+ b× y = gcd(x, y) to get:

a× e+ b× φ(n) = gcd(e, φ(n))
⇒ {e and φ(n) are relatively prime, from the choice of e}

a× e+ b× φ(n) = 1
⇒ {definition of mod}

a× e
mod φ(n)
≡ 1

Now, let d be a. If d is positive but higher than n, subtract φ(n) from
it enough times to satisfy 1 ≤ d < n. If d is negative (it can’t be
zero) add φ(n) to it enough times to make it positive. In either case,

d = a + k × φ(n), for some k. Given that a × e
mod φ(n)
≡ 1, we have

(a+ k × φ(n))× e
mod φ(n)
≡ 1, for any k; therefore, d× e

mod φ(n)
≡ 1.

We next show that d is relatively prime to φ(n). Let r be a common

divisor of d and φ(n). We show that |r| = 1. From d× e
mod φ(n)
≡ 1, we

get d× e = k × φ(n) + 1, for some k. Let r|d denote that r divides d.

r|d
⇒ {arithmetic}

r|(d× e)
⇒ {d× e = k × φ(n) + 1}

r|(k × φ(n) + 1)
⇒ {since r is a divisor of φ(n), r|(k × φ(n)}

r|1
⇒ {arithmetic}

|r| = 1
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Therefore, d is relatively prime to φ(n).

• At this stage, Bob has the following variables:

1. p and q, which are primes,

2. n, which is p× q, and φ(n), which is (p− 1)× (q − 1),

3. d and e which satisfy

(a) 1 ≤ d < n, 1 ≤ e < n,

(b) both d and e are relatively prime to φ(n), and

(c) d× e
mod φ(n)
≡ 1.

• Publicize (e, n) as the public key. Save (d, n) as the private key.

Note Observe that the specifications of d and e are symmetric.

Example Let p = 47 and q = 59. Then, n = p × q = 2773, and φ(2773) =
(47−1)×(59−1) = 2668. Let e = 17. Now, d is computed as shown in Table 3.4

of page 60. Thus, d = 157. Verify that 157× 17
mod φ(n)
≡ 1. 2

3.3.2.1 Encryption

To send message M to a principal whose public key is (e, n) and 0 ≤ M < n,
send M ′ where M ′ = (Me mod n).

Example; contd. Let us represent each letter of the alphabet by two digits,
with white space = 00 a = 01 b = 02, etc.

Suppose the message to be sent is “bad day”. The representation yields:
02010400040125.

Since n is 2773, we can convert any pair of letters to a value below n, the
largest such pair being zz which is encoded as 2626. Therefore, our block length
is 2 letters. We get the following blocks from the encoded message: 0201 0400
0401 2500; we have appended an extra blank at the end of the last block to
make all blocks have equal size.

Now for encryption of each block. We use the parameters from the previous
example, where e = 17. For the first block, we have to compute 020117 mod
2773, for the second 040017 mod 2773, etc. 2

There is an efficient way to raise a number to a given exponent. To compute
M17, we need not multiply M with itself 16 times. Instead, we see that M17 =
M16×M = (M8)2×M = ((M4)2)2×M = (((M2)2)2)2×M . The multiplication
strategy depends on the binary representation of the exponent. Also, at each
stage, we may apply mod n, so that the result is always less than n. Specifically,

M2t mod n = (M t mod n)2 mod n
M2t+1 mod n = ((M t mod n)2 ×M) mod n
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The following algorithm implements this strategy. Let e, the exponent, in
binary be: ek ek−1 . . . e0. For e = 17, we get 10001. Next, use the following
algorithm that looks at the bits of e from the higher to the lower order; the
result of encryption is in C. The loop invariant is: C = Mh mod n, where h is
the portion of the exponent seen so far, i.e., ek ek−1 . . . ei (initially, h = 0).

C := 1;
for i = k..0 do

if ei = 0
then C := C2 mod n
else C := ((C2 mod n) ∗M) mod n

fi

od

We encrypt 0201 to 2710 and 0400 to 0017.

Exercise 25

The algorithm to compute Me mod n, given earlier, scans the binary represen-
tation of e from left to right. It is often easier to scan the representation from
right to left, because we can check if e is even or odd easily on a computer. We
use:

M2t = (M2)t

M2t+1 = (M2)t ×M

Here is an algorithm to compute Me in C. Prove its correctness using the
loop invariant C∗mh = Me. Also, modify the algorithm to compute Me mod n.

C := 1; h,m := e,M ;
while h 6= 0 do

if odd(h) then C := C ∗m fi ;
h := h÷ 2;
m := m2

od

{C = Me}

3.3.2.2 Decryption

On receiving an encrypted message M ′, 0 ≤M ′ < n, Bob, whose private key is
(d, n), computes M ′′ as follows.

M ′′ = (M ′d mod n)

We show below that M ′′ = M .



64 CHAPTER 3. CRYPTOGRAPHY

Example We continue with the previous example. The encryption and de-
cryption steps are identical, except for different exponents. We use the encryp-
tion algorithm with exponent 157 to decrypt. The encryption of 0201 is 2710
and of 0400 is 0017. Computing 2710157 mod 2773 and 0017157 mod 2773 yield
the original blocks, 0201 and 0400. 2

Lemma 1: For any M , 0 ≤M < n, Md×e mod p
≡ M .

Proof:

Md×e mod p

= {d× e
mod φ(n)
≡ 1, and φ(n) = (p− 1)× (q − 1)}

M t×(p−1)+1 mod p, for some t
= {rewriting}

((M (p−1))t ×M) mod p
= {modular simplification: replace (M (p−1)) by (M (p−1)) mod p}

((M (p−1) mod p)t ×M) mod p
= {Consider two cases:

• M and p are not relatively prime:
Since p is prime, M is a multiple of p, i.e.,
(M mod p) = 0. So, M (p−1) mod p = 0.
The entire expression is 0, thus equal to M mod p.
• M and p are relatively prime:

Then, (M (p−1)) mod p = 1, from (P4).
The expression is (1t ×M) mod p = M mod p.

}
M mod p

Lemma 2: For any M , 0 ≤M < n, (Md×e mod n) = M .
Proof:

M
mod p
≡ Md×e , from Lemma 1

M
mod q
≡ Md×e , replacing p by q in Lemma 1

M
mod n≡ Md×e , from above two, using P3 and n = p× q

(M mod n) = (Md×e mod n) , from above
M = (Md×e mod n) , M < n; so M mod n = M

We are now ready to prove the main theorem, that encryption followed by
decryption yields the original message.

Theorem: M ′′ = M .

M
= {Lemma 2}

Md×e mod n
= {arithmetic}

(Me)d mod n
= {modular simplification rule}
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(Me mod n)d mod n
= {from the encryption step, M ′ = Me mod n}

M ′d mod n
= {from the decryption step, M ′′ = M ′d mod n}

M ′′

3.3.2.3 Breaking RSA is hard, probably

The question of breaking RSA amounts to extracting the plaintext from the
ciphertext. Though there is no proof for it, it is strongly believed that in order
to break RSA, you will have to compute the private key given only the public

key. That is, given (e, n), find d where d × e
mod φ(n)
≡ 1. We show that

computing d is as hard as factoring n.
It is strongly believed that factoring a large number is intractable1. In the

naive approach to factoring, we have to test all numbers at least up to
√
n

to find a factor of n. If n is a 200 digit number, say, approximately 10100

computation steps are needed. The best known algorithm for factoring a 200
digit number would take about a million years. We can speed up matters by
employing supercomputers and a whole bunch of them to work in parallel. Yet,
it is unlikely that factoring would be done fast enough to justify the investment.
So, it is strongly believed —though not proven— that RSA is unbreakable.

Next, we show that computing d is easy given e and the factors of n. Suppose
we have factored n into primes p and q. Then, we can compute φ(n), which is
(p− 1)× (q − 1). Next, we can compute d as outlined earlier.

The proof in the other direction, —if we have d and e where d×e
mod φ(n)
≡ 1,

then we can factor n— is more technical. It can be shown that n is easily factored
given any multiple of φ(n), and (d× e)− 1 is a multiple of φ(n).

An easier result is that n can be factored if φ(n) is known. Recall that φ(n) =
(p−1)× (q−1) and n = p× q. Hence, φ(n) = n− (p+ q) + 1. From n and φ(n),
we get p×q and p+q. Observe that p−q =

√
(p− q)2 =

√
(p+ q)2 − 4× p× q.

Therefore, p− q can be computed. Then, p = (p+q)+(p−q)
2 and q = (p+q)−(p−q)

2 .

Exercise 26

Why is it necessary to choose distinct primes for p and q?

3.4 Digital Signatures and Related Topics

Public key cryptography neatly solves a related problem, affixing a digital sig-
nature to a document. Suppose Bob receives a message from someone claiming
to be Alice; how can he be sure that Alice sent the message? To satisfy Bob,
Alice affixes her signature to the message, as described below.

1Peter Shor has developed an algorithm for factoring that runs in O(logn)3 time. Un-
fortunately (or, fortunately for cryptopgraphy), the algorithm can run only on a quantum
computer.
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Alice encrypts the message using her private key ; this is now a signed mes-
sage. More formally, let x be the message, fa and fb the public keys of Alice
and Bob, and f−1a and f−1b be their private keys, respectively. Then f−1a (x) is
the message signed by Alice. If the message is intended for Bob’s eyes only, she
encrypts the signed message with Bob’s public key, and sends fb(f

−1
a (x)). Bob

first decrypts the message using his own private key, then decrypts the signed
message using Alice’s public key. Alice may also include her name in plaintext,
fb(“alice” ++ f−1a (x)) where ++ is concatenation, so that Bob will know whose
public key he should apply to decrypt the signed message.

We show that such signatures satisfy two desirable properties. First, de-
crypting any message with the Alice’s public key will result in gibberish unless
it has been encrypted with her private key. So, if Bob is able to get a meaningful
message by decryption, he is convinced that Alice sent the message.

Second, Alice cannot deny sending the message, because no one else has ac-
cess to her private key. An impartial judge can determine that Alice’s signature
appears on the document (message) by decrypting it with her public key. Note
that the judge does not need access to any private information.

Note that no one can modify this message while keeping Alice’s signature
affixed to it. Thus, no electronic cutting and pasting of the message/signature
is possible.

Observe a very important property of the RSA scheme: any message can be
encrypted by the public or the private key and decrypted by its inverse.

Digital signatures are now accepted for electronic documents. A user can
sign a check, or a contract, or even a document that has been signed by other
parties.

Another look at one-time pads We know that one-time pads provide com-
plete security. The only difficulty with them is that both parties to a transmis-
sion must have access to the same pad. We can overcome this difficulty using
RSA, as follows.

Regard each one-time pad as a random number. Both parties to a trans-
mission have access to a pseudo-random number generator which produces a
stream of random numbers. The pseudo-random number generator is public
knowledge, but the seed which the two parties use is a shared secret. Since they
use the same seed, they will create the same stream of random numbers. Then
the encryption can be relatively simple, like taking exclusive or.

This scheme has one drawback, having the seed as a shared secret. RSA
does not have this limitation. We can use RSA to establish such a secret: Bob
generates a random number as the seed and sends it to Alice, encrypted by
Alice’s public key. Then, both Bob and Alice know the seed.

Security of communication with a trusted third party We have so far
assumed that all public keys are stored in a public database and Alice can query
the database manager, David, to get Bob’s public key (in plaintext). Suppose
Eve intercepts the message sent by David to Alice, and replaces the public key
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of Bob by her own. Then Alice encrypts a message for Bob by Eve’s public key.
Any message she sends to Bob could be intercepted and decrypted by Eve.

The problem arises because Alice does not know that the message received
from David is not authentic. To establish authenticity, David —often called a
trusted third party— could sign the message. Then, Eve cannot do the substi-
tution as described above.

Trusted third parties play a major role in security protocols, and authenti-
cating such a party is almost always handled by digital signatures.

Oblivious Transfer We have studied the oblivious transfer problem in Sec-
tion 2.4. The problem is as follows (repeated from that section). Alice has two
pieces of data m0 and m1. Bob requests one of these data from Alice. The
restriction is that Alice should not know which data has been requested (so,
she has to send both data in some encoded form) and Bob should be able to
extract the data he has requested, but know nothing about the data he has not
requested.

We solved this problem in Section 2.4 using a trusted third party, and there
was no need for encryption. Here is another solution without using a third party,
but one that relies on encryption. Let E andD be the encryption and decryption
functions for Alice. We will not need the corresponding functions for Bob,
though Alice may want to encrypt her transmissions to avoid eavesdropping.

First, Alice and Bob agree on two random pieces of data, x0 and x1 (Alice
could create them and send to Bob). Suppose Bob needs data mb, for b either
0 or 1. Then, Bob creates a random y and sends p = E(y)⊕ xb to Alice. Alice
computes qi = D(p⊕ xi), and sends the pair (r0, r1) = (m0 ⊕ q0,m1 ⊕ q1). We
assert that qb = y, because qb = D(p⊕xb) = D(E(y)⊕xb⊕xb) = D(E(y)) = y.
Therefore, rb = mb ⊕ qb = mb ⊕ y, or mb = rb ⊕ y. Bob knows y; so, he can
compute mb from the received value rb.

We argue that Alice does not know b, the intended data for Bob. This is
because Alice receives only p = E(y) ⊕ xb, and since y is random, she has no
way of telling if x0 or x1 is used in computing p. And, Bob does not know m0

if his intention was only to receive m1. This is because he knows only x’s and
r’s, and he can not compute q0 (which is needed to extract m0 from r0).

Blind Signature Alice wants Bob to sign a document without revealing its
contents to Bob. This is useful if Bob is a notary, so that Bob does not need to
know the contents of the document, but merely verify the signature.

Suppose Alice has a document M . She would like to have Md mod n, where
d is Bob’s decryption key and n is as described in Section 3.3.2 (page 60). Alice
sends M × ke to Bob, where e is Bob’s encryption key and k is some random
number, 1 ≤ k < n. Bob signs the document with his decryption key d and
returns (M × ke)d mod n to Alice. Now,

(M × ke)d mod n
= {arithmetic}
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(Md × ke×d) mod n
= {arithmetic}

(Md × (ke×d mod n)) mod n
= {From Lemma 2, page 64, (ke×d mod n = k}

(Md × k) mod n

Alice divides the signed message by k, that is, multiplies it by k−1 mod n to
retrieve Md mod n.

3.5 Block Cipher

The RSA scheme is expensive in computation time, particularly if you want to
encrypt large amounts of data, as in video or music encryption. In such cases,
we use either block or stream cipher. In each case, we start with a secret key
(this section is mostly about how to form a secret key). For block cipher, data
is broken up into fixed length blocks, typically around 128 bits. Each block
is individually encrypted and decrypted using the secret key. There are two
functions, one for encryption and the other for decryption. Each function takes
two arguments, a block and the secret key. The encryption function computes
a new block and the decryption function converts it back to the original block.

One of the early block cipher schemes was DES (Data Encryption Standard),
adopted as a standard in 1977. It used 64 bit blocks which were deemed insuffi-
ciently secure. A newer version, called AES (Advanced Encryption Standard),
was adopted in 2001 which operates on 128 bit blocks. Both algorithms operate
nearly identically for both encryption and decryption, and have fast hardware
implementations. Each algorithm runs for 16 rounds, where each round per-
mutes a block in some way using the secret key.

Stream ciphers operate on a stream of data, such as for video delivery. En-
cryption has to be extremely fast and online; that is block b is converted to block
b′ without much processing. Typically, both encryption and decryption have ac-
cess to a very long random bit string s (typically millions of bits). Encryption
forms b′ by taking exclusive-or of parts of s with b. Each block consumes some
part of s, so, different blocks are encrypted using different bit strings. Decryp-
tion follows the same procedure. The random bit string s is computed by a
pseudo-random number generator using a secret key as a seed.

Block ciphers are symmetric key ciphers, in contrast with RSA which is
asymmetric (the public and private keys are different). Symmetric keys are
always hidden except from those who need to know. Before invention of public
key cryptography, only symmetric keys were used. The main problem with
symmetric keys is that any change in the key has to be communicated to all the
parties. At one time, armored trucks were used to deliver the keys. Today, we
use a key exchange protocol to create a secret key. One of the first, and still
very important, schemes is known as Diffie-Hellman Key Exchange (or Diffie-
Hellman-Merkle Key Exchange), which we study next.
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A Simplisic Version of Diffie-Hellman Key Exchange The scheme de-
scribed here permits two parties, Alice and Bob, to form a secret key for further
communication. First, we give a very simple version, which has obvious short-
comings; we add more details later to overcome these problems. One secret key
is used for a single session of communication.

First, both Alice and Bob settle upon a known key g; this key can be sent in
plain text by one of them to the other. Next, Alice creates a secret key a and
Bob a secret key b. Alice sends ga to Bob and Bob sends gb to Alice, both in
plain text. Alice uses the received value gb and her own secret key a to compute
(gb)a = gab. Similarly, Bob computes (ga)b = gab. They use gab as the secret
key.

Eve, the eavesdropper, knows g, ga and gb, because these values are sent
in plain text. She can easily compute a and b (by using a slight variation of
binary search) and then compute gab. We will modify the protocol to make it
very hard for her to compute a or b.

The attractive part of this solution is lack of long-term commitment. Alice
and Bob can set up a new secret key whenever they want to; therefore, they
need use the secret for only one session.

Observe that RSA can also be used to exchange a secret key. Alice sends a
public key to Bob which Bob uses to send her a secret. Using RSA, only Alice
can decrypt it, and Bob already knows the secret. They can then employ the
secret for further communications.

Precise Description of Diffie-Hellman Key Exchange Bob and Alice
publicly settle on two positive integers g and p. Here, p is a prime number;
typically p is large (a 300 bit number will do fine for most applications). And, g
is smaller than p and a primitive (p−1)th root of 1. This means gk mod p 6= 1, for
any k, k < p−1 (and from Fermat’s Theorem, P4 in Page 57, gp−1 mod p = 1).
For p = 7, there are two primitive roots, 3 and 5; for p = 11, there are four
primitive roots, 2, 6, 7 and 8.

Alice and Bob privately choose integers a and b which are less than p; typ-
ically a and b are large numbers, so that Eve can not possibly exhaustively
test for them. Alice sends ga mod p and Bob sends gb mod p. Then Alice
computes (gb mod p)a mod p. This quantity is gab mod p from, gab mod p =
{arithmetic} (gb)a mod p = {modular simplification rule} (gb mod p)a mod p.
Similarly, Bob computes (ga mod p)b mod p = gab mod p. They both have
gab mod p, and they settle on that as the secret key.

As an example, let g = 3 and p = 17. Verify that g is a 16th primitive root
of 1. Let Alice choose a = 5 and Bob choose b = 9. Then, Alice and Bob
send to each other 35 mod 17 = 5 and 39 mod 17 = 14, respectively. Next, Alice
computes 145 mod 17 and Bob computes 59 mod 17, both of which are 12. Each
of them now knows 12 as the secret key.

Choosing p and g We have to choose a large prime number p and a positive
integer g which is a (p−1)th root of 1. From the description of the protocol, we
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don’t really need that g be a (p−1)th root of 1; all we need is that gk mod p 6= 1,
for many values of k, k < p− 1. With this relaxed requirement, we choose p to
be a prime of the form 2× q+ 1, where q is a prime. Such primes are known as
safe or Sophie-Germain primes. The first few safe primes are: 5, 7, 11, 23, 47,
59, 83, 107, 167, 179, 227, 263.

Given p = 2×q+1, from Fermat’s Theorem (P4 in Page 57), g2×q mod p = 1
for any g. That is, either g2 mod p = 1 or gq mod p = 1; further, gk mod p 6= 1,
for all other values of k, 1 ≤ k ≤ q. We look for a g such that g2 mod p 6= 1; then
gk mod p 6= 1, for all k, 1 ≤ k < q. We find such a g by a dumb search, simply
looking at g = 2, 3, 4, · · · until we find one such that g2 mod p 6= 1. Usually,
this is a very short computation.

Discrete Logarithm Problem The task of Eve is to compute a or b given
g, p, ga mod p and gb mod p. This is known as the Discrete Logarithm Problem,
for which there is no known efficient algorithm. And, most computer scientists
believe that this is a hard problem algorithmically.

Observe that if Alice could compute Bob’s secret b efficiently, then so can
Eve. To see this, note that Alice knows a, g, p and gb mod p, from which she
can compute b. Clearly, a is irrelevant in this computation. Therefore, Eve can
similarly compute b from e, g, p and gb mod p, where e is any arbitrary positive
integer less than p.

Woman in the Middle attack The given protocol fails if Eve intercepts
every communication. She pretends to be Alice to Bob and Bob to Alice. She
substitutes her own keys, e and e′, in place of a and b. Thus, she establishes a
secret s with Bob and another secret s′ with Alice, thus decoding all communi-
cation between them.

There is no easy way to handle this problem. Each communication has to be
authenticated, i.e., Alice must be sure that any message purported to be from
Bob is actually from Bob (and similarly for Bob), at least for the duration of
the Diffie-Hellman exchange protocol. This can be accomplished by Alice and
Bob signing every message they send (using their private keys).

Acknowledgement I am thankful to Steve Li for simplifying one of the
proofs.



Chapter 4

Finite State Machines

4.1 Introduction

4.1.1 Wolf-Goat-Cabbage Puzzle

A shepherd arrives at a river bank with a wolf, a goat and a cabbage. There is a
boat there that can carry them to the other bank. However, the boat can carry
the shepherd and at most one other item. The shepherd’s actions are limited
by the following constraints: if the wolf and goat are left alone, the wolf will
devour the goat, and if the goat and the cabbage are left alone, well, you can
imagine. . .

You can get a solution quickly by rejecting certain obvious possibilities. But
let us attack this problem more systematically. What is the state of affairs at
any point during the passage: what is on the left bank, what is on the right bank,
and where the boat is (we can deduce the contents of the boat by determining
which items are absent from both banks). The state of the left bank is a subset
of {w,g,c} —w for wolf, g for goat, and c for cabbage— and similarly for the
right bank. The shepherd is assumed to be with the boat (the cabbage cannot
steer the boat :-) ), so the state of the boat is that it is: (1) positioned at the left
bank, (2) positioned at the right bank, (3) in transit from left to right, or (4) in
transit from right to left; let us represent these possibilities by the symbols, L,
R, LR, RL, respectively.

Thus, we represent the initial state by a triple like 〈{w,g,c}, L, {}〉. Now
what possible choices are there? The shepherd can row alone, or take one item
with him in the boat, the wolf, the goat or the cabbage. These lead to the
following states respectively.

〈{w,g,c}, LR, {}〉
〈{g,c}, LR, {}〉
〈{w,c}, LR, {}〉
〈{w,g}, LR, {}〉

71
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Observe that all states except 〈{w,c}, LR, {}〉 are inadmissible, since some-
one will consume something. So, let us continue the exploration from 〈{w,c},
LR, {}〉.

When the shepherd reaches the other bank, the state changes from 〈{w,c},
LR, {}〉 to 〈{w,c}, R, {g}〉. Next, the shepherd has a choice: he can row back
with the goat to the left bank (an obviously stupid move, because he will then
be at the initial state), or he may row alone. In the first case, we get the state
〈{w,c}, RL, {}〉, and in the second case 〈{w,c}, RL, {g}〉. We may continue
exploring from each of these possibilities, adding more states to the diagram.
Figure 4.1 shows the initial parts of the exploration more succinctly.

<{w,g}, LR, {}>

w g

g

<{w,g,c}, L, {}>

<{w,g,c}, LR,{}> <{g,c}, LR, {}>
<{w,c}, LR,{}>

<{w,c}, R, {g}>

<{w,c}, RL,{g}>

<{w,c}, L. {g}>

c

−−

−−

Figure 4.1: Partial State Space for the Wolf-Goat-Cabbage Problem

The important thing to note is that the number of states is finite (prove it).
So, the exploration will terminate sometime.

Exercise 27

Complete the diagram. Show that a specific kind of path in the graph corre-
sponds to a solution. How many solutions are there? Can you define states
differently to derive a smaller diagram? 2

Remark A beautiful treatment of this puzzle appears in Dijkstra [16]. He
shows that with some systematic thinking you can practically eliminate the
state-space search. You can play the game at http://www.plastelina.net; choose
game 1. 2

Exercise 28

Given is a 2×2 board which contains a tile in each of its cells; one is a blank tile
(denoted by —), and the others are numbered 1 through 3. A move exchanges
the blank tile with one of its neighbors, in its row or column. The tiles are
initially placed as shown in Table 4.1.
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1 3
2 —

Table 4.1: Easy version of Sam Loyd Puzzle; initial configuration

1 2
3 —

Table 4.2: Easy version of Sam Loyd Puzzle; final configuration

Show that it is impossible to reach the configuration (state) given in Table 4.2
from the initial state, given in Table 4.1.

Proof through enumeration: There are two possible moves from any state:
either the blank tile moves horizontally or vertically. Enumerate the states,
observe which states are reachable from which others and prove the result. It is
best to treat the system as a finite state machine.

A non-enumerative proof: From a given configuration, construct a string by
reading the numbers from left to right along the first row, dropping down to
the next row and reading from right to left. For Table 4.1, we get 132 and for
Table 4.2, we get 123. How does a move affect a string? More precisely, which
property of a string is preserved by a move?

Exercise 29

(A puzzle due to Sam Loyd) This is the same puzzle as in the previous exercise
played on a 4× 4 board. The board contains a tile in each of its cells; one is a
blank tile (denoted by —), and the others are numbered 1 through 15. A move
exchanges the blank tile with one of its neighbors, in its row or column. The
tiles are initially placed as shown in Table 4.3.

01 02 03 04
05 06 07 08
09 10 11 12
13 15 14 —

Table 4.3: Puzzle of Sam Loyd; initial configuration

Show that a sorted configuration, as shown in Table 4.4, can not be reached
in a finite sequence of moves from the initial configuration.

You can do a computer search (calculate the search space size before you
start), or prove this result. Create a string (a permutation) of 1 through 15
from each configuration, show that each move preserves a certain property of a
permutation, that the initial configuration has the given property and the final
configurations does not. Consider the number of inversions in a permutation.



74 CHAPTER 4. FINITE STATE MACHINES

01 02 03 04
05 06 07 08
09 10 11 12
13 14 15 —

Table 4.4: Puzzle of Sam Loyd; final configuration

4.1.2 A Traffic Light

A traffic light is in one of three states, green, yellow or red. The light changes
from green to yellow to red; it cannot change from green to red, red to yellow or
yellow to green. We may depict the permissible state transitions by the diagram
shown in Figure 4.2.

g y r

Figure 4.2: State Transitions in a Traffic Light

What causes the state transitions? It is usually the passage of time; let us
say that the light changes every 30 seconds. We can imagine that an internal
clock generates a pulse every 30 seconds that causes the light to change state.
Let symbol p denote this pulse.

Suppose that an ambulance arrives along an intersecting road and remotely
sets this light red (so that it may proceeed without interference from vehicles
travelling along this road). Then, we have a new state transition, from green
to red and from yellow to red, triggered by the signal from the ambulance; call
this signal a. See Figure 4.3 for the full description.

p p

p

a

a

g y r

Figure 4.3: State Transitions in an Enhanced Traffic Light

4.1.3 A Pattern Matching Problem

You are given a list of English words, as in a dictionary. Find the words in which
the five vowels —a,e,i,o,u— are in order. These are words like “abstemious”,
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“facetious” and “sacrilegious”. But not “tenacious”, which contains all the
vowels but not in order.

Let us design a program to solve this problem. Our program looks at each
word in the dictionary in turn. For each word it scans it until it finds an “a”, or
fails to find it. In the latter case, it rejects the word and moves on to the next
word. In the first case, it resumes its search from the point where it found “a”
looking for “e”. This process continues until all the vowels in order are found,
or the word is rejected.

A programming hint: Sentinel How do you search for a symbol c in a
string S[0..N ]? Here is the typical strategy.

i := 0;
while S[i] 6= “c” ∧ i ≤ N do

i := i+ 1
od ;
if i ≤ N then “success” else “failure” fi

A simpler strategy uses a “sentinel”, an item at the end of the list which
guarantees that the search will not fail. It simplifies AND speeds up the loop.

S[N + 1] := “c”; i := 0;
while S[i] 6= “c” do

i := i+ 1
od ;
if i ≤ N then “success” else “failure” fi 2

Bonus Programming Exercise Write a program for the pattern matching
problem, and apply it to a dictionary of your choice. 2

If you complete the program you will find that its structure is a mess. There
are five loops, each looking for one vowel. They will be nested within a loop. A
failure causes immediate exit from the corresponding loop. (Another possibility
is to employ a procedure which is passed the word, the vowel and the position
in the word where the search is to start.) Modification of this program is messy.
Suppose we are interested in words in which exactly these vowels occur in order,
so “sacrilegious” will be rejected. How will the program be modified? Suppose
we don’t care about the order, but we want all the vowels to be in the word;
so, “tenacious” will make the cut. For each of these modifications, the program
structure will change significantly.

What we are doing in all these cases is to match a pattern against a word.
The pattern could be quite complex. Think about the meaning of pattern if
you are searching a database of music, or a video for a particular scene. Here
are some more examples of “mundane” patterns that arise in text processing.
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begin end while do od if then fi

106 107 100 101 102 103 104 105

Table 4.5: Translations of keywords

:= ; < ≤ = 6= > ≥ +
1000 1001 1002 1003 1004 1005 1006 1007 1008

Table 4.6: Translations of non-keywords

A longer pattern matching example Consider a language that has the
following keywords:

begin end while do od if then fi

A lexical processor for the program may have to:

1. Convert every keyword to a number, as described in Table 4.5.

2. Convert every non-keyword to a distinct 2-digit number,

3. Convert every other symbol as described in Table 4.6, and

4. Ignore comments (the stuff that appears between braces) and extra white
spaces.

Thus, a string like

while i 6= n do {silly loop} j := i+ 1 od

will be converted as shown in Table 4.7.

4.2 Finite State Machine

4.2.1 What is it?

Consider the problem of checking a word for vowels in order. We can describe a
machine to do the checking as shown in Figure 4.4. The machine has six states,
each shown as a circle. Each directed edge has a label, the name of a symbol
(or set of symbols) from a specified alphabet.

while i 6= n do {silly loop} j := i + 1 od

100 10 1005 11 101 12 1000 10 1008 13 102

Table 4.7: Translation of a program
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The machine operates as follows. Initially, the machine is in the state to
which the “start” arrow points (the state labeled 1). It receives a stream of
symbols. Depending on the symbol and its current state the machine determines
its next state, which may be the same as the current state. Thus, in state 1, if
it receives symbol “a” it transits to state 2, and otherwise (shown by the arrow
looping back to the state) it stays in state 1. Any state shown by a double circle
is called an accepting state; the remaining states are rejecting states. In this
example, the only accepting state is 6.

start a e i o u
1 2 3 4 5 6

A−{a} A−{e} A−{i} A−{o} A−{u} A

A= Alphabet

Figure 4.4: Machine to check for vowels in order

If the machine in Figure 4.4 receives the string “abstemious” then its suc-
cessive states are: 1 2 2 2 2 3 3 4 5 6 6. Since its final state is an accepting
state, we say that the string is accepted by the machine. A string that makes
the machine end up in a rejecting state is said to be rejected by the machine.

Which state does the machine end up in for the following strings: aeio,
tenacious, f, aaeeiioouu, ε (ε denotes the empty string)? Convince yourself that
the machine accepts a string iff five vowels appear in order in that string.

Convention Henceforth, if a transition from a state is not shown, assume that
the machine transits to a permanently rejecting state (that rejecting state may
not be shown either). A state is permanently rejecting if the state is rejecting
and all transitions from this state loop back to the state.

Exercise 30

Draw a machine that accepts strings which contain the five vowels in order, and
no other vowels. So, the machine will accept “abstemious”, but not “sacrile-
gious”. See Figure 4.5. 2

Definitions A (deterministic) finite state machine over a given alphabet has
a finite number of states, one state designated as the initial state, a subset of
states designated as accepting and a state transition function that specifies the
next state for each state and input symbol. The machine accepts or rejects every
finite string over its alphabet.

Note There is a more general kind of finite state machine called a nondeter-
ministic machine. The state transitions are not completely determined by the
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start a e i o u
1 2 3 4 5 6

A A A

e,i,o,u     

a,e,i,u
a,e,i,o

Alphabet

A = Alphabet − {a,e,i,o,u}

A A A

a,e,o,ua,i,o,u

a,e,i,o,u

Figure 4.5: Machine to check for exactly five vowels in order

current state and the input symbol as in the deterministic machines you have
seen so far. The machine is given the power of clairvoyance so that it chooses
the next state, out of a possible set of successor states, which is the “best” state
for processing the remaining unseen portion of the string. 2

In all cases, we deal with strings —a sequence of symbols— drawn from
a fixed alphabet. A string may or may not satisfy a pattern: “abstemious”
satisfies the pattern of having all five vowels in order. Here are some more
examples of patterns.

Examples In solving these problems, D is the set of decimal digits, i.e., D =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

1. An unsigned integer is a non-empty sequence of digits; see Figure 4.6.

start D

D

Figure 4.6: unsigned integer

2. A signed integer is an unsigned integer with a “+” or a “−” in the begin-
ning; see Figure 4.7.

3. An integer is either an unsigned or signed integer; see Figure 4.8.
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start +,− Unsigned

Integer

Figure 4.7: signed integer

D

D

start +, −

D

Figure 4.8: integer

4. A fractional number is an integer followed by a period followed by an
unsigned integer. Note that the following are all fractional numbers:
0.30, 0.0, 000.0,−3.2, and the following ones are not: 3, 3., .3, 3.− 2, 3.2.5.
See Figure 4.9. Here the final state of “integer” is made the starting state
of “Unsigned Integer”, and it is no longer an accepting state. The start
edge of Integer is the start edge of Fractional Number.

.Integer Unsigned Integer

Figure 4.9: Fractional Number

5. A number is either a fractional number or a fractional number followed by
the letter “E” followed by an integer. The following ones are all numbers:
3.2, −3.2, 3.2E5, 0.3E1, 3.2E + 5. The following ones are not: 3E5,
3.2E6.5. In Figure 4.10, the final accepting state of “Fractional Number”
remains accepting, and it is connected to the initial state of “Integer” with
the edge labeled with E. The start edge of Fractional Number is the start
edge of Number.

Exercise 31

Draw finite state machines that accept the strings in the following problems.

1. Any string ending in a white space. This is often called a word.

2. Any string in which “(“ and “)” are balanced, the level of parentheses
nesting is at most 3.
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Fractional Number
E

Integer

Figure 4.10: Number

3. Any string starting with “b” followed by any number of “a”s and then a
“d”. These strings are: “bd”, “bad”, “baad”, “baaad”, . . . 2

Exercise 32

1. Design finite state machines for the following problems. Assume that the
alphabet is {0, 1}.

(a) Accept all strings.

(b) Reject all strings.

(c) Accept if the string has an even number of 0s.

(d) Accept if the string has an odd number of 1s.

(e) Accept if the conditions in both (1c) and in (1d) apply. Can you
find a general algorithm to construct a finite state machine from two
given finite state machines, where the constructed machine accepts
only if both component machines accept? What assumptions do you
have to make about the component machines?

(f) Accept if either of the conditions in (1c) and in (1d) apply. Can you
find a general algorithm to construct a finite state machine from two
given finite state machines, where the constructed machine accepts
only if either component machine accepts? What assumptions do
you have to make about the component machines?

(g) Reject every string with an even number of 0s and odd number of 1s
(that is this machine accepts exactly those strings that the machine
in exercise (1e) rejects. Again, is there a general procedure to convert
the machine in exercise (1e) to reject all the strings it accepts and
vice-versa?

(h) Convince yourself that you cannot design a finite state machine to
accept a string that has an equal number of zeros and ones.

2. For the Wolf-Goat-Cabbage puzzle, design a suitable notation to represent
each move of the shepherd using a symbol. Then, any strategy is a string.
Design a finite state machine that accepts such a string and enters an
accepting state if the whole party crosses over to the right bank, intact,
and rejects the string otherwise.

3. For the following problems, the alphabet consists of letters (from the Ro-
man alphabet) and digits (Arabic numerals).
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(a) Accept if it contains a keyword, as given in Table 4.5.

(b) Accept if the string is a legal identifier : a letter followed by zero or
more symbols (a letter or digit).

4. A computer has n 32-bit words of storage. What is the number of states?
For a modern computer, n is around 225. Suppose each state transition
takes a nanosecond (10−9 second). How long will it take the machine to
go through all of its states?

5. Write a program (in C++ or Java) —without reference to finite state
machines— that outputs “accept” if the input is a string with an even
number of 0s and an odd number of 1s. Next, hand-translate the finite
state machine you have designed for this problem in an earlier exercise
into a program. Compare the two programs in terms of length, simplicity,
design time, and execution efficiency. 2

Exercise 33

Let F be a finite state machine.

1. Design a program that accepts a description of F and constructs a Java
program J equivalent to F . That is, J accepts a string as input and prints
“accept” or “reject”. Assume that your alphabet is {0,1} , and a special
symbol, say #, terminates the input string.

2. Design a program that accepts a description of F and a string s and prints
“accept” or “reject” depending on whether F accepts or rejects s. 2

4.2.2 Reasoning about Finite State Machines

Consider the finite state machine shown in Figure 4.11. We would like to show
that the strings accepted by the machine have an even number of 0s and an odd
number of 1s. The problem is complicated by the fact that there are loops.

0

11

0
D

start
A B

C

Figure 4.11: Accepts strings with even number of 0s and odd number of 1s

The strategy is to guess which string is accepted in each state, and attach
that as a label to that state. This is similar to program proving. Let

p ≡ this string has an even number of 0s,
q ≡ this string has an even number of 1s
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From A to B: if p ∧ q holds for x then ¬p ∧ q holds for x0
From A to D: if p ∧ q holds for x then p ∧ ¬q holds for x1
From B to A: if ¬p ∧ q holds for x then p ∧ q holds for x0
From B to C: if ¬p ∧ q holds for x then ¬p ∧ ¬q holds for x1
From C to B: if ¬p ∧ ¬q holds for x then ¬p ∧ q holds for x1
From C to D: if ¬p ∧ ¬q holds for x then p ∧ ¬q holds for x0
From D to C: if p ∧ ¬q holds for x then ¬p ∧ ¬q holds for x0
From D to A: if p ∧ ¬q holds for x then p ∧ q holds for x1

Table 4.8: Verifications of state transitions

A plausible annotation of the machine is shown in Figure 4.12. That is, we
guess that any string for which the machine state becomes B has an odd number
of 0s and an even number of 1s; similarly for the remaining state annotations.

0

11

0
D

start
A B

C

p ^ q ~p ^ q

~p ^ ~q p ^ ~q

Figure 4.12: Annotation of the machine in Figure 4.11

Verification Procedure The verification procedure consists of three steps:
(1) annotate each state with a predicate over finite strings (the predicate defines
a set of strings, namely, the ones for which it is true), (2) show that the anno-
tation on the initial state holds for the empty string, and (3) for each transition
do the following verification: suppose the transition is labeled s and it is from
a state annotated with b to one with c; then, show that if b holds for any string
x, then c holds for xs.

For the machine in Figure 4.12, we have already done step (1). For step
(2), we have to show that the empty string satisfies p ∧ q, that is, the empty
string has an even number of 0s and 1s, which clearly holds. For step (3), we
have to verify all eight transitions, as shown in Table 4.8. For example, it is
straightforward to verify the transition from A to B by considering an arbitrary
string x with an even number of 0s and 1s (p ∧ q) and proving that x0 has odd
number of 0s and even number of 1s (¬p ∧ q).

Why Does the Verification Procedure Work? It seems that we are using
some sort of circular argument, but that is not so. In order to convince yourself
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that the argument is not circular, construct a proof using induction. The the-
orem we need to prove is as follows: after processing any string x, the machine
state is A, B, C or D iff x satisfies p∧ q, ¬p∧ q, ¬p∧¬q or p∧¬q, respectively.
The proof of this statement is by induction on the length of x.

For |x| = 0: x is an empty string and p ∧ q holds for it. The machine state
is A, so the theorem holds.

For |x| = n + 1, n ≥ 0: use the induction hypothesis and the proofs from
Table 4.8.

4.2.3 Finite State Transducers

The finite state machines we have seen so far simply accept or reject a string.
So, they are useful for doing complicated tests, such as to determine if a string
matches a given pattern. Such machines are called acceptors. Now, we will en-
hance the machine so that it also produces a string as output; such machines are
called transducers. Transducers provide powerful string processing mechanism.
Typically, acceptance or rejection of the input string is of no particular im-
portance in transducers; only the construction of the appropriate output string
matters.

Pictorially, we will depict a transition as shown in Figure 4.13. It denotes
that on reading symbol s, the machine transits from A to B and outputs string
t. The output alphabet of the machine —over which t is a string— may differ
from its input alphabet.

A B

s/t

Figure 4.13: Transition Labeling in a Finite State Transducer

Example Accept any string of 0s and 1s. Squeeze each substring of 0s to a
single 0 and similarly for the 1s. Thus,

000100110 becomes 01010

A solution is shown in Figure 4.14.

Verifications of Transducers How do we verify a transducer? We would
like to show that the output is a function, f , of the input. For the transducer
in Figure 4.14, function f is given by:

f(ε) = ε f(0) = 0 f(1) = 1
f(x00) = f(x0) f(x01) = f(x0)1
f(x10) = f(x1)0 f(x11) = f(x1)
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start

0/0 1/1

0/0

1/1

0 1

Figure 4.14: Transducer that squeezes each block to a single bit

The verification strategy for finite state acceptors is augmented as follows.
As before, annotate each state by a predicate (denoting the set of strings for
which the machine enters that state). Show for the initial state that the anno-
tation is satisfied by the empty string and it outputs f(ε). For a transition of
the form shown in Figure 4.13, if A is annotated with p and B with q, show that
(1) if p holds for any string x, then q holds for xs, and (2) f(xs) = f(x) ++ t
(the symbol ++ denotes concatenation), i.e., the output in state B (which is
the output in state A —assumed to be f(x)— concatenated with string t) is the
desired output for any string for which this state is entered.

Exercise 34

Design a transducer which replaces each 0 by 01 and 1 by 10 in a string of 0s
and 1s. 2

Exercise 35

The input is a 0-1 string. A 0 that is both preceded and succeeded by at least
three 1s is to be regarded as a 1. The first three symbols are to be reproduced
exactly. The example below shows an input string and its transformation; the
bit that is changed has an overline on it in the input and underline in the output.

0110111011111000111 becomes
0110111111111000111

Design a transducer for this problem and establish its correctness. 2

Solution In Figure 4.15, the transitions pointing downward go to the initial
state. Prove correctness by associating with each state a predicate which asserts
that the string ending in that state has a certain suffix.
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1/11/1

1/1

1/1 0/ 1/ 1/ 1/1111

0/01100/0 0/0 0/0 0/00 0/010

Figure 4.15: Replace 0 by 1 if it is preceded and succeeded by at least three 1s

4.2.4 Serial Binary Adder

Let us build an adding circuit (adder) that receives two binary operands and
outputs their sum in binary. We will use the following numbers for illustration.

0 1 1 0 0
+ 0 1 1 1 0

————
1 1 0 1 0

The input to the adder is a sequence of bit pairs, one bit from each operand,
starting with their lowest bits. Thus the successive inputs for the given example
are: (0 0) (0 1) (1 1) (1 1) (0 0). The adder outputs the sum as a sequence of
bits, starting from the lowest bit; for this example, the output is 0 1 0 1 1. If
there is a carry out of the highest bit it is not output, because the adder cannot
be sure that it has seen all inputs. (How can we get the full sum out of this
adder?)

We can design a transducer for this problem as shown in Figure 4.16. There
are two states, the initial state is n and the carry state c; in state c, the current
sum has a carry to the next position. The transitions are easy to justify. For
instance, if the input bits are (0 1) in the n state, their sum is 0 + 1 + 0 = 1;
the last 0 in the sum represents the absence of carry in this state. Therefore, 1
is output and the machine remains in the n state. If the machine is in c state
and it receives (0 0) as input, the sum is 0 + 0 + 1 = 1; hence, it outputs 1 and
transits to the n state. For input (1 1) in the c state, the sum is 1 + 1 + 1 = 3,
which is 11 in binary; hence 1 is output and the machine remains in the c state.

00/0

01/1

10/1 11/1

10/0

01/0

00/1

11/0

n c

Figure 4.16: Serial Binary Adder

Exercise 36
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Suppose that the input for either operand is terminated by a special symbol #.
Thus, a possible input could be (1, 1)(#, 0)(#, 1)(#,#), representing the sum
of 1 and 101. Redesign the serial adder to produce the complete sum.

4.2.5 Parity Generator

When a long string is transmitted over a communication channel, it is possible
for some of the symbols to get corrupted. For a binary string, bits may get
flipped, i.e., a 0 becomes a 1 and a 1 becomes a 0. There are many sophisticated
ways for the receiver to detect such errors and request retransmissions of the
relevant portions of the string. I will sketch a relatively simple technique to
achieve this.

First, the sender breaks up the string into blocks of equal length. Below the
block length is 3, and white spaces separate the blocks.

011 100 010 111

Next, the sender appends a bit at the end of each block so that each 4-bit
block has an even number of 1s. This additional bit is called a parity bit, and
each block is said to have even parity. The input string shown above becomes,
after addition of parity bits,

0110 1001 0101 1111

This string is transmitted. Suppose two bits are flipped during transmission,
as shown below; the flipped bits are underlined.

0110 1000 0101 0111

Note that the flipped bit could be a parity bit or one of the original ones.
Now each erroneous block has odd parity, and the receiver can identify all such
blocks. It then asks for retransmission of those blocks. If two bits (or any even
number) of bits of a block get flipped, the receiver cannot detect the error. In
practice, the blocks are much longer (than 3, shown here) and many additional
bits are used for error detection.

The logic at the receiver can be depicted by a finite state acceptor, see
Figure 4.17. Here, a block is accepted iff it has even parity. The receiver will
ask for retransmission of a block if it enters a reject state for that block (this is
not part of the diagram).

1

0 0

Figure 4.17: Checking the parity of a block of arbitrary length

The sender is a finite state transducer that inserts a bit after every three
input bits; see figure 4.18. The start state is 0. The states have the following
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meanings: in a state numbered 2i, 0 ≤ i ≤ 2, the machine has seen i bits of
input of the current block (all blocks are 3 bits long) and the current block
parity is even; in state 2i− 1, 1 ≤ i ≤ 2, the machine has seen i bits of input of
the current block and the current block parity is odd. From states 3 and 4, the
machine reads one input bit and outputs the bit read and a parity bit (1 and 0,
respectively).

0

2

4

1

3

0/0

0/0 0/0

1/1

1/1

start

1/1

0

2

4

1

3

0/0

0/0 0/0

1/1

1/1

start

1/1

0/00 0/01

1/11 1/10

Figure 4.18: Append parity bit to get even parity; block length is 3

Exercise 37
Redesign the machine of Fig 4.17 to accept only a 4-bit string.

Exercise 38
Design a machine that accepts a string of symbols, and outputs the same string
by (1) removing all white spaces in the beginning, (2) reducing all other blocks
of white spaces (consecutive white spaces) to a single white space. Thus, the
string (where - denotes a white space)

----Mary----had--a--little---lamb-

is output as
Mary-had-a-little-lamb-

Modify your design so that a trailing white space is not produced.

Exercise 39
A binary string is valid if all blocks of 0s are of even length and all blocks of
1s are of odd length. Design a machine that reads a string and outputs a Y or
N for each bit. It outputs N if the current bit ends a block (a block is ended
by a bit that differs from the bits in that block) and that block is not valid;
otherwise the output is Y . See Table 4.9 for an example. 2
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0 0 1 0 0 0 1 1 0 0 1 1 0 0 1
Y Y Y Y Y Y N Y N Y Y Y N Y Y

Table 4.9: Checking for valid blocks

4.3 Specifying Control Logic Using Finite State
Machines

4.3.1 The Game of Simon

A game that tests your memory —called Simon— was popular during the 80s.
This is an electronic device that has a number of keys. Each key lights up on
being pressed or on receiving an internal pulse.

The game is played as follows. The device lights up a random sequence of
keys; call this sequence a challenge, and the player is expected to press the same
sequence of keys. If the player’s response matches the challenge, the device
buzzes happily, otherwise sadly. Following a successful response, the device
poses a longer challenge. The challenge for which the player loses (the player’s
response differs from the challenge) is a measure of the memory capability of
the player.

We will represent the device by a finite state machine, ignoring the lights
and buzzings. Also, we simplify the problem by having 2 keys, marked 0 and
1. Suppose the challenge is a 2-bit sequence (generated randomly within the
machine). Figure 4.19 shows a finite state machine that accepts 4 bits of input
(2 from the device and 2 from the player) and enters an accepting state only if
the first two bits match the last two.

Exercise 40

The device expects the player to press the keys within 30 seconds. If no key
is pressed in this time interval, the machine transits to the initial state (and
rejects the response). Assume that 30 seconds after the last key press the device
receives the symbol p (for pulse) from an internal clock. Modify the machine in
Figure 4.19 to take care of this additional symbol. You may assume that p is
never received during the input of the first 2 bits. 2

Remark Finite state machines are used in many applications where the pas-
sage of time or exceeding a threshold level for temperature, pressure, humidity,
carbon-monoxide, or similar analog measures, causes a state change. A sensor
converts the analog signals to digital signals which are then processed by a finite
state machine. A certain luxury car has rain sensors mounted in its windshield
that detect rain and turn on the wipers. (Be careful when you go to a car wash
with this car.) 2
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0 1

0 1 0 1

100 1

0 1

Figure 4.19: A Simplified game of Simon

4.3.2 Soda Machine

A soda machine interacts with a user to deliver a product. The user provides
the input string to the machine by pushing certain buttons and depositing some
coins. The machine dispenses the appropriate product provided adequate money
has been deposited. Additionally, it may return some change and display warn-
ing messages.

We consider a simplified soda machine that dispenses two products, A and
B. A costs 15¢ and B 20¢. The machine accepts only nickels and dimes. It
operates according to the following rules.

1. If the user presses the appropriate button —a for A and b for B— after
depositing at least the correct amount —15¢ for A and 20¢ for B— the
machine dispenses the item and returns change, if any, in nickels.

2. If the user inserts additional coins after depositing 20¢ or more, the last
coin is returned.

3. If the user asks for an item before depositing the appropriate amount, a
warning light flashes for 2 seconds.

4. The user may cancel the transaction at any time. The deposit, if any, is
returned in nickels.

The first step in solving the problem is to decide on the input and output
alphabets. I propose the following input alphabet:

{n, d, a, b, c}.
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Insertion of a nickel (resp., dime) is represented by n (resp., d), pressing the but-
tons for A (resp., B) is represented by a (resp., b), and pressing the cancellation
button is represented by c.

The output alphabet of the machine is

{n, d, A, B, w}.

Returning a nickel (resp., dime) is represented by n (resp., d). A string like nnn
represents the return of 3 nickels. Dispensing A (resp., B) is represented by A
(resp., B). Flashing the warning light is represented by w.

The machine shown in Figure 4.20 has its states named after the multiples of
5, denoting the total deposit at any point. No other deposit amount is possible,
no other number lower than 25 is divisible by 5 (a nickel’s value) and no number
higher than 25 will be accepted by the machine. (Why do we have a state 25
when the product prices do not exceed 20?) The initial state is 0. In Figure 4.20,
all transitions of the form c/nnn . . . are directed to state 0.

n n n n0 2515

b/w
a/w
b/w

c/

20

a/w
b/w

a/w b/w

dddd

n/n

a/A,nn

b/B,n

a/A,n

b/B

n/n

a/A

105

c/n
nnc/ c/nnn c/nnnn

c/nnnnn

d/d d/d

All edges labeled with c/... are directed to state 0

Figure 4.20: Soda Machine; transitions c/nnn . . . go to state 0

Exercise 41

Design a soda machine that dispenses three products costing 35¢, 55¢ and 75¢.
It operates in the same way as the machine described here. 2

4.4 Regular Expressions

We have seen so far that a finite state machine is a convenient way of defining
certain patterns (but not all). We will study another way, regular expressions, of
defining patterns that is exactly as powerful as finite state machines: the same
set of patterns can be defined by finite state machines and regular expressions.

Suppose we want to search a file for all occurrences of simple integer, where a
simple integer is either 0 or a non-zero digit followed by any number of digits. We
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can define the pattern by a finite state machine. We can also write a definition
using a regular expression:

0 | (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗

4.4.1 What is a Regular Expression?

A regular expression is like an arithmetic expression. An arithmetic expression,
such as 3 ∗ (x + 5), has operands 3, x, 5 and operators + and ∗. For a regu-
lar expression, we have an associated alphabet that plays the role of constants,
like 3 and 5. A regular expression may have operands (like x in the arithmetic
expression) that are names of other regular expressions. We have three oper-
ators: concatenation (denoted by a period or simple juxtaposition), union or
alternation (denoted by |) and closure (denoted by ∗). The first two operators
are binary infix operators like the arithmetic operators plus and times; the last
one is a unary operator, like unary minus, which is written after its operand as
a superscript. More formally, a regular expression defines a set of strings, and
it has one of the following forms:

the symbol φ, denoting an empty set of strings, or
the symbol ε, denoting a set with an empty string, or
a symbol of the alphabet,

denoting a set with only one string which is that symbol, or
pq, where p and q are regular expressions,

denoting a set of strings obtained by concatenation
of strings from p with those of q, or

p | q, where p and q are regular expressions,
denoting the union of the sets corresponding to p and q, or

p∗, where p is a regular expression,
denoting the closure of
(zero or more concatenations of the strings in) the set corresponding to p.

Examples of Regular Expressions Let the alphabet be {α, β, γ}.

ε, φ, α, β, γ
εα, αβ, αφ, ((εφ)ε)φ
(αβ | α((αβ)ε)) | (α | ε)
((αβ)∗(α((αβ)ε))∗)((α | ε) | αβ)∗

((α(αβ)∗ | (βα)∗β)∗αβ) | ((αγ)∗(γα)∗) 2

Binding Power To avoid execessive number of parentheses, we impose a
precedence order (binding power) over the operators; operators in order of in-
creasing binding power are: alternation, concatenation and closure. So, αβ∗ | α∗β
is (α(β∗)) | ((α∗)β). 2

Each regular expression stands for a set of strings.
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Name Regular expression Strings
p = α | αβ | ααβ {α, αβ, ααβ}
q = β | βγ | ββγ {β, βγ, ββγ}

pq {αβ, αβγ, αββγ,
αββ, αββγ, αβββγ,
ααββ, ααββγ, ααβββγ}

p | q {α, αβ, ααβ, β, βγ, ββγ}
p∗ {ε,

α, αβ, ααβ,
αα, ααβ, αααβ,
αβα, αβαβ,
αβααβ, . . .}

Exercise 42

1. With the given alphabet what are the strings in εα, αε, φα, φε, εφ?

2. What is the set of strings (αβ | ααβ)(βα | εαβε)?

3. What is the set of strings (α | β)∗? 2

Note on closure One way to think of closure is as follows:

p∗ = ε | p | pp | ppp | . . .

The right side is not a legal regular expression because it has an infinite num-
ber of terms in it. The purpose of closure is to make the right side a regular
expression. 2

4.4.2 Examples of Regular Expressions

1. a | bc∗d is {a, bd, bcd, bccd, bcccd, . . .}.

2. All integers are defined by (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗. How would
you avoid the “empty” integer?

3. Define a simple integer to be either a 0 or a nonzero digit followed by any
number of digits:
0 | (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗.
Show that 3400 is an integer, but 0034 and 00 are not.

The definition of a simple integer can be simplified by naming certain
subexpressions of the regular expression.

Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
pDigit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
simple integer = 0 | (pDigit Digit∗)

4. Legal identifiers in Java. Note that a single letter is an identifier.
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Letter = A | B | . . . Z | a | b | . . . z
Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
identifier = Letter(Letter | Digit)∗

5. Words in which all the vowels appear in order:

(Letter∗)a(Letter∗)e(Letter∗)i(Letter∗)o(Letter∗)u(Letter∗)

6. An increasing integer is a nonempty integer whose digits are strictly in-
creasing. The following regular expression definition of increasing integer
is due to Ben Finkel (class of Fall 2009).

Let us define int i, for 0 ≤ i ≤ 9, to be an increasing integer whose first
digit is greater than or equal to i. Then, an increasing integer is

IncInt = int0

To define int i, 0 ≤ i ≤ 9, it is easier to start with the highest index, 9,
and work downwards.

int9 = 9
int8 = 8 | 8 int9 | int9 = 8 | (ε | 8)int9
int7 = 7 | 7 int8 | int8 = 7 | (ε | 7)int8
int i = i | i int i+1 | int i+1 = i | (ε | i)int i+1, for 0 ≤ i < 9

Exercise 43

The following solution has been proposed for the increasing integer problem:
0∗1∗2∗3∗4∗5∗6∗7∗8∗9∗. What is wrong with it?

Solution The given expression generates non-decreasing strings, not just in-
creasing strings. So, 11 is generated.

The following solution almost corrects the problem; each integer is generated
at most once, but it generates the empty string. Write [i] as a shorthand for ε|i.

[0][1][2][3][4][5][6][7][8][9]

4.4.3 Algebraic Properties of Regular Expressions

We give some of the essential identities of the Regular Expression algebra.

1. Identity for Union (φ | R) = R, (R | φ) = R

2. Identity for Concatenation (εR) = R, (Rε) = R

3. (φR) = φ, (Rφ) = φ

4. Commutativity of Union (R | S) = (S | R)
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5. Associativity of Union ((R | S) | T ) = (R | (S | T ))

6. Associativity of Concatenation ((RS)T ) = (R(ST ))

7. Distributivity of Concatenation over Union
(R(S | T )) = (RS | RT )
((S | T )R) = (SR | TR)

8. Idempotence of Union (R | R) = R

9. Closure
φ∗ = ε
RR∗ = R∗R
R∗ = (ε | RR∗)

Exercise 44

Write regular expressions for the following sets of binary strings.

1. Strings whose numerical values are even.

2. Strings whose numerical values are non-zero.

3. Strings that have at least one 0 and at most one 1.

4. Strings in which the 1s appear contiguously.

5. Strings in which every substring of 1s is of even length. 2

Exercise 45

Define the language over the alphabet {0, 1, 2} in which consecutive symbols
are different. 2

Exercise 46

What are the languages defined by

1. (0∗1∗)∗

2. (0∗ | 1∗)∗

3. ε∗

4. (0∗)∗

5. (ε | 0∗)∗ 2
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4.4.4 Solving Regular Expression Equations

We find it convenient to write a long definition, such as that of IncInt in page 93,
by using a number of sub-definitions, such as int9 through int0. It is often
required to eliminate all such variables from a regular expression and get a
(long) expression in which only the symbols of the alphabet appear. We can do
it easily for a term like int8 that is defined to be 8 | (ε | 8)int9: replace int9
by its definition to get 8 | (ε | 8)9, which is (8| 9| 89). However, in many cases
the equations are recursive, so this trick will not work. For example, let p and
q be sets of binary strings that have even number of 1s and odd number of 1s,
respectively. Then,

p = 0∗ | 0∗1q
q = 0∗1p

Replace q in the definition of p to get

p = 0∗ | 0∗10∗1p

This is a recursive equation. We see that p is of the form p = 0∗ | αp
where string α does not name p (here, α = 0∗10∗1). Then p = 0∗α∗, that is,
p = 0∗(0∗10∗1)∗. Hence, q = 0∗1(0∗(0∗10∗1)∗).

A more elaborate example It is required to define a binary string that is a
multiple of 3 considered as a number. Thus, 000 and 011 are acceptable strings,
but 010 is not. Let bi, 0 ≤ i ≤ 2, be a binary string that leaves a remainder of
i after division by 3. We have:

b0 = ε | b00 | b11 (1)
b1 = b01 | b20 (2)
b2 = b10 | b21 (3)

These equations can be understood by answering the following questions: on
division by 3 if p leaves a remainder of i, 0 ≤ i ≤ 2, then what are the remainders
left by p0 and p1? Let value(p) denote the value of string p as an integer; then,
value(p0) = 2× value(p) and value(p1) = 2× value(p) + 1.

We solve these equations to create a regular expression for b0. We had noted
previously that the solution to p = ε | αp, where string α does not name p, is
p = α∗. We generalize this observation.

Observation: Given that p = a | αp, where strings a and α do not name p,
we have p = α∗a. Dually, given that p = a | pα, where strings a and α do not
name p, we have p = aα∗.

We prove validity of the second observation. Substitute aα∗ for p in the
equation and show that a | pα = p.

a | pα
= {replace p by aα∗}
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a | aα∗α
= {apply (7) in Section 4.4.3}

a(ε | α∗α)
= {α∗ = ε | α∗α, see (9) in Section 4.4.3}

aα∗

= {replace aα∗ by p}
p 2

Apply this observation to (3) with p, a, α set to b2, b10, 1 to get

b2 = b101∗

In the RHS of (2), replace b2 by b101∗:

b1 = b01 | b101∗0

Apply the observation on this equation with p, a, α set to b1, b01, 01∗0.

b1 = b01(01∗0)∗

Replace b1 in the RHS of (1) by the RHS above.

b0 = ε | b00 | b01(01∗0)∗1, or
= ε | b0(0 | 1(01∗0)∗1)

Apply the observation with p, a, α set to b0, ε, (0 | 1(01∗0)∗1).

b0 = ε (0 | 1(01∗0)∗1)∗, or
= (0 | 1(01∗0)∗1)∗

Exercise 47

The definition of b0 allows the empty string to be regarded as a number. Fix
the definitions so that a number is a non-empty string. Make sure that your fix
does not result in every number starting with 0.

Solution The simple fix is to modify equation (1).

b0 = 0 | b00 | b11 (1’)

But this has the effect of every number starting with 0. To avoid this problem,
modify equation (2) to include 1 as a possibility for b1. The equations now
become

b0 = 0 | b00 | b11 (1’)
b1 = 1 | b01 | b20 (2’)
b2 = b10 | b21 (3)

Solve these equations.
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4.4.5 From Regular Expressions to Machines

Regular expressions and finite state machines are equivalent: for each regular
expression R there exists a finite state machine F such that the set of strings in
R is the set of strings accepted by F . The converse also holds. I will not prove
this result, but will instead give an informal argument.

First, let us construct a machine to recognize the single symbol b. The
machine has a start state S, an accepting state F and a rejecting state G.
There is a transition from S to F labeled b, a transition from S to G labeled
with all other symbols and a transition from F to G labeled with all symbols.
The machine remains in G forever (i.e., for all symbols the machine transits
from G to G), see Figure 4.21. In this figure, Alph stands for the alphabet.

S

F
G

b

Alph

Alph

Alph − {b}

Figure 4.21: Machine that accepts b

Using our convention about permanently rejecting states, see page 77, we
will simplify Figure 4.21 to Figure 4.22.

S

F

b

Figure 4.22: Machine that accepts b, simplified

How do we construct a machine to recognize concatenation? Suppose we
have a machine that accepts a regular expression p and another machine that
accepts q. Suppose p’s machine has a single accepting state. Then we can merge
the two machines by identifying the accepting state of the first machine with the
start state of the second. We will see an example of this below. You may think
about how to generalize this construction when the first machine has several
accepting states.

Next, let us consider closure. Suppose we have to accept c∗. The machine
in Figure 4.23 does the job.

Now, let us put some of these constructions together and build a machine
to recognize bc∗. The machine is shown in Figure 4.24.
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F

c

Figure 4.23: Machine that accepts c∗

start

c

b

S

F

Figure 4.24: Machine that accepts bc∗

You can see that it is a concatenation of a machine that accepts b and one
that accepts c∗. Next, let us construct a machine that accepts bc∗ | cb∗. Clearly,
we can build machines for both bc∗ and cb∗ separately. Building their union is
easy, because bc∗ and cb∗ start out with different symbols, so we can decide
which machine should scan the string, as shown in Figure 4.25.

start

c

b c

b

Figure 4.25: Machine that accepts bc∗ | cb∗

Exercise 48

Construct a machine to accept bc∗ | bd∗. 2
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4.4.6 Regular Expressions in Practice; from GNU Emacs

The material in this section is taken from the online GNU Emacs manual1.
Regular expressions have a syntax in which a few characters are special

constructs and the rest are "ordinary". An ordinary character is a simple regular
expression which matches that same character and nothing else. The special
characters are ‘$’, ‘^’, ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’ and ‘\’. Any other character
appearing in a regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’
is a regular expression that matches the string ‘f’ and no other string. (It does
*not* match the string ‘ff’.) Likewise, ‘o’ is a regular expression that matches
only ‘o’. (When case distinctions are being ignored, these regexps also match
‘F’ and ‘O’, but we consider this a generalization of "the same string", rather
than an exception.)

Any two regular expressions A and B can be concatenated. The result is
a regular expression which matches a string if A matches some amount of the
beginning of that string and B matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’
to get the regular expression ‘fo’, which matches only the string ‘fo’. Still trivial.
To do something nontrivial, you need to use one of the special characters. Here
is a list of them.

‘. (Period)’ is a special character that matches any single character except a
newline. Using concatenation, we can make regular expressions like ‘a.b’ which
matches any three-character string which begins with ‘a’ and ends with ‘b’.

‘*’ is not a construct by itself; it is a postfix operator, which means to match
the preceding regular expression repetitively as many times as possible. Thus,
‘o*’ matches any number of ‘o’s (including no ‘o’s).

‘*’ always applies to the *smallest* possible preceding expression. Thus,
‘fo*’ has a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so
on.

The matcher processes a ‘*’ construct by matching, immediately, as many
repetitions as can be found. Then it continues with the rest of the pattern. If
that fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in case that makes it possible to match the rest of the pattern. For
example, matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to match
all three ‘a’s; but the rest of the pattern is ‘ar’ and there is only ‘r’ left to match,
so this try fails. The next alternative is for ‘a*’ to match only two ‘a’s. With
this choice, the rest of the regexp matches successfully.

‘+’ is a postfix character, similar to ‘*’ except that it must match the pre-
ceding expression at least once. So, for example, ‘ca+r’ matches the strings ‘car’
and ‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

‘?’ is a postfix character, similar to ‘*’ except that it can match the preceding
expression either once or not at all. For example, ‘ca?r’ matches ‘car’ or ‘cr’;
nothing else.

1Copyright (C) 1989,1991 Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139, USA
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‘[ ... ]’ is a "character set", which begins with ‘[’ and is terminated by a ‘]’.
In the simplest case, the characters between the two brackets are what this set
can match.

Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string
composed of just ‘a’s and ‘d’s (including the empty string), from which it follows
that ‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

You can also include character ranges a character set, by writing two char-
acters with a ‘-’ between them. Thus, ‘[a-z]’ matches any lower-case letter.
Ranges may be intermixed freely with individual characters, as in ‘[a-z$%.]’,
which matches any lower case letter or ‘$’, ‘%’ or period.

Note that the usual special characters are not special any more inside a char-
acter set. A completely different set of special characters exists inside character
sets: ‘]’, ‘-’ and ‘^’.

To include a ‘]’ in a character set, you must make it the first character. For
example, ‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ at the beginning or
end of a range. To include ‘^’, make it other than the first character in the set.

‘[^ ... ]’ ‘[^’ begins a "complemented character set", which matches any
character except the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters
*except* letters and digits.

‘^’ is not special in a character set unless it is the first character. The
character following the ‘^’ is treated as if it were first (‘-’ and ‘]’ are not special
there).

A complemented character set can match a newline, unless newline is men-
tioned as one of the characters not to match. This is in contrast to the handling
of regexps in programs such as ‘grep’.

‘^’ is a special character that matches the empty string, but only at the
beginning of a line in the text being matched. Otherwise it fails to match
anything. Thus, ‘^foo’ matches a ‘foo’ which occurs at the beginning of a line.

‘$’ is similar to ‘^’ but matches only at the end of a line. Thus, ‘xx*$’
matches a string of one ‘x’ or more at the end of a line.

‘\’ has two functions: it quotes the special characters (including ‘\’), and it
introduces additional special constructs.

Because ‘\’ quotes special characters, ‘\$’ is a regular expression which
matches only ‘$’, and ‘\[’ is a regular expression which matches only ‘[’, etc.

For the most part, ‘\’ followed by any character matches only that character.
However, there are several exceptions: two-character sequences starting with ‘\’
which have special meanings. The second character in the sequence is always
an ordinary character on their own. Here is a table of ‘\’ constructs.

‘\|’ specifies an alternative. Two regular expressions A and B with ‘\|’ in
between form an expression that matches anything that either A or B matches.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|’ applies to the largest possible surrounding expressions. Only a sur-
rounding ‘\( ... \)’ grouping can limit the scope of ‘\|’.

Full backtracking capability exists to handle multiple uses of ‘\|’.

‘\( ... \)’ is a grouping construct that serves three purposes:
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1. To enclose a set of ‘\|’ alternatives for other operations. Thus, ‘\(foo\|bar\)x’
matches either ‘foox’ or ‘barx’.

2. To enclose a complicated expression for the postfix operators ‘*’, ‘+’ and
‘?’ to operate on. Thus, ‘ba\(na\)*’ matches ‘bananana’, etc., with any (zero
or more) number of ‘na’ strings.

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical
grouping; it is a separate feature which is assigned as a second meaning to the
same ‘\( ... \)’ construct. In practice there is no conflict between the two
meanings. Here is an explanation of this feature:

‘\D’ after the end of a ‘\( ... \)’ construct, the matcher remembers the
beginning and end of the text matched by that construct. Then, later on in the
regular expression, you can use ‘\’ followed by the digit D to mean "match the
same text matched the Dth time by the ‘\( ... \)’ construct."

The strings matching the first nine ‘\( ... \)’ constructs appearing in a
regular expression are assigned numbers 1 through 9 in order that the open-
parentheses appear in the regular expression. ‘\1’ through ‘\9’ refer to the text
previously matched by the corresponding ‘\( ... \)’ construct.

For example, ‘\(.*\)\1’ matches any newline-free string that is composed
of two identical halves. The ‘\(.*\)’ matches the first half, which may be
anything, but the ‘\1’ that follows must match the same exact text.

If a particular ‘\( ... \)’ construct matches more than once (which can
easily happen if it is followed by ‘*’), only the last match is recorded.

‘\`’ matches the empty string, provided it is at the beginning of the buffer.

‘\'’ matches the empty string, provided it is at the end of the buffer.

‘\b’ matches the empty string, provided it is at the beginning or end of
a word. Thus, ‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word.
‘\bballs?\b’ matches ‘ball’ or ‘balls’ as a separate word.

`\B’ matches the empty string, provided it is *not* at the beginning or end
of a word.

‘\<’ matches the empty string, provided it is at the beginning of a word.

‘\>’ matches the empty string, provided it is at the end of a word.

‘\w’ matches any word-constituent character. The syntax table determines
which characters these are.

‘\W’ matches any character that is not a word-constituent.

‘\sC’ matches any character whose syntax is C. Here C is a character which
represents a syntax code: thus, ‘w’ for word constituent, ‘(’ for open-parenthesis,
etc. Represent a character of whitespace (which can be a newline) by either ‘-’
or a space character.

‘\SC’ matches any character whose syntax is not C.

The constructs that pertain to words and syntax are controlled by the setting
of the syntax table.

Here is a complicated regexp, used by Emacs to recognize the end of a
sentence together with any whitespace that follows. It is given in Lisp syntax to
enable you to distinguish the spaces from the tab characters. In Lisp syntax, the
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string constant begins and ends with a double-quote. ‘\"’ stands for a double-
quote as part of the regexp, ‘\\’ for a backslash as part of the regexp, ‘\t’ for
a tab and ‘\n’ for a newline.

"[.?!][]\"')]*\\($\\|\t\\| \\)[ \t\n]*"

This contains four parts in succession: a character set matching period, ‘?’,
or ‘!’; a character set matching close-brackets, quotes, or parentheses, repeated
any number of times; an alternative in backslash-parentheses that matches end-
of-line, a tab, or two spaces; and a character set matching whitespace characters,
repeated any number of times.

To enter the same regexp interactively, you would type TAB to enter a
tab, and ‘C-q C-j’ to enter a newline. You would also type single slashes as
themselves, instead of doubling them for Lisp syntax.

4.5 Enhancements to Finite State Machines

Finite state machines may be enhanced —by adding structures to states and
transitions— which make them effective in specifying a variety of hardware and
software systems. They are particularly effective in specifying control systems.
We will study a few enhancements in this section. Much of this material is
inspired by Statecharts [20], introduced by David Harel in the mid 80s. State-
charts have been very influential in software specifications and designs, and they
have inspired modeling systems such as UML [17]. We will cover a very small
subset of the theory of statecharts, and adopt different notations, terminology
and semantics.

Consider the finite state machine shown in Figure 4.26 (which is same as
Figure 4.11 of Section 4.2.2, page 81). It accepts a string which has even number
of 0s and odd number of 1s. The machine can be described more succinctly by
employing two boolean variables, zero and one, which convey the parity of the
number of zeroes and ones in the string. We can then express the logic using
the machine in Figure 4.27.

0

11

0
D

start
A B

C

Figure 4.26: Accept strings with even number of 0s and odd number of 1s

In Figure 4.27, each transition has the form x → S, where x is a symbol,
0 or 1, and S is an assignment to a variable (Unfortunately, I have to use
~zero in the figure, instead of ¬zero, due to limitations of available fonts).
The initial state has an associated transition that assigns the initial values of
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1 −−> one := ~one

zero := true

one := true

0 −−> zero := ~zero

Figure 4.27: Count parity of 0s and 1s

the variables. There is no explicit accepting state; we have to specify that the
string is accepted if zero ∧ ¬one holds. As this example shows, we carry part
of the state information in the variables.

Finite state machines embody both control and data. Using variables to en-
code data leaves us with the problem of encoding control alone, often a simpler
task. In this section, we develop the notations and conventions for manipulat-
ing variable values. Additionally, we describe how a state may have internal
structure; a state can itself be a finite state machine.

Note: We had earlier used the notation s/t in finite state transducers (see
Section 4.2.3) to denote that on reading symbol s, the machine makes a state
transition and outputs string t. We now employ a slightly different notation,
replacing “/” by “ → ”, which is a more common notation in software design.

Convention If no transition is specified out of state s for some condition c,
then the machine remains in state s if c holds.

4.5.1 Adding Structures to Transitions

As we have remarked earlier, the state in a finite state machine is an aggregate
of control and data states. It is not always clear what constitutes control and
what is data, but it is often possible to reduce the size of a machine (the size is
the number of states) by using variables. The previous example, of recognizing
a string with even number of 0s and odd number of 1s, showed a small reduction
in size. We motivate the technique with a more realistic example.

An identifier in some programming language is defined to be a string over
letters and digits whose first symbol is a letter and length is at most 6. Using
L for the set of letters and LD for letters and digits, the machine shown in
Figure 4.28 enters an accepting state only for a valid identifier.

The number of states in the machine is related (linearly) to the maximum
length of the identifier. If an identifier is allowed to have length m, there will
be m+ 2 states in the machine, greatly obscuring its intent. In Java, identifiers
may be as long as 216 − 1.
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L LD LD LD LD LD LD

Figure 4.28: Accept valid identifiers

In Figure 4.29, we use variable n for the length of the identifier seen so far.
The size of the machine is 3, independent of the length of identifiers.

L −−> n:= 1

LD, n < 6 −−> n:= n+1

LD, n = 6

Figure 4.29: Accept valid identifiers, using variables

In this figure, we have introduced several ideas. First, there is variable n
and assignment to it. Second, our transitions are more elaborate. The left side
of the → is called guard. The guard may have up to two parts, one for the
symbol (such as LD) and the other to specify a condition (written as a predicate
over the variables introduced). Thus LD, n < 6 → n := n + 1 has guard
LD, n < 6, whose symbol part is LD and predicate part is n < 6. The right
side of → , called the command, is a program that manipulates the variables.
Typically, we have a few assignment statements in the command part, though
statecharts [20] allow arbitrary programs. The left or the right side of the →
may be absent.

A transition takes place only if the guard is satisfied; i.e., the corresponding
symbol is present in the input and the variable values satisfy the given predicate.
A transition is accompanied by execution of the command part.

Introducing variables that can take on unbounded values (such as integer-
valued variables) takes us out of the domain of finite state machines. We can
solve problems that no finite state machine can, such as counting the number of
zeroes in a string. Only the control aspect is embodied as a finite state machine.

4.5.2 Examples of Structured Transitions

4.5.2.1 Balanced Parentheses

Accept a string consisting of left and right parentheses, “(” and “)”, only if it is
completely balanced, as in (), (()) and ()(()). This problem can be solved using
classical finite state machines only if there is a bound on the depth of nesting
of the parentheses; we used depth 3 in an earlier example. The introduction of
variables makes it possible to solve the general problem, though the resulting
solution can not be translated to a classical finite state machine. In Figure 4.30,
n is the number of unmatched “(” in the string seen so far. A string is accepted
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iff n = 0 and the state is A. A transition with “else” guard is taken if no other
guard is satisfied.

n:= 0

( −−> n:= n+1

A

), n > 0 −−> n:= n−1

R
else

Figure 4.30: Accept balanced parentheses

A Variation Same as above but the string contains parentheses and brackets,
“[” and “]”, and they have to be balanced in the customary manner (as in an
arithmetic expression). String ()[(())] is balanced whereas ([)] is not. Merely
counting for each type of bracket is insufficient, because ([)] will then be ac-
cepted.

st:= <>
A

[ −−> push(st,"[")

], top(st) = "[" −−> pop(st)

), top(st) = "(" −−> pop(st)

( −−> push(st,"(")

R
else

Figure 4.31: Accept balanced parentheses and brackets

In Figure 4.31, we use variable st which is a stack of unmatched symbols;
the input string is accepted iff the state is A and st is empty (denoted by <>
in the figure). We use push to push a symbol on the top of the stack, pop to
remove the top symbol of a non- empty stack, and top to get the value of the
top symbol.

4.5.2.2 Simple arithmetic Expression

Consider arithmetic expressions of the form a × b × c + d × e + · · · , where
a, b, c, d, e are constants, the only operators are + and × which alternate
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with the constants, and there are no parentheses. Consider only non-empty
expressions ended by the special symbol #. In Figure 4.32 we show a classical
finite state machine that accepts such strings; here a denotes the next input
constant. Observe that if the symbols + or × are seen in the initial state, the
string is rejected.

a

+

#

X

Figure 4.32: Accepts simple arithmetic expression

Next, we enhance the machine of Figure 4.32 in Figure 4.33 to compute the
value of the arithmetic expression. For example, the machine will accept the
string 3×2+4×1×2# and output 14. The machine that outputs the expression
value is shown in Figure 4.33. There are two integer variables, s and p. Variable
p holds the value of the current term and s the value of the expression excluding
the current term. Thus, for 3×2+4×1×2#, after we have scanned 3×2+4×,
values of p and s are 4 and 3×2 = 6, respectively. The transition marked with ×
denotes that the guard is × and the command part is empty (sometimes called
skip).

s,p:= 0,1

+ −−> s,p:= s+p,1

# −−> print(s+p)a −−> p:= pa

X

Figure 4.33: Computes value of simple arithmetic expression

A Variation We consider more general arithmetic expressions which are of
the same form as described above, but also include parentheses; an example is
3+(4×(2×6+8)×3)+7. These are close to being general arithmetic expressions
in typical programming languages, the only exclusions being subtraction and
division operators (which could be added very simply). Our goal, as before, is
to design a machine that accepts a valid expression ended with the symbol # and
print the value of the expression. We will combine ideas from several machines
developed so far. In particular, we will enhance the machine of Figure 4.33 to
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handle parentheses, and we handle parentheses using the machine of Figure 4.30,
though we have to store partially computed values in a stack, as in Figure 4.31.

The outline of the scheme is as follows. We start evaluating an expression
like 3+(4×(2×6+8)×3)+7 as before, setting s, p = 3, 1 after scanning 3+. Then
on scanning “(”, we save the pair 〈s, p〉 on stack st, and start evaluating the
expression within parentheses as a fresh expression, i.e., by setting s, p := 0, 1.
Again, on encountering “(”, we save s, p = 0, 4 on the stack, and start evaluating
the inner parenthesized expression starting with s, p := 0, 1. On scanning “)”,
we know that evaluation of some parenthesized expression is complete, the value
of the expression is a = s + p and we should resume computation of its outer
expression as if we have seen the constant a. We retrieve the top pair of values
from the stack, assign them to s and p, and simulate the transition that handles
a constant, i.e., we set p := p × a. We store the length of the stack in n,
incrementing it on encountering a “(” and decrementing it for a “)”. A “)” is
accepted only when n > 0 and “#” when n = 0.

+ −−> s,p:= s+p,1

a −−> p:= pas,p,n:= 0,1,0

st := <>

( −−> 

#, n=0 −−> print(s+p)

), n>0 −−> βα

X

Figure 4.34: Computes value of arithmetic expression

Here, α and β are the following program fragments.

α : push(st, 〈s, p〉); s, p := 0, 1; n := n+ 1
β : a := s+ p; pop(st, 〈s, p〉); p := p× a; n := n− 1

Exercise 49

Run the machine of Figure 4.34 on input string 3+(4× (2×6+8)×3)+7# and
show the values of the variables (including contents of the stack) at each step.
Choose several strings that are syntactically incorrect, and run the machine on
each of them.

Exercise 50

(Research) Would it be simpler to specify the machine in Figure 4.34 if we could
call a machine recursively? Explore the possibility of adding recursion to finite
state machines.
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4.5.2.3 Event-based Programming

Enhanced finite state machines are often used to specify and design event-based
systems. An event happens in the external world and the machine has to react
to the event. Consider the dome light in a car that is either “on” or “off”.
Initially, the light is off. The light comes on if a switch is pressed (denote the
switch press by event sw) or if the door is opened (denote by door). The light
goes off if the switch is pressed again (i.e., event sw), the door is closed (denote
by door′) or 5 minutes elapse with the light being on (denote this time-out event
by tmout).

The example just described denotes an elementary event-based system. The
events are sw, door, door′, and tmout. The designer has no control over if or
when the events happen (the time out event is special; it is guaranteed to happen
at the designated time). He has to design a system that enters the correct state
and carries out the appropriate actions when an event happens. The event
may be likened to the occurrence of a symbol. Therefore, we treat each event
as a symbol and use the diagrams as before to depict the state transitions.
Figure 4.35 shows a possible specification of the dome light problem. Here, we
have taken the liberty of writing compound events as boolean combinations of
simpler events. Boolean connectives ∧ and ∨ have the expected meanings, ¬
is problematic and should be avoided. The notions of accepting and rejecting
states are irrelevant for specifications of event based systems.

off on

door’ v sw v tmout

door v sw

Figure 4.35: Control the dome light in a car

Our treatment of this example is inadequate. Suppose that the switch is
pressed to turn on the dome light, the door is then opened and closed. We
would expect the dome light to stay on. But our machine would enter the off
state. Proper development of this example is left as an exercise in page 113.

4.5.3 Adding Structures to States

The classical theory of finite state machines treats a state as an indivisible unit,
devoid of any structure. In this section, we show that we can often simplify a
design by treating a set of states as a single state at a higher level of design,
and exploiting the internal structure of this structured state at a lower level.

For motivation, consider fractional number as defined in Page 79. A frac-
tional number is an integer followed by a period followed by an unsigned integer.
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An acceptor of fractional numbers can be structured as in Figure 4.9 (Page 79),
which may be thought of as having just 2 states: state I to accept an integer
and state U to accept an unsigned integer, the transition from I to U is made
on detecting a period. Next, we treat I and U as being finite state machines
themselves. If the machine is in I, it is also in one of the substates of I.

4.5.3.1 Structured state

A structured state s consists of a set of states, and s is either an or-state or an
and-state. If the machine is in an or-state s, it is also in one of the component
states of s. If the machine is in an and -state s, it is also in all of the component
states of s. The component states of s may themselves be structured states.
A typical finite state machine can be regarded as a single or-state, because the
machine is in one of the component states.

The hierarchy of states induces a tree structure on the states of the machine.
The root corresponds to the whole machine, its component states are its chil-
dren, and each non-leaf state is either an and-state or an or-state. We show
an example of such a machine diagrammatically in Figure 4.36. Here the root
state is an and-state, designated by a triangle, which consists of two component
states. Each component is an or-state consisting of two component states. We
have used boolean logical connectives to show the structure of non-leaf states.

(a v b) ^ (c v d)

a v b

a b c d

c v d

Figure 4.36: A Finite State Machine with tree structure over states

In Figure 4.36, the machine could be in states a and c simultaneously, or in
b and d. In fact, we can enumerate all possible state compositions by taking
the boolean formula that describes the root and writing it in disjunctive normal
form. For the machine in Figure 4.36, the root is (a∨ b)∧ (c∨ d), which is same
as (a ∧ c) ∨ (b ∧ c) ∨ (a ∧ d) ∨ (b ∧ d). The machine state could be given by any
one of the disjuncts.

Exercise 51

Consider a machine whose root is labeled (a ∨ b) ∧ (c ∧ d) ∨ h ∨ (g ∨ (e ∧ f)).
Draw the tree corresponding to this machine and enumerate all possible state
combinations in which the machine could be at any time.
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4.5.3.2 Diagrams of Structured Finite State Machines

We adopt a small number of conventions to depict structured finite state ma-
chines. An or-state is denoted by a region (circle or square) which contains all
its component states. An and-state is similarly denoted, but the components
are additionally separated by dotted lines; see Figure 4.37.

or−state (b) and−state(a)

Figure 4.37: Diagram Conventions for Structured States

We apply these conventions to depict a machine in Figure 4.38 whose struc-
ture is given in Figure 4.36. Since the over-all machine is an and-state, there is
an initial state for each component; we have chosen a and c for initial states in
this example.

The transitions in Figure 4.38 are among the leaf nodes within a compo-
nent. In practice, the transitions often cross state boundaries; there may be a
transition from a to d, for example. The given machine starts in states a and
c, makes transitions within the left component when a 0 is detected and within
the right component for 1. The accepting state is (a, d). This machine accepts
strings with even number of 0s and odd 1s. We have built the machine from two
independent machines, one to keep track of the parity of 0s and the other for
1s. The two machines are similar and the overall machine is a composition of
these two machines. Here, the treatment of each symbol, 0 and 1, is neatly dele-
gated to a single component. Contrast this machine with the one in Figure 4.26
(page 102) for the same problem.

0 1

b

c

d

a

Figure 4.38: A Structured Machine, (a ∨ b) ∧ (c ∨ d)

Since a machine may be in several leaf states simultaneously, several transi-
tions may possibly occur at any moment. The general rule for transition is as
follows: on detecting a symbol, all transitions from the given states are under-
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taken together. In Figure 4.38, each symbol occurs in exactly one component;
so, there is never a simultaneous transition. We describe an example next, where
the general transition rule is applied.

Consider opening a car door. This action has effects on several parts of the
system. The dome light comes on, if the car is moving then a “door open” light
comes on, if the headlights are on then warning chime sounds and if the key is
in the ignition, a message is displayed in the dashboard. We can describe all
these effects by having an and-state that includes each part —dome light, “door
open” light, chime and dashboard— as a component. The event of opening a
door causes simultaneous transitions in each component.

Semantics We have been very lax about specifying the behaviors of enhanced
finite state machines. Unlike a classical machine where the moment of a transi-
tion (“when” the transition happens after a symbol is received) and its duration
(“how long” it takes for the transition to complete) are irrelevant, enhanced ma-
chines have to take such factors into account. It will not do to say that the light
comes on in response to a switch press after an arbitrary delay, if we have to
consider time-out in the design.

A transition takes place instantaneously as soon its guard holds, and if sev-
eral guards hold simultaneously for transitions from a single state, any one of
these transitions may fire. Observe that transitions from different states may
fire simultaneously if their guards hold. We assume that it takes no time at all
to evaluate the guard or execute the command part.

There is no guarantee that a transition t will be executed at all if its guard
holds, because another transition may fire and falsify the predicate in the guard
of t. As an example, consider two machines that share a printer. Each machine
may print if it is ready to print and the printer is free. Therefore, potentially
two transitions are ready to fire at some moment. But as soon as one transi-
tion succeeds, i.e., starts printing, the printer is no longer free and the other
machine’s transition may not fire immediately, or ever. Semantics of concurrent
behavior go beyond the scope of this course.

4.5.4 Examples of Structured States

Convention Henceforth, we omit the surrounding region for a structured
state when there is no ambiguity. Figure 4.39 shows the same machine as in
Figure 4.38.

4.5.4.1 Desk Fan

A desk fan has three switches: (1) a “power” switch to turn the fan off and on,
(2) a “speed” switch that toggles the fan speed between levels 1 and 2, and (3)
a “rotate” switch that causes the fan head to rotate or remain stationary. We
describe the behavior of the fan in Figure 4.40. In Figure 4.40(a), the overall
design of the fan is shown, which describes the function of the power switch.
In Figure 4.40(b), the structure of “on” state is elaborated as an or-state. In
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0 1

a

b

c

d

Figure 4.39: Redrawing the machine in Figure 4.38

Figure 4.40(c), a different design for “on” state is shown; it is an and-state. The
design in Figure 4.40(c) is more modular; it clearly shows that speed and rotate
switches control different aspects of the fan.

power

speed

speed

rotate

s, 1 s,2

r, 1 r, 2

(b)

off

on

rotate rotate

s

2 r

(c)(a)

1

speed

Figure 4.40: A fan with 2 speeds and rotate action

Next, we consider a design modification. Suppose we wish to allow three
speed levels. The modification of Figure 4.40(b) is extensive. But, the modifi-
cations in Figure 4.40(c) can be made only in the left component, as shown in
Figure 4.41; the right component is unaffected.

Next, suppose we wish to add a heater to the fan, which is controlled by a
separate “heat” switch. The heater is either off or on and the heat switch toggles
the state. Initially the heater is off. We simply add another component to “on”
state. We show the entire fan, with 3 speed and the heater in Figure 4.42.

Preventing Certain Transitions An and-state, as shown in Figure 4.42 for
example, allows all combinations of possible states of the components. Quite
often, certain combinations are undesirable. For example, we my wish to prevent
the fan from running at the highest speed (speed 3) while the heat is on. We
accomplish this by preventing the transition from speed 2 to speed 3 if the heat
is on (i.e., the state is h-on), and from h-off to h-on while the speed is at 3. For
state s (leaf or non-leaf), write in(s) as a predicate to denote that the machine
is in state s. We use such predicates in the guards of the transitions to prevent
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2

1

speed

3

rotate

s

r

speed

speed

on

Figure 4.41: Modification of Figure 4.40(c) to allow 3 speeds in the fan
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1

speed

3

rotate

s

r

off

on

power

h−on

heat

speed

speed

h−off

Figure 4.42: Modifications with 3 speeds and heater in the fan

certain transitions. A modified version of Figure 4.42 appears in Figure 4.43
which implements these constraints.

Observe that for and-state x whose component states are set S

y ∈ S ∧ in(y)⇒ in(x) ∧ (∀z : z ∈ S : in(z))

Similarly, for or-state x whose component states are set S

y ∈ S ∧ in(y)⇒ in(x) ∧ (∀z : z ∈ S ∧ z 6= y : ¬in(z))

Exercise 52

Reconsider the problem of the dome light from Section 4.5.2.3 in page 108. The
car state is given by three components: the switch ( the state is off or on), the
door (shut or ajar) and the dome light’s state (off or on). There are two possible
events that can affect the state: (1) opening or closing the door (use event door
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s
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speed,
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h−off

Figure 4.43: Restricting certain state transitions

to toggle between shut and ajar; that is, door′ is same as door), and (2) flipping
the switch (event sw). Flipping the switch has a simple effect on the switch
state, toggling it between off and on. However, the effect on the light state is
more elaborate. If the door is shut, flipping the switch toggles the light state
between off and on. If the door is ajar, the switch event has no effect. Similarly,
if the switch is on then the light is on irrespective of the state of the door. First,
describe the system using a simple finite state machine. Next, describe it using
three components, for the switch, door and light.

4.5.4.2 Keeping Score in a Tennis Game

A tennis game involves two players, a server and a receiver. At any moment
in a game, the score is a pair (sp, rp), where sp is the server’s score and rp
the receiver’s. A score, sp or rp, is one of {0, 15, 30, 40} (don’t ask me how
they came up with these numbers). Thus, typical scores during a game may be
(0, 0), (40, 15) and (40, 40). Initial score is (0, 0).

Each point in the game is won by the server or the receiver. Winning a point
increases the score of the corresponding player (from 30 to 40, for example). A
player wins a game if the his/her score is 40, the opponent’s score is below 40
and the player wins the point. If both scores are 40, a player wins the game
by winning the next two points; if the next two points are not won by a single
player — the server wins a point and the receiver wins the other — the score
reverts back to (40, 40).

First, we show a simple finite state machine for score keeping. The score
keeping machine at a game probably employs the same finite state machine.
In Figure 4.44, we have a matrix of states, where a score (sp, rp) is a matrix
element. There are two states outside the matrix denoting a win by a differ-
ent player, gs for “game to server”, and, dually, gr. Each row of the matrix
corresponds to a fixed score by the server and the column for the receiver. A
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point won by the receiver causes a transition to the right neighbor along a row
(provided there is a right neighbor); similarly a point won by the server causes
transition downward in a column (provided there is a neighbor below). For the
rightmost column, a receiver’s point causes him/her to win the game provided
the server’s score is below 40; similarly, for the server.

The remaining question is to model the behavior at (40, 40). Here, we
do a simple analysis to conclude that a winning point by the receiver merely
decreases the score of the server, so that the score becomes (30, 40); dually, if
the server wins the point the score becomes (40, 30).

0

15

30

40

0 15 30 40

gs

gr

server

receiver 

r

s

r

r
r

s s s

Figure 4.44: Scoring in a tennis game. s/r are points won by server/receiver.

Representation with Structured Transitions We can represent the ma-
chine more succinctly by using structured transitions. The transitions in Fig-
ure 4.45 are labeled with the statement numbers from the following program
fragment.

We employ two variables, sp and rp for the scores of the server and receiver,
respectively. Below, sp′ is the next value higher than sp (i.e., if sp = 30 then
sp′ = 40); similarly, rp′. Variable s represents a point won by the server, and,
similarly, r is a point won by the receiver. Thus, statement 0 represents the
transition to the initial state where both player scores are 0, and 3 represents
the transition from a deuce state where the server wins the point.

0: sp, rp := 0, 0
1: s, sp < 40 → sp := sp′

2: r, rp < 40 → rp := rp′

3: s, sp = 40 ∧ rp = 40 → rp := 30
4: r, sp = 40 ∧ rp = 40 → sp := 30
5: s, sp = 40 ∧ rp < 40 → gs := true
6: r, sp < 40 ∧ rp = 40 → gr := true
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gs gr

0
1,2

3,4

5 6

Figure 4.45: Scoring in a tennis game, using structured transitions

Representation with Structured States The state of the machine is a
tuple; therefore, we can decompose the state into two components, and treat
changes to each component by a separate machine. Such a design is shown in
Figure 4.46. Variables rp and sp refer to the states of the receiver and server.
Observe the transitions when the score is (40, 40).

r r r r, sp<40

s, sp =40

0 15 30 40 gr

0 15 30 40 gs

s s s s, rp<40

r; rp =40

receiver

server

Figure 4.46: Scoring in a tennis game, using structured states

Representation with Structured Transitions and States We combine
the ideas of Figures 4.45 and 4.46 to get Figure 4.47.
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sp <40
gr

r, rp < 40 −−> rp := rp’

s, sp =40 ^ rp < 40

r, sp = 40 ^ rp =40 −−> sp := 30

s, sp < 40 −−> sp := sp’

rp := 0 sp := 0

s, rp = 40 ^ sp =40 −−> rp := 30

r, rp=40 ^
gs

Figure 4.47: Scoring in a tennis game, using structured transitions and states
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Chapter 5

Recursion and Induction

5.1 Introduction

In this set of lectures, I will talk about recursive programming, a program-
ming technique you have seen before. I will introduce a style of programming,
called Functional Programming, that is especially suited for describing recursion
in computation and data structure. Functional programs are often significantly
more compact, and easier to design and understand, than their imperative coun-
terparts. I will show why induction is an essential tool in designing functional
programs.

Haskell I will use a functional programming language, called Haskell. What
follows is a very very small subset of Haskell; you should consult the refer-
ences given at the end of this document for further details. A very good source
is Thompson [51] which covers this material with careful attention to prob-
lems that students typically face. Another very good source is Richards [43],
whose lecture slides are available online. The Haskell manual is available online
at [21]; you should consult it as a reference, particularly its Prelude (haskell98-
report/standard-prelude.html) for definitions of many built-in functions. How-
ever, the manual is not a good source for learning programming. I would recom-
mend the book by Bird [6], which teaches a good deal of programming method-
ology. Unfortunately, the book does not quite use Haskell syntax, but a syntax
quite close to it. Another good source is A Gentle Introduction to Haskell [22]
which covers all the material taught here, and more, in its first 20 pages.

5.2 Preliminaries

5.2.1 Running Haskell programs from command line

The Haskell compiler is installed on all Sun and Linux machines in this depart-
ment. To enter an interactive session for Haskell, type

119
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ghci

The machine responds with something like

Prelude>

At this point, whenever it displays zzz> for some zzz, the machine is waiting
for some response from you. You may type an expression and have its value
displayed on your terminal, as follows.

Prelude> 3+4

7

Prelude> 2^15

32768

5.2.2 Loading Program Files

Typically, Haskell program files have the suffix hs. I load a file Utilities.hs,
which I have stored in a directory called haskell.dir. My input and machine’s
output appear below.

Prelude> :l haskell.dir/Utilities.hs

[1 of 1] Compiling Utilities ( haskell.dir/Utilities.hs, interpreted )

Ok, modules loaded: Utilities.

*Utilities Data.Char>

I have a program in that file to sort a list of numbers. So, now I may write

*Utilities Data.Char> sort[7, 5, 1, 9]

[1,5,7,9]

Let me create a file 337.hs in which I will load all the definitions in this note.
Each time you change a file, by adding or modifying definitions, you have to
reload the file into ghci (a quick way to do this is to use the ghci command :r

which reloads the last loaded file).

5.2.3 Comments

Any string following -- in a line is considered a comment. So, you may write in
a command line:

Prelude> 2^15 -- This is 2 raised to 15

or, in the text of a program

-- I am now going to write a function called "power."

-- The function is defined as follows:

-- It has 2 arguments and it returns

-- the first argument raised to the second argument.
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There is a different way to write comments in a program that works better
for longer comments, like the four lines I have written above: you can enclose a
region within {- and -} to make the region a comment.

{- I am now going to write a function called "power."

The function is defined as follows:

It has 2 arguments and it returns

the first argument raised to the second argument. -}

I prefer to put the end of the comment symbol, -}, in a line by itself.

5.2.4 Program Layout

Haskell uses line indentations in the program to delineate the scope of defini-
tions. A definition is ended by a piece of text that is to the left (columnwise)
of the start of its definition. Thus,

chCase c -- change case

| upper c = uplow c

| otherwise = lowup c

and

ch1Case c -- change case

| upper c = uplow c

| otherwise =

lowup c

are fine. But,

ch2Case c -- change case

| upper c = uplow c

| otherwise =

lowup c

is not. The line lowup c is taken to be the start of another definition. In the
last case, you will get an error message like

ERROR "337.hs":81 - Syntax error in expression (unexpected `;',

possibly due to bad layout)

The semicolon (;) plays an important role; it closes off a definition (implic-
itly, even if you have not used it). That is why you see unexpected ‘;’ in the
error message.
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5.3 Primitive Data Types

Haskell has a number of built-in data types; we will use only integer (called
Int), boolean (called Bool), character (called Char) and string (called String)
types1.

5.3.1 Integer

You can use the traditional integer constants and the usual operators for addi-
tion (+), subtraction (-) and multiplication (*). Unary minus sign is the usual
-, but enclose a negative number within parentheses, as in (-2); I will tell you
why later. Division over integers is written in infix as ‘div‘ and it returns only
the integer part of the quotient. (` is the backquote symbol, usually it is the
leftmost key in the top row of your keyboard.) For division over negative in-
tegers, the following rules are used: for positive x and y, (-x) ‘div‘ (-y) = x

‘div‘ y, and (-x) ‘div‘ y = x ‘div‘ (-y) = −dx/ye. Thus, 5 ‘div‘ 3 is 1 and
(-5) ‘div‘ 3 is -2. Exponentiation is the infix operator ^ so that 2^15 is 32768.
The remainder after division is given by the infix operator `rem` and the infix
operator ‘mod‘ is for modulo; x `mod` y returns a value between 0 and y − 1,
for positive y. Thus, (-2) `rem` 3 is −2 and (-2) `mod` 3 is 1.

Two other useful functions are even and odd, which return the appropriate
boolean results about their integer arguments. Functions max and min take two
arguments each and return the maximum and the minimum values, respectively.
It is possible to write a function name followed by its arguments without any
parentheses, as shown below; parentheses are needed only to enforce an evalu-
ation order.

Prelude> max 2 5

5

The arithmetic relations are < <= == /= > >=. Each of these is a binary op-
erator that returns a boolean result, True or False. Note that equality operator
is written as == and inequality as /=. Unlike in C++, 3 + (5 >= 2) is not a valid
expression; Haskell does not specify how to add an integer to a boolean.

5.3.2 Boolean

There are the two boolean constants, written as True and False. The boolean
operators are:

not -- for negation

&& -- for and

|| -- for or

== -- for equivalence

/= -- for inequivalence (also called "exclusive or")

1Haskell supports two kinds of integers, Integer and Int data types. We will use only
Int.
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Here is a short session with ghci.

Prelude> (3 > 5) || (5 > 3)

True

Prelude> (3 > 3) || (3 < 3)

False

Prelude> (2 `mod` (-3)) == ((-2) `mod` 3)

False

Prelude> even 3 || odd 3

True

5.3.3 Character and String

A character is enclosed within single quotes and a string is enclosed within
double quotes.

Prelude> 'a'

'a'

Prelude> "a b c"

"a b c"

Prelude> "a, b, c"

"a, b, c"

You can compare characters using arithmetic relations; the letters (charac-
ters in the Roman alphabet) are ordered in the usual fashion with the uppercase
letters smaller than the corresponding lowercase letters. The expected ordering
applies to the digits as well.

Prelude> 'a' < 'b'

True

Prelude> 'A' < 'a'

True

Prelude> '3' < '5'

True

There are two functions defined on characters, ord and chr. Function ord(c)

returns the value of the character c in the internal coding table; it is a number
between 0 and 255. Function chr converts a number between 0 and 255 to
the corresponding character. Therefore, chr(ord(c))=c, for all characters c,
and ord(chr(i))=i, for all i, 0 ≤ i < 256. Note that all digits in the order
'0' through '9', all lowercase letters ’a’ through ’z’ and uppercase letters ’A’
through ’Z’ are contiguous in the table. The uppercase letters have smaller ord
values than the lowercase ones.

To use ord and chr you first have to write the following command in the
command line.

import Data.Char
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The machine responds by

Prelude Data.Char>

Prelude Data.Char> ord('a')

97

Prelude Data.Char> chr(97)

'a'

Prelude Data.Char> ord(chr(103))

103

Prelude Data.Char> chr(255)

'\255'

Prelude Data.Char> (ord '9')- (ord '0')

9

Prelude Data.Char> (ord 'a')- (ord 'A')

32

A string is a list of characters; all the rules about lists, described later, apply
to strings.

5.4 Writing Function Definitions

We cannot compute much by working with constants alone. We need to be able
to define functions. The functions cannot be defined by interactive input. We
need to keep a file in which we list all the definitions and load that file.

5.4.1 Function Parameters and Binding

Consider the expression

f 1+1

where f is a function of one argument. In normal mathematics, this will be an
invalid expression, and if forced, you will interpret it as f(1+1). In Haskell, this
is a valid expression and it stands for f(1)+1. I give the binding rules below.

Infix and Prefix Operators I use the term operator to mean a function
of two arguments. An infix operator, such as +, is written between its two
arguments, whereas a prefix operator, such as max, precedes its arguments. You
can convert an infix operator to a prefix operator by putting parentheses around
the function name (or symbol). Thus, (+) x y is the same as x + y. You can
convert from prefix to infix by putting backquotes around an operator, so div

5 3 is the same as 5 ‘div‘ 3.
Most built-in binary operators in Haskell that do not begin with a letter,

such as +, *, &&, and ||, are infix; max, min, rem, div, and mod are prefix. 2

An expression consists of functions, binary infix operators and operands as
in
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-2 + sqr 9 + min 2 7 - 3

Here the first minus (called unary minus) is a prefix operator, sqr is a function
of one argument, + is a binary operator, min is a function of two arguments, and
the last minus is a binary infix operator.

Functions bind more tightly than infix operators. Function arguments are
written immediately following the function name, and the right number of ar-
guments are used up for each function, e.g., one for sqr and two for min. No
parentheses are needed unless your arguments are themselves expressions. So,
for a function g of two arguments, g x y z stands for (g x y) z. If you write g

f x y, it will be interpreted as (g f x) y; so, if you have in mind the expression
g(f(x),y), write it as g (f x) y or g(f(x),y). Now, sqr 9 + min 2 7 - 3 is (sqr
9) + (min 2 7) - 3. As a good programming practice, do not ever write f 1+1;
make your intentions clear by using parentheses, writing (f 1)+1 or f(1+1).

How do we read sqr 9 + min 2 7 × max 2 7? After functions are bound to
their arguments, we get (sqr 9) + (min 2 7) × (max 2 7). That is, we are left
with operators only, and the operators bind according to their binding powers.
Since × has higher binding power than +, the expression is read as (sqr 9) +

((min 2 7) × (max 2 7)).
Operators of equal binding power usually associate to the left; so, 5 - 3 -

2 is (5 - 3) - 2, but this is not always true. Operators in Haskell are either
(1) associative, so that the order does not matter, (2) left associative, as in
binary minus shown above, or (3) right associative, as in 2 ^ 3 ^ 5, which is
2 ^ (3 ^ 5). When in doubt, parenthesize.

In this connection, unary minus, as in -2, is particularly problematic. If you
would like to apply inc to -2, don’t write

inc -2

This will be interpreted as (inc) - (2); you will get an error message. Write
inc (-2). And -5 ‘div‘ 3 is -(5 ‘div‘ 3) which is-1, but (-5) ‘div‘ 3 is -2.

Exercise 53

What is max 2 3 + min 2 3? 2

Note on Terminology In computing, it is customary to say that a function
“takes an argument” and “computes (or returns) a value”. A function, being
a concept, and not an artifact, cannot “do” anything; it simply has arguments
and it has a value for each set of arguments. Yet, the computing terminology is
so prevalent that I will use these phrases without apology in these notes.

5.4.2 Examples of Function Definitions

In its simplest form, a function is defined by: (1) writing the function name,
(2) followed by its arguments, (3) then a “=”, (4) followed by the body of the
function definition.
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Here are some simple function definitions. Note that I do not put any paren-
theses around the arguments, they are simply written in order and parentheses
are put only to avoid ambiguity. We will discuss this matter in some detail
later, in Section 5.4.1 (page 124).

Note: Parameters and arguments I will use these two terms synony-
mously. 2

inc x = x+1 -- increment x

imply p q = not p || q -- boolean implication

digit c = ('0' <= c) && (c <= '9') -- is c a digit?

We test some of our definitions now.

*Main> :l Teaching.dir/337.dir/HaskellFiles.dir/337.hs

*Main> inc 5

6

*Main> imply True False

False

*Main> digit '6'

True

*Main> digit 'a'

False

*Main> digit(chr(inc (ord '8')))

True

*Main> digit(chr(inc (ord '9')))

False

We can use other function names in a function definition.
We can define variables in the same way we define functions; a variable is a

function without arguments. For example,

offset = (ord 'a') - (ord 'A')

Unlike a variable in C++, this variable’s value does not change during the
program execution; we are really giving a name to a constant expression so that
we can use this name for easy reference later.

Exercise 54

1. Write a function to test if its argument is a lowercase letter; write another
to test if its argument is an uppercase letter.

2. Write a function to test if its argument, an integer, is divisible by 6.

3. Write a function whose argument is an uppercase letter and whose value
is the corresponding lowercase letter.
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4. Define a function whose argument is a digit, 0 through 9, and whose value
is the corresponding character '0' through '9'.

5. Define a function max3 whose arguments are three integers and whose value
is their maximum. 2

5.4.3 Conditionals

In traditional imperative programming, we use if-then-else to test some con-
dition (i.e., a predicate) and perform calculations based on the test. Haskell
also provides an if-then-else construct, but it is often more convenient to use
a conditional equation, as shown below. The following function computes the
absolute value of its integer argument.

absolute x

| x >= 0 = x

| x < 0 = -x

The entire definition is a conditional equation and it consists of two clauses.
A clause starts with a bar (|), followed by a predicate (called a guard), an equals
sign (=) and the expression denoting the function value for this case. The guards
are evaluated in the order in which they are written (from top to bottom), and
for the first guard that is true, its corresponding expression is evaluated. So, if
you put x <= 0 as the second guard in the example above, it will work too, but
when x = 0 the expression in the first equation will be evaluated and the result
returned.

You can write otherwise for a guard, denoting a predicate that holds when
none of the other guards hold. An otherwise guard appears only in the last
equation. The same effect is achieved by writing True for the guard in the last
equation. If no guard is True in a conditional equation, you will get a run-tme
error message.

Given below is a function that converts the argument letter from upper to
lowercase, or lower to uppercase, as is appropriate. Assume that we have already
written two functions, uplow (to convert from upper to lowercase), lowup (to
convert from lower to uppercase), and a function upper whose value is True iff
its argument is an uppercase letter.

chCase c -- change case

| upper c = uplow c

| otherwise = lowup c

The test with ghci gives:

*Main> chCase 'q'

'Q'

*Main> chCase 'Q'

'q'
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Exercise 55

1. Define a function that returns -1, 0 or +1, depending on whether the
argument is negative, zero or positive.

2. Define a function that takes three integer arguments, p, q and r. If these
arguments are the lengths of the sides of a triangle, the function value is
True; otherwise, it is False. Recall from geometry that every pair of values
from p, q and r must sum to a value greater than the third one for these
numbers to be the lengths of the sides of a triangle.

max3 p q r = max p (max q r)

triangle p q r = (p+q+r) > (2* (max3 p q r))

5.4.4 The where Clause

The following function has three arguments, x, y and z, and it determines if
x2 + y2 = z2.

pythagoras x y z = (x*x) + (y*y) == (z*z)

The definition would be simpler to read in the following form

pythagoras x y z = sqx + sqy == sqz

where

sqx = x*x

sqy = y*y

sqz = z*z

The where construct permits local definitions, i.e., defining variables (and
functions) within a function definition. The variables sqx, sqy and sqz are
undefined outside this definition.

We can do this example by using a local function to define squaring.

pythagoras x y z = sq x + sq y == sq z

where

sq p = p*p

5.4.5 Pattern Matching

Previously, we wrote a function like

imply p q = not p || q

as a single equation. We can also write it in the following form in which there
are two equations.

imply False q = True

imply True q = q
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Observe that the equations use constants in the left side; these constants are
called literal parameters. During function evaluation with a specific argument
—say, False True— each of the equations are checked from top to bottom to find
the first one where the given arguments match the pattern of the equation. For
imply False True, the pattern given in the first equation matches, with False

matching False and q matching True.
We can write an even more elaborate definition of imply:

imply False False = True

imply False True = True

imply True False = False

imply True True = True

The function evaluation is simply a table lookup in this case, proceeding se-
quentially from top to bottom.

Pattern matching has two important effects: (1) it is a convenient way of
doing case discrimination without writing a sphagetti of if-then-else statements,
and (2) it binds names to formal parameter values, i.e., assigns names to com-
ponents of the data structure —q in the first example— which may be used in
the function definition in the right side.

Pattern matching on integers can use simple arithmetic expressions, as shown
below in the definition of the successor function.

suc 0 = 1

suc (n+1) = (suc n)+1

Asked to evaluate suc 3, the pattern in the second equation is found to match
—with n = 2— and therefore, evaluation of (suc 3) is reduced to the evaluation
of (suc 2) + 1.

Pattern matching can be applied in elaborate fashions, as we shall see later.

5.5 Recursive Programming

Recursive programming is closely tied to problem decomposition. In program
design, it is common to divide a problem into a number of subproblems where
each subproblem is easier to solve by some measure, and the solutions of the
subproblems can be combined to yield a solution to the original problem. A
subproblem is easier if its solution is known, or if it is an instance of the original
problem, but over a smaller data set. For instance, if you have to sum twenty
numbers, you may divide the task into four subtasks of summing five numbers
each, and then add the four results. A different decomposition may (1) scan the
numbers, putting negative numbers in one subset, discarding zeros and putting
positive numbers in another subset, (2) sum the positive and negative subsets
individually, and (3) add the two answers. In this case, the subproblem (1) is
different in kind from the original problem.

In recursive programming, typically, a problem is decomposed into subprob-
lems of the same kind, and we apply the same solution procedure to each of the
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subproblems, further subdividing them. A recursive program has to specify the
solutions for the very smallest cases, those which cannot be decomposed any
further.

The theoretical justification of recursive programming is mathematical in-
duction. In fact, recursion and induction are so closely linked that they are
often mentioned in the same breath (see the title of this chapter); I believe we
should have used a single term for this concept.

5.5.1 Computing Powers of 2

Compute 2n, for n ≥ 0, using only doubling. As in typical induction, we consider
two cases, a base value of n and the general case where n has larger values. Let
us pick the base value of n to be 0; then the function value is 1. For n+1 the
function value is double the function value of n.

power2 0 = 1

power2 (n+1) = 2 * (power2 n)

How does the computer evaluate a call like power2 3? Here is a very rough
sketch. The interpreter has an expression to evaluate at any time. It picks
an operand (a subexpression) to reduce. If that operand is a constant, there
is nothing to reduce. Otherwise, it has to compute a value by applying the
definitions of the functions (operators) used in that expression. This is how the
evaluation of such an operand proceeds. The evaluator matches the pattern in
each equation of the appropriate function until a matching pattern is found.
Then it replaces the matched portion with the right side of that equation. Let
us see how it evaluates power2 3.

power2 3

= 2 * (power2 2) -- apply function definition on 3

= 2 * (2 * (power2 1)) -- apply function definition on 2

= 2 * (2 * (2 * (power2 0))) -- apply function definition on 1

= 2 * (2 * (2 * (1))) -- apply function definition on 0

= 2 * (2 * (2)) -- apply definition of *

= 2 * (4) -- apply definition of *

= 8 -- apply definition of *

What is important to note is that each recursive call is made to a strictly
smaller argument, and there is a smallest argument for which the function value
is explicitly specified. In this case, numbers are compared by their magnitudes,
and the smallest number is 0. You will get an error in evaluating power2 (-1).
We will see more general recursive schemes in which there may be several base
cases, and the call structure is more elaborate, but the simple scheme described
here, called primitive recursion, is applicable in a large number of cases.
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5.5.2 Counting the 1s in a Binary Expansion

Next, let us program a function whose value is the number of 1s in the binary
expansion of its argument, where we assume that the argument is a natural
number. Imagine scanning the binary expansion of a number from right to left
(i.e., from the lower order to the higher order bits) starting at the lowest bit; if
the current bit is 0, then we ignore it and move to the next higher bit, and if it is
1, then we add 1 to a running count (which is initially 0) and move to the next
higher bit. Checking the lowest bit can be accomplished by the functions even

and odd. Each successive bit can be accessed via integer division by 2 (right
shift).

count 0 = 0

count n

| even n = count (n `div` 2)

| odd n = count (n `div` 2) + 1

Note on pattern matching It would have been nice if we could have written
the second equation as follows.

count (2*t) = count t

count (2*t + 1) = (count t) + 1

Unfortunately, Haskell does not allow such pattern matching.

5.5.3 Multiplication via Addition

Let us now implement multiplication using only addition. We make use of the
identity x ∗ y = x ∗ (y − 1) + x. We require y ≥ 0.

mlt x 0 = 0

mlt x y = (mlt x (y-1)) + x

The recursive call is made to a strictly smaller argument in each case. There
are two arguments which are both numbers, and the second number is strictly
decreasing in each call. The smallest value of the arguments is attained when
the second argument is 0.

The multiplication algorithm has a running time roughly proportional to the
magnitude of y, because each call decreases y by 1. We now present a far better
algorithm. You should study it carefully because it introduces an important
concept, generalizing the function. The idea is that we write a function to
calculate something more general, and then we call this function with a restricted
set of arguments to calculate our desired answer. Let us write a function,
quickMlt, that computes x*y + z over its three arguments. We can then define

mlt x y = quickMlt x y 0
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The reason we define quickMlt is that it is more efficient to compute than mlt

defined earlier. We will use the following result from arithmetic.

x× (2× t) + z = (2× x)× t+ z
x× (2× t+ 1) + z = (2× x)× t+ (x+ z)

The resulting program is:

quickMlt x 0 z = z

quickMlt x y z

| even y = quickMlt (2 * x ) (y `div` 2) z

| odd y = quickMlt (2 * x ) (y `div` 2) (x + z)

In each case, again the second argument is strictly decreasing. In fact, it is
being halved, so the running time is proportional to log y.

Exercise 56

Extend quickMlt to operate over arbitrary y, positive, negative and zero. 2

Exercise 57

Use the strategy shown for multiplication to compute xy. I suggest that you
compute the more general function z ∗ xy. 2

5.5.4 Fibonacci Numbers

The Fibonacci sequence (named after a famous Italian mathematician of the
10th century) is the sequence of integers whose first two terms are 0 and 1,
and where each subsequent term is the sum of the previous two terms. So, the
sequence starts out:

0 1 1 2 3 5 8 13 21 34 . . .

Let us index the terms starting at 0, so the 0th fibonacci number is 0, the next
one 1, and so forth. Our goal is to write a function that has argument n and
returns the nth Fibonacci number. The style of programming applies to many
other sequences in which each successive term is defined in terms of the previous
ones. Note, particularly, the pattern matching applied in the last equation.

fib 0 = 0

fib 1 = 1

fib n = fib(n-1) + fib(n-2)

Or, equivalently, we may write

fib n

| n == 0 = 0

| n == 1 = 1

| otherwise = fib(n-1) + fib(n-2)
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The first definition has three equations and the second has one conditional
equation with three (guarded) clauses. Either definition works, but these pro-
grams are quite inefficient. Let us see how many times fib is called in computing
(fib 6), see Figure 5.1. Here each node is labeled with a number, the argument
of a call on fib; the root node is labeled 6. In computing (fib 6), (fib 4)

and (fib 5) have to be computed; so, the two children of 6 are 4 and 5. In
general, the children of node labeled i+2 are i and i+1. As you can see, there
is considerable recomputation; in fact, the computation time is proportional to
the value being computed. (Note that (fib 6) (fib 5) (fib 4) (fib 3) (fib

2) (fib 1) are called 1 1 2 3 5 8 times, respectively, which is a part of the
Fibonacci sequence). We will see a better strategy for computing Fibonacci
numbers in the next section.

6

5

44

33 3

2 2 2 2 2

1 1 1 1 1

0 0 0 0 0

1 1 1

Figure 5.1: Call pattern in computing (fib 6)

5.5.5 Greatest Common Divisor

The greatest common divisor (gcd) of two positive integers is the largest positive
integer that divides both m and n. (Prove the existence and uniqueness of gcd).
Euclid gave an algorithm for computing gcd about 2,500 years ago, an algorithm
that is still used today. Euclid’s algorithm is as follows.

egcd m n

| m == 0 = n

| otherwise = egcd (n `mod` m) m

A simpler version of this algorithm, though not as efficient, is

gcd m n

| m == n = m

| m > n = gcd (m - n) n

| n > m = gcd m (n - m)

This algorithm, essentially, computes the remainders, (m ‘mod‘ n) and (n ‘mod‘

m), using repeated subtraction.
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There is a modern version of the gcd algorithm, known as binary gcd. This
algorithm uses multiplication and division by 2, which are implemented by shifts
on binary numbers. The algorithm uses the following facts: (1) if m == n, then
gcd m n = m, (2) if m and n are both even, say 2s and 2t, then gcd m n = 2* (gcd

s t), (3) if exactly one of m and n, say m, is even and equal to 2s, then gcd m n =

gcd s n, (5) if m and n are both odd and, say, m > n, then gcd m n = gcd (m-n)

n. In this case, m-n is even whereas n is odd; so, gcd m n = gcd (m-n) n = gcd

((m-n) ‘div‘ 2) n.

bgcd m n

| m == n = m

| (even m) && (even n) = 2 * (bgcd s t)

| (even m) && (odd n) = bgcd s n

| (odd m) && (even n) = bgcd m t

| m > n = bgcd ((m-n) `div` 2) n

| n > m = bgcd m ((n-m) `div` 2)

where s = m `div` 2

t = n `div` 2

We can estimate the running time (the number recursive calls) as a function
of x and y, where x and y are arguments of bgcd. Note that the value of log2x

+ log2y decreases in each recursive call. So the execution time is at most
logarithmic in the argument values.

Exercise 58

For positive integers m and n prove that

1. gcd m n = gcd n m

2. gcd (m+n) n = gcd m n 2

5.6 Tuple

We have, so far, seen a few elementary data types. There are two important
ways we can build larger structures using data from the elementary types—
tuple and list. We cover tuple in this section.

Tuple is the Haskell’s version of a record ; we may put several kinds of data
together and give it a name. In the simplest case, we put together two pieces of
data and form a 2-tuple, also called a pair. Here are some examples.

(3,5) ("Misra","Jayadev") (True,3) (False,0)

As you can see, the components may be of different types. Note that Haskell
treats (3) and 3 alike, both are treated as numbers. Let us add the following
definitions to our program file:
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teacher = ("Misra","Jayadev")

uniqno = 59285

course = ("cs337",uniqno)

There are two predefined functions, fst and snd , that return the first and
the second components of a pair, respectively.

*Main> fst(3,5)

3

*Main> snd teacher

"Jayadev"

*Main> snd course

59285

There is no restriction at all in Haskell about what you can have as the first
and the second component of a tuple. In particular, we can create another tuple

hard = (teacher,course)

and extract its first and second components by

*Main> fst hard

("Misra","Jayadev")

*Main> snd hard

("cs337",59285)

Haskell allows you to create tuples with any number of components, but fst
and snd are applicable only to a pair.

Revisiting the Fibonacci Computation As we saw in the Figure 5.1 of
page 133, there is considerable recomputation in evaluating fib n, in general.
Here, I sketch a strategy to eliminate the recomputation. We define a function,
called fibpair, which has an argument n, and returns the pair ((fib n), (fib

(n+1))), i.e., two consecutive elements of the Fibonacci sequence. This func-
tion can be computed efficiently, as shown below, and we may define fib n =

fst(fibpair n).

fibpair 0 = (0,1)

fibpair n = (y, x+y)

where (x,y) = fibpair (n-1)
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Exercise 59

1. What is the difference between (3,4,5) and (3,(4,5))?

2. A point in two dimensions is a pair of coordinates; assume that we are
dealing with only integer coordinates. Write a function that takes two
points as arguments and returns True iff either the x−coordinate or the
y−coordinate of the points are equal. Here is what I expect (ray is the
name of the function).

*Main> ray (3,5) (3,8)

True

*Main> ray (3,5) (2,5)

True

*Main> ray (3,5) (3,5)

True

*Main> ray (3,5) (2,8)

False

3. A line is given by a pair of distinct points (its end points). Define func-
tion parallel that has two lines as arguments and value True iff they are
parallel. Recall from coordinate geometry that two lines are parallel if
their slopes are equal, and the slope of a line is given by the difference
of the y−coordinates of its two points divided by the difference of their
x−coordinates. In order to avoid division by 0, avoid division altogether.
Here is the result of some evaluations.

*Main> parallel ((3,5), (3,8)) ((3,5), (3,7))

True

*Main> parallel ((3,5), (4,8)) ((4,5), (3,7))

False

*Main> parallel ((3,5), (4,7)) ((2,9), (0,5))

True

Solution This program is due to Jeff Chang, class of Spring 2006.

parallel ((a,b),(c,d)) ((u,v),(x,y))

= (d-b) * (x-u) == (y - v) * (c - a)

4. The function fibpair n returns the pair ((fib n), (fib (n+1))). The
computation of (fib (n+1)) is unnecessary, since we are interested only in
fib n. Redefine fib so that this additional computation is avoided.

Solution

fib 0 = 0

fib n = snd(fibpair (n-1))
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5.7 Type

Every expression in Haskell has a type. The type may be specified by the
programmer, or deduced by the interpreter. If you write 3+4, the interpreter
can deduce the type of the operands and the computed value to be integer (not
quite, as you will see). When you define

imply p q = not p || q

digit c = ('0' <= c) && (c <= '9')

the interpreter can figure out that p and q in the first line are booleans (because
|| is applied only to booleans) and the result is also a boolean. In the second
line, it deduces that c is a character because of the two comparisons in the right
side, and that the value is boolean, from the types of the operands.

The type of an expression may be a primitive one: Int, Bool, Char or String,
or a structured type, as explained below. You can ask to see the type of an
expression by giving the command :t, as in the following.

*Main> :t ('0' <= '9')

'0' <= '9' :: Bool

The type of a tuple is a tuple of types, one entry for the type of each operand.
In the following, [Char] denotes a string; I will explain why in the next section.

*Main> :t ("Misra","Jayadev")

("Misra","Jayadev") :: ([Char],[Char])

*Main> :t teacher

teacher :: ([Char],[Char])

*Main> :t course

course :: ([Char],Integer)

*Main> :t (teacher,course)

(teacher,course) :: (([Char],[Char]),([Char],Integer))

Each function has a type, namely, the types of its arguments in order followed
by the type of the result, all separated by ->.

*Main> :t imply

imply :: Bool -> Bool -> Bool

*Main> :t digit

digit :: Char -> Bool

Capitalizations for types Type names (e.g., Int, Bool) are always capital-
ized. The name of a function or parameter should never be capitalized.
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5.7.1 Polymorphism

Haskell allows us to write functions whose arguments can be any type, or any
type that satisfies some constraint. Consider the identity function:

identity x = x

This function’s type is

*Main> :t identity

identity :: t -> t

That is for any type t, it accepts an argument of type t and returns a value of
type t.

A less trivial example is a function whose argument is a pair and whose value
is the same pair with its components exchanged.

exch (x,y) = (y,x)

Its type is as follows:

*Main> :t exch

exch :: (t, t1) -> (t1, t)

Here, t and t1 are arbitrary types. So, exch(3,5), exch (3,"misra"), exch

((2,’a’),5) and exch(exch ((2,’a’),5)) are all valid expressions. The inter-
preter chooses the most general type for a function so that the widest range of
arguments would be accepted.

Now, consider a function whose argument is a pair and whose value is True

iff the components of the pair are equal.

eqpair (x,y) = x == y

It is obvious that eqpair (3,5) makes sense, but not eqpair(3,’j’). We would
expect the type of eqpair to be (t,t) -> Bool, but it is more subtle.

*Main> :t eqpair

eqpair :: (Eq t) => (t, t) -> Bool

This says that the type of eqpair is (t, t) -> Bool, for any type t that belongs
to the Eq class, i.e., types over which == is defined. Otherwise, the test == in
eqpair cannot be performed. Equality is not necessarily defined on all types,
particularly on function types.

Finally, consider a function that sorts two numbers which are given as a pair.

sort (x,y)

| x <= y = (x,y)

| x > y = (y,x)

The type of sort is
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*Main> :t sort

sort :: (Ord t) => (t, t) -> (t, t)

It says that sort accepts any pair of elements of the same type, provided the
type belongs to the Ord type class, i.e., there is an order relation defined over
that type; sort returns a pair of the same type as its arguments. An order
relation is defined over most of the primitive types. So we can do the following
kinds of sorting. Note, particularly, the last example.

*Main> sort (5,2)

(2,5)

*Main> sort ('g','j')

('g','j')

*Main> sort ("Misra", "Jayadev")

("Jayadev","Misra")

*Main> sort (True, False)

(False,True)

*Main> sort ((5,3),(3,4))

((3,4),(5,3))

Polymorphism means that a function can accept and produce data of many
different types. This allows us to define a single sorting function, for example,
which can be applied in a very general fashion.

5.7.2 Type Classes

Haskell has an extensive type system, which we will not cover in this course.
Beyond types are type classes, which provide a convenient treatment of over-
loading. A type class is a collection of types, each of which has a certain function
(or set of functions) defined on it. Here are several examples of type classes:
the Eq class consists of all types on which an equality operation is defined; the
Ord class consists of all types on which an order relation is defined; the Num class
consists of all types on which typical arithmetic operations (+, *, etc.) are
defined. The following exchange is instructive.

*Main> :t 3

3 :: (Num t) => t

*Main> :t (3,5)

(3,5) :: (Num t, Num t1) => (t, t1)

Read the second line to mean 3 has the type t, where t is any type in the
type class Num. The last line says that (3,5) has the type (t, t1), where t and
t1 are arbitrary (and possibly equal) types in the type class Num. So, what is
the type of 3+4? It has the type of any member of the Num class.

*Main> :t 3+4

3 + 4 :: (Num t) => t
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5.7.3 Type Violation

Since the interpreter can deduce the type of each expression, it can figure out if
you have supplied the arguments of the right type for a function. If you provide
invalid arguments, you will see something like this.

*Main> digit 9

<interactive>:1:6:

No instance for (Num Char)

arising from the literal `9' at <interactive>:1:6

Possible fix: add an instance declaration for (Num Char)

In the first argument of `digit', namely `9'

In the expression: digit 9

In the definition of `it': it = digit 9

5.8 List

Each tuple has a bounded number of components —two each for course and
teacher and two in (teacher,course). In order to process larger amounts of
data, where the number of data items may not be known a priori, we use the
data structure list. A list consists of a finite sequence of items2 all of the same
type. Here are some lists.

[1,3,5,7,9] -- all odd numbers below 10

[2,3,5,7] -- all primes below 10

[[2],[3],[5],[7]] -- a list of lists

[(3,5), (3,8), (3,5), (3,7)] -- a list of tuples

[[(3,5), (3,8)], [(3,5), (3,7), (2,9)]] -- a list of list of tuples

['a','b','c'] -- a list of characters

["misra", "Jayadev"] ---- a list of strings

The following are not lists because not all their elements are of the same
type.

[[2],3,5,7]

[(3,5), 8]

[(3,5), (3,8,2)]

['J',"misra"]

The order and number of elements in a list matter. So,

[2,3] 6= [3,2]

[2] 6= [2,2]

2We deal with only finite lists in this note. Haskell permits definitions of infinite lists and
computations on them, though only a finite portion can be computed in any invocation of a
function.
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5.8.1 The Type of a List

The type of any list is [ItemType] where ItemType is the type of one of its items.
So, [True] is a list of booleans and so are [True, False] and [True, False,

True, False]. Any function that accepts a list of booleans as arguments can
process any of these three lists. Here are these and some more examples.

*Main> :t [True]

[True] :: [Bool]

*Main> :t [True, False]

[True,False] :: [Bool]

*Main> :t [(2,'c'), (3,'d')]

[(2,'c'), (3,'d')] :: (Num t) => [(t, Char)]

*Main> :t [[2],[3],[5],[7]]

[[2],[3],[5],[7]] :: (Num t) => [[t]]

*Main> :t [(3,5), (3,8), (3,5), (3,7)]

[(3,5),(3,8),(3,5),(3,7)] :: (Num t, Num t1) => [(t, t1)]

*Main> :t [[(3,5), (3,8)], [(3,5), (3,7), (2,9)]]

[[(3,5),(3,8)],[(3,5),(3,7),(2,9)]] :: (Num t, Num t1) => [[(t, t1)]]

*Main> :t ['a','b','c']

['a','b','c'] :: [Char]

A string is a list of characters, i.e., [Char]; each of its characters is taken to
be a list item. Therefore, a list whose items are strings is a list of [Char], or
[[Char]].

*Main> :t ["misra"]

["misra"] :: [[Char]]

Empty List A very special case is an empty list, one having no items. We
write it as []. It appears a great deal in programming. What is the type of []?

*Main> :t []

[] :: [a]

This says that [] is a list of a, where a is any type. Therefore, [] can be given
as argument wherever a list is expected.

5.8.2 The List Constructor Cons

There is one built-in operator that is used to construct a list element by element;
it is pronounced Cons and is written as : (a colon). Consider the expression
x:xs, where x is an item and xs is a list. The value of this expression is a list
obtained by prepending x to xs. Note that x should have the same type as the
items in xs. Here are some examples.
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*Main> 3: [2,1]

[3,2,1]

*Main> 3: []

[3]

*Main> 1: (2: (3: [])) --Study this one carefully.

[1,2,3]

*Main> 'j': "misra"

"jmisra"

*Main> "j": "misra"

<interactive>:1:5:

Couldn't match expected type `[Char]' against inferred type `Char'

Expected type: [[Char]]

Inferred type: [Char]

In the second argument of `(:)', namely `"misra"'

In the expression: "j" : "misra"

5.8.3 Pattern Matching on Lists

When dealing with lists, we often need to handle the special case of the empty
list in a different manner. Pattern matching can be applied very effectively in
such situations.

Let us consider a function len on lists that returns the length of the argument
list. We need to differentiate between two cases, as shown below.

len [] = ..

len (x:xs) = ..

The definition of this function spans more than one equation. During func-
tion evaluation with a specific argument —say, [1,2,3]— each of the equations
is checked from top to bottom to find the first one where the given list matches
the pattern of the argument. So, with [1,2,3], the first equation does not
match because the argument is not an empty list. The second equation matches
because x matches with 1 and xs matches with [2,3]. Additionally, pattern
matching assigns names to components of the data structure —x and xs in this
example— which may then be used in the RHS of the function definition.

5.8.4 Recursive Programming on Lists

Let us try to complete the definition of the function len sketched above. Clearly,
we expect an empty list to have length 0. The general case, below, should be
studied very carefully.

len [] = 0

len (x:xs) = 1 + (len xs)
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This style of programming on lists is very common: we define the function
separately for empty and non-empty lists. Typically, the definition for non-
empty list involves recursion. This style corresponds to induction in that empty
list corresponds to the base case and the non-empty list to the inductive case.

Consider now a function that sums the elements of a list of integers. It
follows the same pattern.

suml [] = 0

suml (x:xs) = x + (suml xs)

A function that multiplies the elements of a list of integers.

multl [] = 1

multl (x:xs) = x * (multl xs)

Next, we write a program for a function whose value is the maximum of a
list of integers. Here it does not make much sense to talk about the maximum
over an empty list.3 So, our smallest list will have a single element, and here is
how you pattern match for a single element.

maxl [x] = x

maxl (x:xs) = max x (maxl xs)

Exercise 60

Write a function that takes the conjunction (&&) of the elements of a list of
booleans.

andl [] = True

andl (x:xs) = x && (andl xs)

So, we have

*Main> andl [True, True, 2 == 5]

False

2

Now consider a function whose value is not just one item but a list. The
following function negates every entry of a list of booleans.

notl[] = []

notl (x:xs) = (not x) : (notl xs)

So,

*Main> notl [True, True, 2 == 5]

[False,False,True]

3But people do and they define it to be −∞. The value −∞ is approximated by the
smallest value in type Int which is minBound::Int; similarly, +∞ is approximated by the
largest value, maxBound::Int.
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The following function removes all negative numbers from the argument list.

negrem [] = []

negrem (x:xs)

| x < 0 = negrem xs

| otherwise = x : (negrem xs)

So,

*Main> negrem []

[]

*Main> negrem [2,-3,1]

[2,1]

*Main> negrem [-2,-3,-1]

[]

Pattern matching over a list may be quite involved. The following function,
divd, partitions the elements of the argument list between two lists, putting the
elements with even index in the first list and with odd index in the second list
(list elements are numbered starting at 0). So, divd [1,2,3] is ([1,3],[2]) and
divd [1,2,3,4] is ([1,3],[2,4]). See Section 5.8.5 for another solution to this
problem.

divd [] = ([], [])

divd (x: xs) = (x:ys, zs)

where (zs,ys) = divd xs

We conclude this section with a small example that goes beyond “primitive
recursion”, i.e., recursion is applied not just on the tail of the list. The problem is
to define a function uniq that returns the list of unique items from the argument
list. So, uniq[3, 2] = [3, 2], uniq[3, 2, 2] = [3, 2], uniq[3, 2, 3] = [3,

2].

uniq [] = []

uniq (x:xs) = x: (uniq(minus x xs))

where

minus y [] = []

minus y (z: ys)

| y == z = (minus y ys)

| otherwise = z: (minus y ys)

Note This program does not work if you try to evaluate uniq [] on the com-
mand line. This has to do with type classes; the full explanation is beyond the
scope of these notes.

Exercise 61
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1. Define a function unq that takes two lists xs and ys as arguments. Assume
that initially ys contains distinct elements. Function unq returns the list
of unique elements from xs and ys. Define uniq using unq.

unq [] ys = ys

unq (x:xs) ys

| inq x ys = unq xs ys -- inq x ys is: x in ys?

| otherwise = unq xs (x:ys)

where

inq y [] = False

inq y (z: zs) = (y == z) || (inq y zs)

uniq xs = unq xs []

2. Define a function that creates a list of unique elements from a sorted
list. So, a possible input is [2,2,3,3,4] and the corresponding output is
[2,3,4].

3. The prefix sum of a list of numbers is a list of equal length whose ith
element is the sum of the first i items of the original list. So, the prefix
sum of [3,1,7] is [3,4,11]. Write a linear-time algorithm to compute the
prefix sum.
Hint: Use function generalization.

ps xs = pt xs 0

where pt [] c = []

pt (x:xs) c = (c+x) : (pt xs (c+x))

5.8.5 Mutual Recursion

All of our examples so far have involved recursion in which a function calls itself.
It is easy to extend this concept to a group of functions that call each other.
To illustrate mutual recursion, I will consider the problem of partitioning a list;
see page 144 for another solution to this problem.

It is required to create two lists of nearly equal size from a given list, lis. The
order of items in lis is irrelevant, so the two created lists may contain elements
from lis in arbitrary order. If lis has an even number of elements, say 2 × n,
then each of the created lists has n elements, and if lis has 2× n+ 1 items, one
of the lists has n+ 1 elements and the other has n elements.

One possible solution for this problem is to determine the length of lis (you
may use the built-in function length) and then march down lis half way, adding
elements to one output list, and then continue to the end of lis adding items
to the second output list. We adopt a simpler strategy. We march down lis,
adding items alternately into the two output lists. We define two functions,
divide0 and divide1 each of which partitions the argument list, divide0 starts
with prepending the first item of the argument into the first list, and divide1

by prepending the first item to the second list. Here, divide0 calls divide1 and
divide1 calls divide0.
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divide0 [] = ([],[])

divide0 (x: xs) = (x:f, s)

where (f,s) = divide1 xs

divide1 [] = ([],[])

divide1 (x: xs) = (f, x:s)

where (f,s) = divide0 xs

We then get,

*Main> divide0 [1,2,3]

([1,3],[2])

*Main> divide0 [1,2,3,4]

([1,3],[2,4])

Encoding finite state machines using mutual recursion I show a general
strategy of encoding finite state machines using mutual recursion. The idea is
to encode each state by defining a function, and each transition by calling the
appropriate function.

First, consider a machine that accepts binary strings of even parity. Fig-
ure 5.2 is from Chapter 4.

1

0 0

Figure 5.2: Accept strings of even parity

We encode this machine using function zero and one for the initial state and
the other state. The input string is coded as argument of the functions, and the
function values are boolean, True for acceptance and False for rejection. The
machine is run on input string s by calling zero(s).

zero [] = True

zero('0':xs) = zero(xs)

zero('1':xs) = one(xs)

one[] = False

one('0':xs) = one(xs)

one('1':xs) = zero(xs)

Next, consider a finite state transducer that accepts a string of symbols, and
outputs the same string by (1) removing all white spaces in the beginning, (2)
reducing all other blocks of white spaces (consecutive white spaces) to a single
white space. Thus, the string (where - denotes a white space)
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----Mary----had--a little---lamb-

is output as
Mary-had-a-little-lamb-

A machine to solve this problem is shown in Figure 5.3, where n denotes any
symbol other than a white space

−/

n/n

n/n

−/−

first next

Figure 5.3: Remove unnecessary white space

We encode this machine as follows.

first [] = []

first(' ':xs) = first(xs)

first(x:xs) = x:next(xs)

next[] = []

next(' ':xs) = ' ':first(xs)

next(x:xs) = x:next(xs)

Exercise 62

Modify your design so that a trailing white space is not produced.

5.9 Examples of Programming with Lists

In this section, we take up more elaborate examples of list-based programming.

5.9.1 Some Useful List Operations

5.9.1.1 snoc

The list constructor cons of Section 5.8.2 (page 141) is used to add an item at
the head of a list. The function snoc, defined below, adds an item at the “end”
of a list.

snoc x [] = [x]

snoc x (y: xs) = y:(snoc x xs)

The execution of snoc takes time proportional to the length of the argument
list, whereas cons takes constant time. So, it is preferable to use cons.
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5.9.1.2 concatenate

The following function concatenates two lists in order. Remember that the two
lists need to have the same type in order to be concatenated.

conc [] ys = ys

conc (x:xs) ys = x : (conc xs ys)

There is a built-in operator that does the same job; conc xs ys is written
as xs ++ ys. The execution of conc takes time proportional to the length of the
first argument list.

Exercise 63

1. Implement a double-ended queue in which items may be added at either
end and removed from either end.

2. Define a function to left-rotate a list. Left-rotation of [1,2,3] yields
[2,3,1] and of the empty list yields the empty list. 2

5.9.1.3 flatten

Function flatten takes a list of lists, like

[ [1,2,3], [10,20], [], [30] ]

and flattens it out by putting all the elements into a single list, like

[1,2,3,10,20,30]

This definition should be studied carefully. Here xs is a list and xss is a list
of lists.

flatten [] = []

flatten (xs : xss) = xs ++ (flatten xss)

Exercise 64

1. What is the type of flatten?

2. Evaluate

["I"," love"," functional"," programming"]

and

flatten ["I"," love"," functional"," programming"]

and note the difference.

3. What happens if you apply flatten to a list of list of lists? 2
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5.9.1.4 reverse

The following function reverses the order of the items in a list.

rev [] = []

rev (x: xs) = (rev xs) ++ [x] -- put x at the end of (rev xs)

The running time of this algorithm is O(n2), where n is the length of the
argument list. (Prove this result using a recurrence relation. Use the fact that
append takes O(k) time when applied to a list of length k.) In the imperative
style, reversing of an array can be done in linear time. Something is terribly
wrong with functional programming! Actually, we can attain a linear time
bound using functional programming.

The more efficient algorithm uses function generalization which was intro-
duced for the quickMlt function for multiplication example in Section 5.5.3
(page 131). We define a function reverse that has two arguments xs and ys,
each a list. Here xs denotes the part that remains to be reversed (a suffix of the
original list) and ys is the reversal of the prefix. So, during the computation
of reverse [1,2,3,4,5], there will be a call to reverse [4,5] [3,2,1]. We have
the identity

reverse xs ys = (rev xs) ++ ys

Given this identity,

reverse xs [] = rev xs

The definition of reverse is as follows.

reverse [] ys = ys

reverse (x:xs) ys = reverse xs (x:ys)

Exercise 65

1. Show that the execution time of reverse xs ys is O(n) where the length
of xs is n.

2. Prove from the definition of rev that rev (rev xs) = xs.

3. Prove from the definition of rev and reverse that

reverse xs ys = (rev xs) ++ ys

4. Show how to right-rotate a list efficiently (i.e., in linear time in the size of
the argument list). Right-rotation of [1,2,3,4] yields [4,1,2,3].
Hint: use rev.

right_rotate [] = []

right_rotate xs = y: (rev ys)

where

y:ys = (rev xs)

5. Try proving rev (xs ++ ys) = (rev ys) ++ (rev xs). 2
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5.9.2 Towers of Hanoi

This is a well-known puzzle. Given is a board on which there are three pegs
marked ’a’, ’b’ and ’c’, on each of which can rest a stack of disks. There are
n disks, n > 0, of varying sizes, numbered 1 through n in order of size. The
disks are correctly stacked if they are increasing in size from top to bottom in
each peg. Initially, all disks are correctly stacked at ’a’. It is required to move
all the disks to ’b’ in a sequence of steps under the constraints that (1) in each
step, the top disk of one peg is moved to the top of another peg, and (2) the
disks are correctly stacked at all times.

For n = 3, the sequence of steps given below is sufficient. In this sequence, a
triple (i,x,y) denotes a step in which disk i is moved from peg x to y. Clearly,
i is at the top of peg x before the step and at the top of peg y after the step.

[(1,'a','b'),(2,'a','c'),(1,'b','c'),(3,'a','b'),

(1,'c','a'),(2,'c','b'),(1,'a','b')]

There is an iterative solution for this problem, which goes like this. Disk 1
moves in every alternate step starting with the first step. If n is odd, disk 1
moves cyclically from ’a’ to ’b’ to ’c’ to ’a’ . . ., and if n is even, disk 1 moves
cyclically from ’a’ to ’c’ to ’b’ to ’a’ . . .. In each remaining step, there is
exactly one possible move: ignore the peg of which disk 1 is the top; compare
the tops of the two remaining pegs and move the smaller one to the top of the
other peg (if one peg is empty, move the top of the other peg to its top).

I don’t know an easy proof of this iterative scheme; in fact, the best proof
I know shows that this scheme is equivalent to an obviously correct recursive
scheme.

The recursive scheme is based on the following observations. There is a step
in which the largest disk is moved from ’a’; we show that it is sufficient to move
it only once, from ’a’ to ’b’. At that moment, disk n is the top disk at ’a’ and
there is no other disk at ’b’. So, all other disks are at ’c’, and, according to
the given constraint, they are correctly stacked. Therefore, prior to the move
of disk n, we have the subtask of moving the remaining n − 1 disks, provided
n > 1, from ’a’ to ’c’. Following the move of disk n, the subtask is to move the
remaining n−1 disks from ’a’ to ’c’. Each of these subtasks is smaller than the
original task, and may be solved recursively. Note that in solving the subtasks,
disk n may be disregarded, because any disk can be placed on it; hence, its
presence or absence is immaterial. Below, tower n x y z returns a list of steps
to transfer n disks from peg x to y using z as an intermediate peg.

tower n x y z

| n == 0 = []

| otherwise = (tower (n-1) x z y)

++ [(n,x,y)]

++ (tower (n-1) z y x)

A run of this program gives us
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*Main> tower 3 'a' 'b' 'c'

[(1,'a','b'),(2,'a','c'),(1,'b','c'),(3,'a','b'),

(1,'c','a'),(2,'c','b'),(1,'a','b')]

Exercise 66

1. What is the type of function tower?

2. What is the total number of moves, as a function of n?

3. Argue that there is no scheme that uses fewer moves, for any n.

4. Show that disk 1 is moved in every alternate move.

5. (very hard) What is a good strategy (i.e., minimizing the number of moves)
when there are four pegs instead of three?

6. (Gray code; hard) Start with an n-bit string of all zeros. Number the bits
1 through n, from lower to higher bits. Solve the Towers of Hanoi problem
for n, and whenever disk i is moved, flip the ith bit of your number and
record it. Show that all 2n n-bit strings are recorded exactly once in this
procedure. 2

5.9.3 Gray Code

If you are asked to list all 3-bit numbers, you will probably write them in
increasing order of their magnitudes:

000 001 010 011 100 101 110 111

There is another way to list these numbers so that consecutive numbers (the
first and the last numbers are consecutive too) differ in exactly one bit position.

000 001 011 010 110 111 101 100

The problem is to generate such a sequence for every n. Let us attack the
problem by induction on n. For n = 1, the sequence 0 1 certainly meets the
criterion. For n+ 1, n ≥ 1, we argue as follows. Assume, inductively, that there
is a sequence Xn of n-bit numbers in which the consecutive numbers differ in
exactly one bit position. Now, we will take Xn and create Xn+1, a sequence of
n + 1-bit numbers with the same property. To gain some intuition, let us look
at X2. Here is a possible sequence:

00 01 11 10

How do we construct X3 from X2? Appending the same bit, a 0 or a 1, to
the left end of each bit string in X2 preserves the property among consecutive
numbers, and it makes each bit string longer by one. So, from the above sequence
we get: 000 001 011 010

Now, we need to list the remaining 3-bit numbers, which we get by appending
1s to the sequence X2:
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100 101 111 110

But merely concatenating this sequence to the previous sequence won’t do; 010
and 100 differ in more than one bit position. But concatenating the reverse of
the above sequence works, and we get

000 001 011 010 110 111 101 100

Define function gray to compute such a sequence given n as the argument.
The output of the function is a list of 2n items, where each item is a n-bit string.
Thus, the output will be

*Main> gray 3

["000","001","011","010","110","111","101","100"]

Considering that we will have to reverse this list to compute the function
value for the next higher argument, let us define a more general function,
grayGen, whose argument is a natural number n and whose output is a pair
of lists, (xs,ys), where xs is the Gray code of n and ys is the reverse of xs. We
can compute xs and ys in similar ways, without actually applying the reverse
operation.

First, define a function cons0 whose argument is a list of strings and which
returns a list by prepending a ’0’ to each string in the argument list. Similarly,
define cons1 which prepends ’1’ to each string.

cons0 [] = []

cons0 (x:xs) = ('0':x):(cons0 xs)

cons1 [] = []

cons1 (x:xs) = ('1':x):(cons1 xs)

Then grayGen and gray are easy to define.

grayGen 0 = ([""],[""])

grayGen n = ((cons0 a) ++ (cons1 b), (cons1 a) ++ (cons0 b))

where (a,b) = grayGen (n-1)

gray n = fst(grayGen n)

Exercise 67

1. Show another sequence of 3-bit numbers that has the Gray code property.

2. Prove that for all n,

rev a = b

where (a,b) = grayGen n
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You will have to use the following facts; for arbitrary lists xs and ys

rev (rev xs) = xs

rev (cons0 ys) = cons0 (rev ys)

rev (cons1 ys) = cons1 (rev ys)

rev (xs ++ ys) = (rev ys) ++ (rev xs)

3. Given two strings of equal length, their Hamming distance is the number of
positions in which they differ. Define a function to compute the Hamming
distance of two given strings.

4. In a Gray code sequence consecutive numbers have hamming distance of
1. Write a function that determines if the strings in its argument list have
the Gray code property. Make sure that you compare the first and last
elements of the list. 2

Exercise 68

This exercise is about computing winning strategies in simple 2-person games.

1. Given are two sequences of integers of equal length. Two players alter-
nately remove the first number from either sequence; if one of the se-
quences becomes empty, numbers are removed from the other sequence
until it becomes empty. The game ends when both sequences are empty,
and then the player with the higher total sum wins the game (assume that
sums of all the integers is odd, so that there is never a tie). Write a pro-
gram to determine if the first player has a winning strategy. For example,
given the lists [2,12] and [10,7], the first player does not have a winning
strategy; if he removes 10, then the second player removes 7, forcing the
first player to remove 2 to gain a sum of 12 and the second player to gain
19; and if the first player removes 2, the second player removes 12, again
forcing the same values for the both players.

Solution

Define play(xs,ys), where xs and ys are lists of integers of equal length,
that returns True iff the first player has a winning strategy. Define helper
function wins(b,xs,ys), where xs and ys are lists of integers, not neces-
sarily of the same length, and b is an integer. The function returns True

iff the first player has a winning strategy from the given configuration
assuming that he has already accumulated a sum of b. Then play(xs,ys)

= wins(0,xs,ys). And, function loses(b,xs,ys) is True iff the first player
has no winning strategy, i.e., the second player has a winning strategy.

loses(b,xs,ys) = not (wins(b,xs,ys))

wins(b,[],[]) = b > 0

wins(b,x:xs,[]) = loses(-(b+x),xs,[])

wins(b,[],y:ys) = loses(-(b+y),[],ys)

wins(b,x:xs, y:ys) =
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loses(-(b+x),xs, y:ys) || loses(-(b+y),x:xs,ys)

play(xs,ys) = wins(0,xs,ys)

2. This problem is a variation on the previous exercise. The game involves
a single sequence of numbers of even length, and the players alternately
remove a number from either end of the sequence. The game ends when the
sequence is empty (so, each player has removed exactly half the numbers),
and the player with the higher sum wins. Determine if the first player has
a winning strategy (it turns out that the first player always has a winning
strategy; so, your program should always return True).

You will have to represent a sequence where values can be removed from
either end, but no value is ever added to it. This limited form of double-
ended queue can be represented efficiently using two lists, as follows. Rep-
resent the initial sequence xs by (xs, ys, n), where list ys is the reverse
of xs and n is the length of the sequence. Remove a value from the left end
by removing the first value from xs, and from the right end by removing
the first value from ys; in each case, decrement n. You have the invariant
that at any point the sequence is (1) the first n values from xs, or (2) the
reverse of the first n values from ys.

Solution

We use an additional parameter b with the same meaning as before.

loses(b,xs,ys,n) = not (wins(b,xs,ys,n))

wins(b,_,_,0) = b > 0

wins(b,x:xs,y:ys,n) =

loses(-(b+x),xs,y:ys,n-1) || loses(-(b+y),x:xs,ys,n-1)

play(xs) = wins(0,xs,rev(xs),length(xs))

5.9.4 Sorting

Consider a list of items drawn from some totally ordered domain such as the
integers. We develop a number of algorithms for sorting such a list, that is, for
producing a list in which the same set of numbers are arranged in ascending
order.4 We cannot do in situ exchanges in sorting, as is typically done in
imperative programming, because there is no way to modify the argument list.

5.9.4.1 Insertion Sort

Using the familiar strategy of primitive recursion, let us define a function for
sorting, as follows.

4A sequence of numbers . . . x y . . . is ascending if for consecutive elements x and y, x ≤ y
and increasing if x < y. It is descending if x ≥ y and decreasing if x > y.
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isort [] = []

isort (x:xs) = .. (isort xs) .. -- skeleton of a definition

The first line is easy to justify. For the second line, the question is: how
can we get the sorted version of (x:xs) from the sorted version of xs —that
is isort xs— and x? The answer is, insert x at the right place in (isort xs).
So, let us first define a function insert y ys, which produces a sorted list by
appropriately inserting y in the sorted list ys.

insert y [] = [y]

insert y (z:zs)

| y <= z = y:(z:zs)

| y > z = z: (insert y zs)

Then, function isort is

isort [] = []

isort (x:xs) = insert x (isort xs)

Exercise 69

1. What is the worst-case running time of insert and isort?

2. What is the worst-case running time of isort if the input list is already
sorted? What if the reverse of the input list is sorted (i.e., the input list
is sorted in descending order)? 2

5.9.4.2 Merge sort

This sorting strategy is based on merging two lists. First, we divide the input list
into two lists of nearly equal size —function divide0 of Section 5.8.5 (page 145)
works very well for this— sort the two lists recursively and then merge them.
Merging of sorted lists is easy; see function merge below.

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| x <= y = x : (merge xs (y:ys))

| x > y = y : (merge (x:xs) ys)

Based on this function, we develop mergesort.

mergesort [] = []

mergesort [x] = [x]

mergesort xs = merge left right

where

(xsl,xsr) = divide0 xs

left = mergesort xsl

right = mergesort xsr



156 CHAPTER 5. RECURSION AND INDUCTION

Exercise 70

1. Why is

merge [] [] = []

not a part of the definition of merge?

2. Show that mergesort has a running time of O(2n×n) where the argument
list has length 2n.

3. Modify merge so that it discards all duplicate items.

4. Develop a function similar to merge that has two ascending lists as argu-
ments and creates an ascending list of common elements.

5. Develop a function that has two ascending lists as arguments and cre-
ates the difference, first list minus the second list, as an ascending list of
elements.

6. Develop a function that has two ascending lists of integers as arguments
and creates an increasing list of pairwise sums from the two lists (dupli-
cates are discarded). 2

5.9.4.3 Quicksort

Function quicksort partitions its input list xs into two lists, ys and zs, so
that every item of ys is at most every item of zs. Then ys and zs are sorted
and concatenated. Note that in mergesort, the initial partitioning is easy and
the final combination is where the work takes place; in quicksort the initial
partitioning is where all the work is.

We develop a version of quicksort that differs slightly from the description
given above. First, we consider the partitioning problem. A list is partitioned
with respect to some value v that is supplied as an argument; all items smaller
than or equal to v are put in ys and all items greater than v are put in zs.

partition v [] = ([],[])

partition v (x:xs)

| x <= v = ((x:ys),zs)

| x > v = (ys,(x:zs))

where (ys,zs) = partition v xs

There are several heuristics for choosing v; let us choose it to be the first
item of the given (nonempty) list. Here is the definition of quicksort.

quicksort [] = []

quicksort (x:xs) = (quicksort ys ) ++ [x] ++ (quicksort zs)

where (ys,zs) = partition x xs
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Exercise 71

1. Show that each call in quicksort is made to a smaller argument.

2. What is the running time of quicksort if the input file is already sorted?

3. Find a permutation of 1 through 15 on which quicksort has the best
performance; assume that the clause with guard x <= v executes slightly
faster than the other clause.

8 4 2 1 3 6 5 7 12 10 9 11 14 13 15

2

Exercise 72

1. Define a function that takes two lists of equal length as arguments and
produces a boolean list of the same length as the result; an element of the
boolean list is True iff the corresponding two elements of the argument
lists are identical.

2. Define a function that creates a list of unique elements from a sorted list.
Use this function to redefine function uniq of Section 5.8.4 (page 144).

3. Define function zip that takes a pair of lists of equal lengths as argument
and returns a list of pairs of corresponding elements. So,

zip ([1,2,3], ['a','b','c']) = [(1,'a'), (2,'b'), (3,'c')]

4. Define function unzip that is the inverse of zip:

unzip (zip (xs,ys)) = (xs,ys)

5. Define function take where take n xs is a list containing the first n items
of xs in order. If n exceeds the length of xs then the entire list xs is
returned.

6. Define function drop where

xs = (take n xs) ++ (drop n xs)

7. Define function index where index i xs returns the ith element of xs.
Assume that elements in a list are indexed starting at 0. Also, assume
that the argument list is of length at least i. 2

Exercise 73
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A matrix can be represented as a list of lists. Let us adopt the convention that
each outer list is a column of the matrix. Develop an algorithm to compute the
determinant of a matrix of numbers. 2

Exercise 74

It is required to develop a number of functions for processing an employee
database. Each entry in the database has four fields: employee, spouse, salary
and manager. The employee field is a string that is the name of the employee,
the spouse field is the name of his/her spouse –henceforth, “his/her” will be ab-
breviated to “its” and “he/she” will be “it”—, the salary field is the employee’s
annual salary and the manager field is the name of employee’s manager. Assume
that the database contains all the records of a hierachical (tree-structured) orga-
nization in which every employee’s spouse is also an employee, each manager is
also an employee except root, who is the manager of all highest level managers.
Assume that root does not appear as an employee in the database.

A manager of an employee is also called its direct manager; an indirect
manager is either a direct manager or an indirect manager of a direct manager;
thus, root is every employee’s indirect manager.

Write functions for each of the following tasks. You will find it useful to
define a number of auxiliary functions that you can use in the other functions.
One such function could be salary, which given a name as an argument returns
the corresponding salary.

In the following type expressions, DB is the type of the database, a list of
4-tuples, as described above.

1. Call an employee overpaid if its salary exceeds that of its manager. It is
grossly overpaid if its salary exceeds the salaries of all its indirect man-
agers. List all overpaid and grossly overpaid employees. Assume that the
salary of root is 100,000.

overpaid :: DB -> [String]

grossly_overpaid :: DB -> [String]

2. List all employees who directly manage their spouses; do the same for
indirect management.

spouse_manager :: DB -> [String]

3. List all managers who indirectly manage both an employee and its spouse.

indirect_manager :: DB -> [String]

4. Are there employees e and f such that e’s spouse is f ’s manager and f ’s
spouse is e’s manager?

nepotism :: DB -> [(String,String)]
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5. Find the family that makes the most money.

rich :: DB -> [(String,String)]

6. Define the rank of a manager as the number of employees it manages.
Define the worth of a manager as its salary/rank. Create three lists in
which you list all managers in decreasing order of their salaries, ranks and
worth.

sorted_salaries :: DB -> [String]

sorted_rank :: DB -> [String]

sorted_worth :: DB -> [String]

7. The database is in normal form if the manager of x appears as an employee
before x in the list. Write a function to convert a database to normal form.
Are any of the functions associated with the above exercises easier to write
or more efficient to run on a database that is given in normal form?

normalize :: DB -> DB

5.9.4.4 Patience Sort

This section describes “Patience Sort”, which is not really a sorting scheme at
all. It is inspired by a technique used by magicians to divide a deck of cards into
a sequence of piles. The technique is as follows: place the first card from the deck
face-up in a pile; for every subsequent card from the deck scan all the piles from
left to right until you find a pile whose top card is larger than the given card;
place the given card on top of that pile; if there is no such pile then place the
card in a new rightmost pile. Here, the cards are compared for order according
to any fixed scheme, say first by suit (spade < heart < diamond < club) and
then by rank. Applied to a sequence of numbers, say, 7,2,3,12,7,6,8,4, we will
get four piles in the following order where the numbers in a pile are shown from
top to bottom as a list: [2,7],[3],[4,6,7,12],[8]. Note that each pile is an
increasing list of numbers from top to bottom, and the top numbers of the piles
are non-decreasing from left to right. We will show one use of patience sort later
in this section.

Let us write a function patienceSort that takes a list of numbers, not neces-
sarily distinct, and outputs a list of piles according to the given scheme. Thus,
we expect to see

*Main> patienceSort[7,2,3,12,7,6,8,4]

[[2,7],[3],[4,6,7,12],[8]]

*Main> patienceSort[2,2,2]

[[2],[2],[2]]

First, let us start with a helper function psort where psort(ps,cs) takes a
list of piles ps and a list of numbers cs as input and outputs a list of piles by
putting the numbers in cs into the given piles appropriately. Then,
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patienceSort(cs) = psort([],cs)

For the design of psort, we consider putting numbers one at a time to the
piles. To this end, we design yet another (simpler) helper function psort1 where
psort1(ps, c) puts a single number c to the list of piles ps. Then,

psort(ps,[]) = ps

psort(ps, c:cs) = psort(psort1(ps, c), cs)

The design of psort1 consists of two clauses as shown below.

psort1([],c) = [[c]]

psort1((p:ps):pss,c)

| c < p = (c:(p:ps)):pss

| c >= p = (p:ps):psort1(pss,c)

Longest Ascending Subsequence A problem of some importance is to find
a longest ascending subsequence (las) in a given list of numbers. A las of a
sequence is a subsequence x0, x1, · · · , where xi ≤ xi+1, for all i (where i + 1 is
defined). For example, given [7,2,3,12,7,6,8,4] a las is [2,3,6,8].

The length of a las is simply the number of piles; we will take one number
from each pile to construct this subsequence. Whenever we place a number x in
a pile, we also store a link to the top number y in the previous pile. According
to our construction, y ≤ x. Construct a las by taking the top number of the
last (rightmost) pile and following the links backwards. Prove this result (see
exercise below).5

Exercise 75

1. Show that any ascending subsequence of the original sequence has at most
one entry from a pile. Consequently, the length of the longest ascending
subsequence is at most the number of piles.

2. Show that follwing the links backwards starting from any number gives
an ascending subsequence.

3. Combining the two results above, prove that the proposed algorithm con-
structs a longest ascending subsequence.

4. Can there be many longest ascending subsequences? In that case, can you
enumerate all of them given the piles?

5. (just for fun) Develop a totally different algorithm for computing a longest
ascending subsequence.

5I am grateful to Jay Hennig, class of Fall 2010, for pointing out an error in the treatment
of Longest Ascending Subsequence.
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5.9.5 Polynomial Evaluation

A polynomial of degree n in variable x is of the form an×xn+an−1×xn−1+
· · ·+a0×x0, where the coefficients ais are real (or complex) numbers, and
the highest coefficient an is non-zero. Thus, 2×x3−3×x2 + 0×x+ 4 is a
polynomial of degree 3. It is customary to represent a polynomial by a list
of its coefficients in the order from least to most significant coefficients,
[4, 0,−3, 2].

To evaluate a polynomial for a given value, say 2×x3− 3×x2 + 0×x+ 4
at x = 2 gives us 2× 23 − 3× 22 + 0× 2 + 4 = 16− 12 + 0 + 4 = 8. This
calculation can be done simply by writing the polynomial as

a0 + a1 × x+ a2 × x2 + · · ·+ an × xn
= a0 + x× (a1 + a2 × x+ · · ·+ an × xn−1)

The second term requires evaluation of a polynomial of lower degree, a1 +
a2 × x + · · · + an × xn−1. We can translate this scheme directly to a
recursive program. Below, the polynomial is represented as a list from its
least significant to most significant coefficients, and x is a specific value at
which the polynomial is being evaluated. We will use the convention that
a polynomial with no terms always evaluates to 0.

ep1 [] x = 0

ep1 (a:as) x = a + x * (ep1 as x)

Observe that this algorithms evaluates 2×x3−3×x2+0×x+4 as follows.

4 + 0× x− 3× x2 + 2× x3
= 4 + x× (0− 3× x+ 2× x2)
= 4 + x× (0 + x× (−3 + 2× x))
= 4 + x× (0 + x× (−3 + x× (2)))

This form of polynomial evaluation is known as Horner’s rule.

5.10 Proving Facts about Recursive Programs

We are interested in proving properties of programs, imperative and recur-
sive, for similar reasons: to guarantee correctness, establish equivalence
among alternative definitions, and gain insight into the performance of
the program. Our main tool in proving properties of functional programs
is induction. In dealing with lists, it often amounts to a proof of the base
case (empty list) followed by proofs for non-empty lists, using induction.

Let me illustrate the proof procedure with a specific example. First define
a function that combines both reversal of a list and concatenation. Given
below is function rvc that takes three arguments, which are all lists, and
has the following specification.
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rvc us vs q = us ++ rev(vs) ++ q (*)

where ++ is the infix concatenation operator and rev reverses a list.

Using the specification of rvc, we define function rev’ to reverse a list,
and function conc to concatenate two lists.

rev' ys = rvc [] ys []

conc xs ys = rvc xs [] ys

The code for rvc is:

rvc [] [] q = q

rvc [] (v:vs) q = rvc [] vs (v:q)

rvc (u:us) vs q = u:(rvc us vs q)

Next, we show a proof that the code of rvc meets the specification (*).
We will need the following facts about rev and ++ for the proof. We use
the associativity of ++ wiithout explicitly referring to it.

(i) ++ is associative, i.e., xs ++ (ys ++ zs) = (xs ++ ys) ++ zs, for any
lists xs, ys and zs

(ii) [] ++ ys = ys and ys ++ [] = ys, for any list ys

(iii) x:xs = [x] ++ xs, for any item x and list xs

(iv) rev [] = []

(v) rev [x] = [x], where [x] is a list with a single item

(vi) rev(xs ++ ys) = (rev ys) ++ (rev xs), for any lists xs and ys

Proof: Proof is by induction on the combined lengths of us and vs. In
each case below the proof has to establish an equality, and we show that
the left side and the right side of the equality reduce to the same value.

• rvc [] [] q = [] ++ rev([]) ++ q : From the definition of rvc, the left
side is q. Using facts (iv) and (ii) the right side is q.

• rvc [] (v:vs) q = [] ++ rev(v:vs) ++ q:

rvc [] (v:vs) q

= {definition of rvc}
rvc [] vs (v:q)

= {induction hypothesis}
[] ++ rev(vs) ++ (v:q)

= {using fact (ii)}
rev(vs) ++ (v:q)

= {using facts (iii) and (i)}
rev(vs) ++ [v] ++ [q]
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And,

[] ++ rev(v:vs) ++ q

= {using fact (ii)}
rev(v:vs) ++ q

= {using fact(iii)}
rev([v] ++ [vs]) ++ q

= {using fact(vi)}
rev(vs) ++ rev([v]) ++ q

= {using fact(v)}
rev(vs) ++ [v] ++ q

• rvc (u:us) vs q = (u:us) ++ rev(vs) ++ q:

rvc (u:us) vs q

= {definition of rvc}
u:(rvc us vs q)

= {induction hypothesis}
u:(us ++ rev(vs) ++ q)

= {using fact (iii)}
[u] ++ us ++ rev(vs) ++ q

And,

(u:us) ++ rev(vs) ++ q

= {using fact (iii)}
[u] ++ us ++ rev(vs) ++ q

5.11 Higher Order Functions

5.11.1 Function foldr

We developed a number of functions —suml, multl— in Section 5.8.4 (page 142)
that operate similarly on the argument list: (1) for the empty list, each function
produces a specific value (0 for suml, 1 for multl) and (2) for a nonempty list,
say x:xs, the item x and the function value for xs are combined using a specific
operator (+ for suml, * for multl). This suggests that we can code a generic
function that has three arguments: the value supplied as in (1) —written as z

below—, the function applied as in (2) — written as f below—, and the the list
itself on which the function is to be applied. Here is such a function.

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

Then we can define

suml xs = foldr (+) 0 xs

multl xs = foldr (*) 1 xs
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Similarly, we can define for boolean lists

andl xs = foldr (&&) True xs

orl xs = foldr (||) False xs

eor xs = foldr (/=) False xs

The first two are easy to see. The third one implements the exclusive-or over a
list; it treats True as 1, False as 0, and takes the modulo 2 sum over the list.
That is, it returns the parity of the number of True elements in the list.

We can define flatten of Section 5.9.1.3 (page 148) by

flatten xs = foldr (++) [] xs

Note I have been writing the specific operators, such as (+), within paren-
theses, instead of writing them as just +, for instance, in the definition of suml.
This is because the definition of foldr requires f to be a prefix operator, and +

is an infix operator; (+) is the prefix version of +. 2

Note There is an even nicer way to define functions such as suml and multl;
just omit xs from both sides of the function definition. So, we have

suml = foldr (+) 0

multl = foldr (*) 1

In these notes, I will not describe the justification for this type of definition. 2

Function foldr has an argument that is a function; foldr is called a higher
order function. The rules of Haskell do not restrict the type of argument of a
function; hence, a function, being a typed value, may be supplied as an argu-
ment. Function (and procedure) arguments are rare in imperative programming,
but they are common and very convenient to define and use in functional pro-
gramming. Higher order functions can be defined for any type, not just lists.

What is the type of foldr? It has three arguments, f, z and xs, so its type
is

(type of f) -> (type of z) -> (type of xs) -> (type of result)

The type of z is arbitrary, say a. Then f takes two arguments of type a and
produces a result of type a, so its type is (a -> a -> a). Next, xs is a list of
type a, so its type is [a]. Finally, the result type is a. So, we have for the type
of foldr

(a -> a -> a) -> a -> [a] -> a

Actually, the interpreter gives a more general type:

*Main> :t foldr

foldr :: (a -> b -> b) -> b -> [a] -> b
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This means that the two arguments of f need not be of the same type. Here
is an example; function evenl determines if all integers of a given list are even.
For its definition, we use function ev that takes an integer and a boolean as
arguments and returns a boolean.

ev x b = (even x) && b

evenl xs = foldr ev True xs

*Main> evenl [10,20]

True

*Main> evenl [1,2]

False

Function fold Define a simpler version of foldr, called fold. It applies to
nonempty lists only, and does not have the parameter z. Function fold is not
in the standard Haskell library.

fold f [x] = x

fold f (x:xs) = f x (fold f xs)

Applying fold to the list [a,b,c,d] gives f a (f b (f c d)). To use an infix
operator ! on [a,b,c,d], call fold (!)[a,b,c,d]. This gives a!(b!(c!d)), which
is same as a!b!c!d when ! is an associative operator. Quite often fold suffices
in place of foldr. For example, we can define function maxl of Section 5.8.4,
which computes the maximum element of a nonempty list, by

maxl = fold max

5.11.2 Function map

Function map takes as arguments (1) a function f and (2) a list of elements
on which f can be applied. It returns the list obtained by applying f to each
element of the given list.

map f [] = []

map f (x:xs) = (f x) : (map f xs)

So,

*Main> map not [True,False]

[False,True]

*Main> map even [2,4,5]

[True,True,False]

*Main> map chCase "jmisra"

"JMISRA"

*Main> map len ["Jayadev","Misra"]

[7,5]
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The type of map is:

*Main> :t map

map :: (a -> b) -> [a] -> [b]

This function is so handy that it is often used to transform a list to a form
that can be more easily manipulated. For example, to determine if all integers
in a given list, xs, are even, we write

andl (map even xs)

where andl is defined in Section 5.11.1 (page 163). Here (map even xs) creates a
list of booleans of the same length as the list xs such that the ith boolean is True

iff the ith element of xs is even. The function andl then takes the conjunction
of the booleans in this list.

Exercise 76

Redefine the functions cons0 and cons1 from page 152 using map. 2

5.11.3 Function filter

Function filter has two arguments, a predicate p and a list xs; it returns the
list containing the elements of xs for which p holds.

filter p [] = []

filter p (x:xs)

| p x = x: (filter p xs)

| otherwise = (filter p xs)

So, we have

*Main> filter even [2,3,4]

[2,4]

*Main> filter digit ['a','9','b','0','c']

"90"

*Main> filter upper "Jayadev Misra"

"JM"

*Main> filter digit "Jayadev Misra"

""

The type of filter is

*Main> :t filter

filter :: (a -> Bool) -> [a] -> [a]

Exercise 77

What is filter p (filter q xs)? In particular, what is filter p (filter (not

p) xs)? 2
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5.12 Program Design: Boolean Satisfiability

We treat a longer example —boolean satisfiability— in this section. The prob-
lem is to determine if a propositional boolean formula is satisfiable, i.e., if there
is an assignment of (boolean) values to variables in the formula that makes the
formula true. For example, (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p ∨ ¬q) is satisfiable with
p, q = true, false.

In Section 5.12.1, I introduce the problem more precisely and present the
Davis-Putnam procedure, which is an effective solution method for this prob-
lem. In Section 5.12.2, I develop a Haskell implementation of this procedure
by choosing a suitable data structure and then presenting an appropriate set of
functions in a top-down fashion.

5.12.1 Boolean Satisfiability

The satisfiability problem is an important problem in computer science, one
that may be applied in a surprisingly diverse range of problems, such as circuit
design, theorem proving and robotics. It has been studied since the early days
of computing science. Indeed, a landmark theoretical paper by Steve Cook
demonstrated that if someone could devise a fast algorithm for the general
satisfiability problem, it could be used to solve many other difficult problems
quickly. As a result, for a long time, satisfiability was considered too difficult
to tackle, and a lot of effort was invested in trying to design domain-specific
heuristics to solve specific instances of satisfiability.

However, recent advances in the design of “satisfiability solvers” (algorithms
for solving instances of the satisfiability problem) have changed this perception.
Although the problem remains difficult in general, recent satisfiability solvers,
such as Chaff [39], employ clever data structures and learning techniques that
prove to work surprisingly well in practice (for reasons no one quite under-
stands).

Today, satisfiability solvers are used as the core engine in a variety of in-
dustrial products. CAD companies like Synopsys and Cadence use them as the
engine for their tools for property checking and microprocessor verification [36],
in automatic test pattern generation [33], and even in FPGA routing [18]. Veri-
fication engineers at Intel, Motorola and AMD incorporate satisfiability solvers
in their tools for verifying their chip designs. Researchers in artificial intelli-
gence and robotics are discovering that their planning problems can be cast
as boolean satisfiability, and solvers like Chaff outperform even their domain-
specific planning procedures [27]. Other researchers are increasingly beginning
to use satisfiability solvers as the engine inside their model checkers, theorem
provers, program checkers, and even optimizing compilers.

5.12.1.1 Conjunctive Normal Form

A propositional formula is said to be in Conjunctive Normal Form (CNF ) if it
is the conjunction of a number of terms, where each term is the disjunction of



168 CHAPTER 5. RECURSION AND INDUCTION

a number of literals, and each literal is either a variable or its negation. For
example, the formula (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p ∨ ¬q) is in CNF. Any boolean
formula can be converted to a logically equivalent CNF formula. Henceforth,
we assume that the input formula is in CNF.

5.12.1.2 Complexity of the Satisfiability Problem

The satisfiability problem has been studied for over five decades. It may seem
that the problem, particularly the CNF version, is easy to solve: each term has
to be made true for the entire conjunction to be true and a term can be made
true by making any constituent literal true. However, the choice of literal for
one term may conflict with another: for (p ∨ q) ∧ (¬p ∨ ¬q), if p is chosen to
be true for the first term and ¬p is chosen to be true for the second term, there
is a conflict.

There is no known polynomial algorithm for the satisfiability problem. In
fact, the CNF satisfiability problem in which each term has exactly 3 literals —
known as 3-SAT— is NP-complete, though 2-SAT can be solved in linear time.
However, there are several solvers that do extremely well in practice. The Chaff
solver [50] can determine satisfiability of a formula with hundreds of thousands
of variables and over a million terms in an hour, or so, on a PC circa 2002. This
astounding speed can be attributed to (1) a very good algorithm, the Davis-
Putnam procedure, which we study next, (2) excellent heuristics, and (3) fast
computers with massive main memories.

5.12.1.3 The Davis-Putnam procedure

To explain the procedure, I will use the following formula, f , over variables p,
q and r:

f :: (¬p ∨ q ∨ r) ∧ (p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) ∧ (p ∨ q ∨ r)

Next, we ask whether f is satisfiable, given that p is true. Then, any term in
f that contains p becomes true, and can be removed from consideration (since
it is part of a conjunction). Any term that contains ¬p, say (¬p ∨ q ∨ r), can
become true only by making (q ∨ r) true . Therefore, given that p is true, f is
satisfiable iff fp is satisfiable, where

fp :: (q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r)

Note that p does not appear in fp.
Similarly, given that p is false, f is satisfiable provided that f¬p is satisfiable,

where

f¬p :: (¬r) ∧ (¬q ∨ r) ∧ (q ∨ r)

We have two mutually exclusive possibilities: p is true and ¬p is true .
Therefore, f is satisfiable iff either fp is satisfiable or f¬p is satisfiable. Thus,
we have divided the problem into two smaller subproblems, each of which may
be decomposed further in a similar manner. Ultimately, we will find that
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• a formula is empty (i.e., it has no terms), in which case it is satisfiable,
because it is a conjunction, or

• some term in the formula is empty (i.e., it has no literals), in which case
the term (and hence also the formula) is unsatisfiable, because it is a
disjunction.

As long as neither possibility holds, we have a nonempty formula none of
whose terms is empty, and we can continue with the decomposition process.

The entire procedure can be depicted as a binary tree, see Figure 5.4, where
each node has an associated formula (whose satisfiability is being computed)
and each edge has the name of a literal. The literals on the two outgoing edges
from a node are negations of each other. The leaf nodes are marked either F

or T, corresponding to false and true. A path in the tree corresponds to an
assignment of values to the variables. The value, F or T, at a leaf is the value of
the formula (which is associated with the root) for the variable values assigned
along the path to the leaf. Thus, in Figure 5.4, assigning true to p, ¬q and r
makes f true (therefore, f is satisfiable). For all other assignments of variable
values, f is false.

(~p v q v r) ^ (p v ~r) ^ (~q v r) ^ (~p v ~q v ~r) ^ (p v q v r)

(q v r) ^ (~q v r) ^ (~q v ~r) (~r) ^ (~q v r) ^ (q v r)

(r)

F F F

(r) ^ (~r)

p ~p

q ~q r ~r

(~q) ^ (q)F

T F F

~r rr ~r q ~q

Figure 5.4: Davis-Putnam Computation

Note Assume that no term contains a variable and its negation.

5.12.2 Program Development

Data Structure Here, we consider representation of a formula in Haskell.
Recall that
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a formula is a conjunction of a set of terms.
a term is the disjunction of a set of literals, and
a literal is either a variable or the negation of a variable.

We can regard a formula as a list of terms and a term as a list of literals;
conjunction and disjunction are implicit. Now, we consider representations of
literals. A variable may be represented as a string, and a negation, such as
¬p, by a string, "-p", whose first symbol is "-". To preserve symmetry, let me
add a "+" sign in front of a variable; so p is represented by "+p". Then the
representation of f is:

[

["-p", "+q", "+r"],

["+p", "-r"],

["-q", "+r"],

["-p", "-q", "-r"],

["+p", "+q", "+r"]

]

We should be clear about the types. I define the types explicitly (I have not
told you how to do this in Haskell; just take it at face value).

type Literal = String

type Term = [Literal]

type Formula = [Term]

The top-level function I define a function dp that accepts a formula as input
and returns a boolean, True if the formula is satisfiable and False otherwise. So,
we have

dp :: Formula -> Bool

If the formula is empty, then the result is True. If it contains an empty
term, then the result is False. Otherwise, we choose some literal of the formula,
decompose the formula into two subformulae based on this literal, solve each
subformula recursively for satisfiability, and return True if either returns True.

dp xss

| xss == [] = True

| emptyin xss = False

| otherwise = (dp yss) || (dp zss)

where

v = literal xss

yss = reduce v xss

zss = reduce (neg v) xss

We have introduced the following functions which will be developed next:
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emptyin xss: returns True if xss has an empty term,

literal xss: returns a literal from xss, where xss is nonempty and does not
contain an empty term,

neg v: returns the string corresponding to the negation of v.

reduce v xss, where v is a literal: returns the formula obtained from xss by
dropping any term containing the literal v and dropping any occurrence
of the literal neg v in each remaining term.

Functions emptyin, literal, reduce, neg

The code for emptyin is straightforward:

-- Does the formula contain an empty list?

emptyin :: Formula -> Bool

emptyin [] = False

emptyin ([]: xss) = True

emptyin (xs: xss) = emptyin xss

Function literal can return any literal from the formula; it is easy to return
the first literal of the first term of its argument. Since the formula is not empty
and has no empty term, this procedure is valid.

{- Returns a literal from a formula.

It returns the first literal of the first list.

The list is not empty, and

it does not contain an empty list.

-}

literal :: Formula -> Literal

literal ((x: xs):xss) = x

A call to reduce v xss scans through the terms of xss. If xss is empty, the
result is the empty formula. Otherwise, for each term xs,

• if v appears in xs, drop the term,

• if the negation of v appears in xs then modify xs by removing the negation
of v,

• if neither of the above conditions hold, retain the term.

-- reduce a literal through a formula

reduce :: Literal -> Formula -> Formula

reduce v [] = []

reduce v (xs:xss)

| inl v xs = reduce v xss

| inl (neg v) xs = (remove (neg v) xs): (reduce v xss)

| otherwise = xs : (reduce v xss)
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Finally, neg is easy to code:

-- negate a literal

neg :: Literal -> Literal

neg ('+': var) = '-': var

neg ('-': var) = '+': var

Function reduce introduces two new functions, which will be developed next.

inl v xs, where v is a literal and xs is a term: returns True iff v appears in xs,

remove u xs, where u is a literal known to be in term xs: return the term
obtained by removing u from xs.

Functions inl, remove

Codes for both of these functions are straightforward:

-- check if a literal is in a term

inl :: Literal -> Term -> Bool

inl v [] = False

inl v (x:xs) = (v == x) || (inl v xs)

-- remove a literal u from term xs. u is in xs.

remove :: Literal -> Term -> Term

remove u (x:xs)

| x == u = xs

| otherwise = (x : (remove u xs))

Exercise 78

1. Test the program.

2. Function reduce checks if xss is empty. Is this necessary given that reduce

is called from dp with a nonempty argument list? Why doesn’t reduce

check whether xss has an empty term?

3. Rewrite dp so that if the formula is satisfiable, it returns the assignments
to variables that make the formula true. 2

5.12.3 Variable Ordering

It is time to take another look at our functions to see if we can improve any
of them, either the program structure or the performance. Actually, we can do
both.

Note that in reduce we look for a literal by scanning all the literals in each
term. What if we impose an order on the variables and write each term in the
given order of variables? Use the following ordering in f : [ "p", "q" ,"r" ].
Then, a term like (¬p ∨ q ∨ r) is ordered whereas (¬p ∨ r ∨ q) is not. If each
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term in the formula is ordered and in reduce v xss, v is the smallest literal in
xss, then we can check the first literal of each term to see whether it contains v

or its negation.
Function dp2, given below, does the job of dp, but it needs an extra argument,

a list of variables like [ "p", "q" ,"r" ], which defines the variable ordering.
Here, reduce2 is the counterpart of reduce. Now we no longer need the functions
inl, remove and literal.

dp2 vlist xss

| xss == [] = True

| emptyin xss = False

| otherwise = (dp2 wlist yss) || (dp2 wlist zss)

where

v:wlist = vlist

yss = reduce2 ('+': v) xss

zss = reduce2 ('-': v) xss

-- reduce a literal through a formula

reduce2 :: Literal -> Formula -> Formula

reduce2 w [] = []

reduce2 w ((x:xs):xss)

| w == x = reduce2 w xss

| (neg w) == x = xs: (reduce2 w xss)

| otherwise = (x:xs): (reduce2 w xss)

A further improvement is possible. Note that reduce2 scans its argument
list twice, once for w and again for neg w. We define reduce3 to scan the given
list only once, to create two lists, one in which w is removed and the other in
which neg w is removed. Such a solution is shown below, where reduce3 is the
counterpart of reduce2. Note that the interface to reduce3 is slightly different.
Also, we have eliminated the use of function neg.

dp3 vlist xss

| xss == [] = True

| emptyin xss = False

| otherwise = (dp3 wlist yss) || (dp3 wlist zss)

where

v:wlist = vlist

(yss,zss) = reduce3 v xss

reduce3 v [] = ([],[])

reduce3 v ((x:xs):xss)

| '+': v == x = (yss , xs:zss)

| '-': v == x = (xs:yss, zss )

| otherwise = ((x:xs):yss, (x:xs):zss)

where

(yss,zss) = reduce3 v xss
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Exercise 79

1. What are the types of dp2, reduce2, dp3 and reduce3?

2. When dp2 vlist xss is called initially, vlist is the list of names of the
variables in xss. Argue that the program maintains this as an invariant.
In particular, vlist is empty iff xss is empty.

3. Is there any easy way to eliminate the function emptyin? In particular,
can we assert that any empty term will be the first term in a formula?

4. Here is another strategy that simplifies the program structure and im-
proves the performance. Convert each variable to a distinct positive inte-
ger (and its negation to the corresponding negative value). Make sure that
each term is an increasing list (in magnitude). Having done this, the ar-
gument vlist is no longer necessary. Modify the solution to accommodate
these changes. 2

5.13 A Real-World Application: Google’s Map-
Reduce

Researchers at Google have used certain functional programming ideas to encode
a variety of web-based applications which are then run on massively parallel
clusters of machines. The following section is based on the work reported by
Jeffrey Dean and Sanjay Ghemawat [13].

Many web based applications have two outstanding features: (1) they are
large, both in the amount of computation and required storage, and (2) they
can be executed effectively on many machines running in parallel, where the
tasks are distributed appropriately among the machines. As an example, Google
researchers performed an experiment where 1010 100-byte records were searched
for a particular text pattern. Using 1,800 machines (where each machine had two
2GHz Intel Xeon processors and 4GB of memory) the entire computation could
be performed in 150 seconds, of which about a minute is spent on initialization.
The scheme they have developed is fairly robust with respect to machine failures,
and scalable in that more machines can be added easily to the cluster and that
computations make effective use of a larger cluster.

The main idea behind their scheme is the observation that many web-based
applications can be written as a map operation followed by a reduce operation;
these operations and their terminologies are similar, though not identical, to
the corresponding operations we have studied in this chapter.

First, map is a function that takes a (key, value) pair as argument and
returns a list of (key, value) pairs. The argument keys and values may have
different types from the result keys and values. As an example, the argument
may be a pair (n, s), where n is a positive integer and s is a string. Here s is
the contents of a text document and n is a small value, say 12, which specifies
the length of words of interest. Function map may return a list of (w, c) pairs,
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where w is a word of length n or less in the document, and c is the number
of occurrences of w in the document. Typically, map is applied not to a single
document, but millions of documents at once. This feature allows us to deploy
the massive cluster of computers effectively.

Next, the outputs of all the maps, say M lists of (w, c) pairs for M docu-
ments, are aggregated into R lists where each list holds all the counts for a single
word. Now, reduce operation is applied to each of these R lists individually,
producing R outputs. In this example, a reduce operation might sum up the
counts, which will tell us something about the most commonly occurring words
in all the documents.

In general, the user provides the code for both map and reduce, specifies the
arguments over which they have to be applied, and suggests certain parameters
for parallel processing. From [13]: “The run-time system takes care of the details
of partitioning the input data, scheduling the program’s execution across a set of
machines, handling machine failures, and managing the required inter-machine
communication. This allows programmers without any experience with parallel
and distributed systems to easily utilize the resources of a large distributed
system.”

5.13.1 Some Example Problems

Here are some examples that can be expressed as Map-Reduce computations.
These examples are taken from [13].

Distributed Grep “grep” is a unix utility that searches for a pattern in
a given string (the string is typically a document). In this example, a large
number of documents have to be searched for a specific pattern. Function map
is applied to a document and a pattern, and it emits a line wherever there is a
match. Function reduce is the identity function; it merely copies the supplied
argument to the output.

Count of URL Access Frequency We are given a large log of web page
requests. We would like to know how often certain web pages are being accessed.
The map function takes a single request and outputs 〈URL, 1〉. The reduce
function sums the values for the same URL and emits a total count for each
URL.

Reverse Web-Link Graph We are given a large number of web documents.
We would like to compute a list of URLs that appear in all these documents,
and for each URL the list of documents in which it appears. So, the output is
of the form 〈target, list(source)〉, where target is a URL mentioned in each of
the source documents.

Function map applied to a single source document d outputs a list of pairs
(t, d), where t is a target URL mentioned in d. Function reduce concatenates
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the list of all source URLs associated with a given target URL and emits the
pair: 〈target, list(source)〉.

Inverted Index This problem is very similar to the Reverse Web-Link Graph
problem, described above. Instead of URLs, we look for common words in web
documents. The required output is 〈word, list(source)〉. It is easy to augment
this computation to keep track of word positions.

Distributed Sort The map function extracts a key from each document,
and emits a 〈key, document〉 pair. The reduce function simply emits all pairs
unchanged. But, the implementation imposes an order on the outputs which
results in sorted output.

5.13.2 Parallel Implementation and Empirical Results

The map operation is applied individually to a large number of items; so, these
computations can be done in parallel. For each key the reduce operation can
also be applied in parallel. If reduce is associative, then its computation can
be further distributed, because it can be applied at each machine to a group of
values corresponding to one key, and the results from all the machines for the
same key can be combined.

There are many possible parallel implementations which would would have
different performance on different computing platforms. The following imple-
mentation is tuned for the platform at Google, which consists of large clusters of
commodity PCs connected together with switched Ethernet. The machines are
typically dual-processor x86 running Linux, with 2 to 4 GB of memory per ma-
chine. Commodity networking hardware is used, which typically delivers either
100 megabits/second or 1 gigabit/second at the machine level, but averaging
considerably less in overall bisection bandwidth. A cluster consists of hundreds
or thousands of machines, and therefore machine failures are common. Storage
is provided by inexpensive IDE disks attached directly to individual machines.
A distributed file system developed in-house is used to manage the data stored
on these disks. The file system uses replication to provide availability and reli-
ability on top of unreliable hardware.

A master processor assigns tasks to a set of worker machines. To apply map
for a given job, the input data is first partitioned into a set of M splits by
the master; typical split size is 16 to 64 megabytes. The splits are assigned by
the master, and processed in parallel by different worker machines. To apply
reduce, the outputs of the map invocations are partitioned into R pieces. A
typical partitioning strategy is to use a hash function h, and assign key k to
the partition h(k) mod R. Then all values for the same key are assigned to the
same partition (as well as for all keys with the same hash value).

The authors report extremely positive results about fault tolerance. A failed
worker process is detected by the master using time-out. The master then
reschedules the task assigned to it (and ignores any output from the previous
computation).
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Chapter 6

Relational Database

6.1 Introduction

You can now purchase a music player that stores nearly 10,000 songs. The
storage medium is a tiny hard disk, a marvel of hardware engineering. Equally
impressive is the software which combines many aspects of compression, error
correction and detection, and database manipulation.

First, the compression algorithm manages to store around 300 music CDs,
each with around 600MB of storage, on my 20GB player; this is a compression
of about 10 to 1. While it is possible to compress music to any extent, because
exact reproduction is not expected, you would not want to listen to such music.
Try listening to a particularly delicate piece over the telephone! The compression
algorithm manages to reproduce music reasonably faithfully.

A music player begins its life expecting harsh treatment, even torture. The
devices are routinely dropped, they are subjected to X-ray scans at airports,
and left outside in very cold or very hot cars. Yet, the hardware is reasonably
resilient, but more impressively, the software works around the hardware glitches
using error-correcting strategies some of which we have outlined in an earlier
chapter.

The question that concerns us in this chapter is how to organize a large
number of songs so that we can locate a set of songs quickly. The songs are
first stored on a desktop (being imported from a CD or over the internet from
a music store); they can be organized there and then downloaded to a player.
A naive organization will make it quite frustrating to find that exact song in
your player. And, you may wish to listen to all songs which are either by artist
A or composer B, in the classical genre, and have not been played more than 6
times in the last 3 months. The subject matter of this chapter is organization
of certain kinds of data, like songs, to allow efficient selection of a subset which
meets a given search criterion.

For many database applications a set of tuples, called a table, is often the
appropriate data structure. Let me illustrate it with a small database of movies;

179
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Title Actor Director Genre Year
Jurassic Park Jeff Goldblum Steven Spielberg Action 1993
Jurassic Park Sam Neill Steven Spielberg Action 1993
Men in Black Tommy Lee Jones Barry Sonnenfeld SciFi 1997
Men in Black Will Smith Barry Sonnenfeld SciFi 1997
Independence Day Will Smith Roland Emmerich SciFi 1996
Independence Day Bill Pullman Roland Emmerich SciFi 1996
My Fair Lady Audrey Hepburn George Cukor Classics 1964
My Fair Lady Rex Harrison George Cukor Classics 1964
The Sound of Music Julie Andrews Robert Wise Classics 1965
The Sound of Music Christopher Plummer Robert Wise Classics 1965
Bad Boys II Martin Lawrence Michael Bay Action 2003
Bad Boys II Will Smith Michael Bay Action 2003
Ghostbusters Bill Murray Ivan Reitman Comedy 1984
Ghostbusters Dan Aykroyd Ivan Reitman Comedy 1984
Tootsie Dustin Hoffman Sydney Pollack Comedy 1982
Tootsie Jessica Lange Sydney Pollack Comedy 1982

Table 6.1: A list of movies arranged in a table

Title Actor Director Genre Year
Men in Black Will Smith Barry Sonnenfeld SciFi 1997
Independence Day Will Smith Roland Emmerich SciFi 1996

Table 6.2: Result of selection on Table 6.1 (page 180)

see Table 6.1 (page 180). We store the following information for each movie: its
title, actor, director, genre and the year of release. We list only the two most
prominent actors for a movie, and they have to appear in different tuples; so
each movie is being represented by two tuples in the table. We can now easily
specify a search criterion such as, find all movies released between 1980 and
2003 in which Will Smith was an actor and the genre is SciFi. The result of this
search is a table, shown in Table 6.2 (page 180).

Chapter Outline We introduce the table data structure and some terminol-
ogy in section 6.2. A table resembles a mathematical relation, though there
are some significant differences which we outline in that section. An algbra of
relations is developed in section 6.3. The algebra consists of a set of operations
on relations (section 6.3.1) and a set of identities over relational expressions
(section 6.3.2). The identities are used to process queries efficiently, as shown
in section 6.3.3. A standard query language, SQL, is described in section 6.3.4.
This chapter is a very short introduction to the topic; for more thorough treat-
ment see the relevant chapters in [35] and [2].
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6.2 The Relational Data Model

Central to the relational data model is the concept of relation. You are familiar
with relations from algebra, which I briefly review below. Next, I will explain
relations in databases, which are slightly different.

6.2.1 Relations in Mathematics

The > operator over positive integers is a (binary) relation. We write 5 > 3,
using the relation as an infix operator. More formally, the relation > is a set of
pairs:

{(2, 1), (3, 1), (3, 2), · · · }

A general relation consists of tuples, not necessarily pairs as for binary re-
lations. Consider a family relation which consists of triples (c, f,m), where c is
the name of a child, and f and m are the father and the mother. Or, the relation
Pythagoras which consists of triples (x, y, z) where the components are positive
integers and x2 + y2 = z2. Or, Fermat which consists of quadruples of positive
integers (x, y, z, n), where xn + yn = zn and n > 2. (A recent breakthrough
in mathematics has established that Fermat = φ.) In databases, the relations
need not be binary; in fact, most often, they are not binary.

A relation, being a set, has all the set operations defined on it. We list some
of the set operations below which are used in relational algebra.

1. Union: R ∪ S = {x| x ∈ R ∨ x ∈ S}

2. Intersection: R ∩ S = {x| x ∈ R ∧ x ∈ S}

3. Difference: R− S = {x| x ∈ R ∧ x 6∈ S}

4. Cartesian Product: R× S = {(x, y)| x ∈ R ∧ y ∈ S}

Thus, given R = {(1, 2), (2, 3), (3, 4)} and S = {(2, 3), (3, 4), (4, 5)}, we get

R ∪ S = {(1, 2), (2, 3), (3, 4), (4, 5)}
R ∩ S = {(2, 3), (3, 4)}
R− S = {(1, 2)}
R× S = {((1, 2), (2, 3)), ((1, 2), (3, 4)), ((1, 2), (4, 5)),

((2, 3), (2, 3)), ((2, 3), (3, 4)), ((2, 3), (4, 5)),
((3, 4), (2, 3)), ((3, 4), (3, 4)), ((3, 4), (4, 5))}

In algebra, you have seen reflexive, symmetric, asymmetric and transitive
binary relations. None of these concepts is of any use in relational algebra.
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Year Genre Title Director Actor
1997 SciFi Men in Black Barry Sonnenfeld Will Smith
1996 SciFi Independence Day Roland Emmerich Will Smith

Table 6.3: A column permutation of Table 6.2 (page 180)

Theatre Address
General Cinema 2901 S 360
Tinseltown USA 5501 S I.H. 35
Dobie Theater 2021 Guadalupe St
Entertainment Film 6700 Middle Fiskville Rd

Table 6.4: Theatres and their addresses

6.2.2 Relations in Databases

Database relations are inspired by mathematical relations. A database relation
is best represented by a matrix, called a table, in which (1) each row is a tuple
and (2) each column has a name, which is an attribute of the relation. Table 6.1
(page 180) shows such a relation; it has 5 attributes: Title, Actor, Director,
Genre, Year. There are 16 rows, each is a tuple of the relation.

In both mathematical and database relations, the tuples are distinct and
they may appear in any order. The type of an attribute, i.e., the type of values
that may appear in that column, is called the domain of the attribute. The
name of a database relation along with the names and domains of attributes is
called a relational schema. A schema is a template; an instance of the schema
has a number of tuples which fit the template.

The most fundamental difference between mathematical and database re-
lations is that in the latter the columns can be permuted arbitrarily keeping
the same relation. Thus, Table 6.2 (page 180) and Table 6.3 (page 182) repre-
sent the same relation. Therefore, we have the identity (we explain R × S, the
cartesian product of database relations R and S, in section 6.3.1).

R× S = S ×R

For mathematical relations, this identity does not hold because the components
cannot be permuted.

A relational database is a set of relations with distinct relation names. The
relations in Tables 6.1 (page 180), 6.4 (page 182), and 6.5 (page 183) make up
a relational database. Typically, every relation in a database has a common
attribute with some other relation.
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Theatre Title Time Rating
General Cinema Jurassic Park Sat, 9PM G
General Cinema Men in Black Sat, 9PM PG
General Cinema Men in Black Sun, 3PM PG
Tinseltown USA Independence Day Sat, 9PM PG-13
Dobie Theater My Fair Lady Sun, 3PM G
Entertainment Film Ghostbusters Sun, 3PM PG-13

Table 6.5: Theatres, Movies, Time and Rating

6.3 Relational Algebra

An algebra consists of (1) elements, (2) operations and (3) identities. For exam-
ple, to do basic arithmetic over integers we define: (1) elements to be integers,
(2) operations to be +, −, ×, ÷, and (3) identities such as,

x+ y = y + x
x× (y + z) = x× y + x× z

where x, y and z range over the elements (i.e., integers).
We define an algebra of database relations in this section. The elements are

database relations. We define a number of operations on them in section 6.3.1
and several identities in section 6.3.2.

6.3.1 Operations on Database Relations

Henceforth, R, S and T denote relations, and a and b are sets of attributes.
Relations R and S are union-compatible, or just compatible, if they have the
same set of attributes.

Union R ∪ S is the union of compatible relations R and S. Relation R ∪ S
includes all tuples from R and S with duplicates removed.

Intersection R∩S is the intersection of compatible relations R and S. Rela-
tion R ∩ S includes all tuples which occur in both R and S.

Difference R−S is the set difference of compatible relationsR and S. Relation
R− S includes all tuples which are in R and not in S.

Cartesian Product or Cross Product R × S is the cross product of rela-
tions R and S. The relations need not be compatible. Assume for the moment
that the attributes of R and S are disjoint. The set of attributes of R × S are
the ones from both R and S. Each tuple of R is concatenated with each tuple
of S to form tuples of R × S. Two database relations are shown in Table 6.6



184 CHAPTER 6. RELATIONAL DATABASE

Title Actor Director Year
Jurassic Park Sam Neill Steven Spielberg 1993
Men in Black Tommy Lee Jones Michael Bay 2003

Ivan Reitman 1984

Table 6.6: Two relations separated by vertical line

Title Actor Director Year
Jurassic Park Sam Neill Steven Spielberg 1993
Jurassic Park Sam Neill Michael Bay 2003
Jurassic Park Sam Neill Ivan Reitman 1984
Men in Black Tommy Lee Jones Steven Spielberg 1993
Men in Black Tommy Lee Jones Michael Bay 2003
Men in Black Tommy Lee Jones Ivan Reitman 1984

Table 6.7: Cross Product of the two relations in Table 6.6 (page 184)

(page 184); they are separated by a vertical line. Their cross product is shown
in Table 6.7 (page 184).

The cross product in Table 6.7 makes no sense. We introduce the join
operator later in this section which takes a more “intelligent” cross product.

If R and S have common attribute names, the names are changed so that
we have disjoint attributes. One strategy is to prefix the attribute name by the
name of the relation. So, if you are computing Prof × Student where both Prof
and Student have an attribute id, an automatic renaming may create Profid and
Studentid . This does not always work, for instance, in Prof × Prof . Manual
aid is then needed. In this chapter, we write R × S only if the attributes of R
and S are disjoint.

Note a subtle difference between mathematical and database relations for
cross product. For tuple (r, s) in R and (u, v) in S, their mathematical cross
product gives a tuple of tuples, ((r, s), (u, v)), whereas the database cross prod-
uct gives a tuple containing all 4 elements, (r, s, u, v).

The number of tuples in R×S is the number of tuples in R times the number
in S. Thus, if R and S have 1,000 tuples each, R × S has a million tuples and
R × (S × S) has a billion. So, cross product is rarely computed in full. It is
often used in conjunction with other operations which can be applied in a clever
sequence to eliminate explicit computations required for a cross product.

Projection The operations we have described so far affect only the rows (tu-
ples) of a table. The next operation, projection, specifies a set of attributes of
a relation that are to be retained to form a relation. Projection removes all
other attributes (columns), and removes any duplicate rows that are created as
a result. We write πu,v (R) to denote the relation which results by retaining
only the attributes u and v of R. Let R be the relation shown in Table 6.1
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(page 180). Then, πTitle,Director ,Genre,Year (R) gives Table 6.9 (page 186) and
πTitle,Actor (R) gives Table 6.10 (page 186).

Selection The selection operation chooses the tuples of a relation that sat-
isfy a specified predicate. A predicate uses attribute names as variables, as
in year ≥ 1980 ∧ year ≤ 2003 ∧ actor = “Will Smith′′ ∧ genre =
“SciF i′′. A tuple satisfies a predicate if the predicate is true when the at-
tribute names are replaced by the corresponding values from the tuple. We
write σp(R) to denote the relation consisting of the subset of tuples of R that
satisfy predicate p. Let R be the relation in Table 6.1 (page 180). Then,
σyear≥1980∧year≤2003∧actor=“Will Smith′′∧genre=“SciFi′′(R) is shown in Table 6.2
(page 180) and σactor=“Will Smith′′∧genre=“Comedy′′(R) is the empty relation.

Join There are several join operators in relational algebra. We study only one
which is called natural join, though we simply call it join in this chapter. The
join of R and S is written as R ./ S. Here, R and S need not be compatible;
typically, they will have some common attributes.

The join is a more refined way of taking the cross product. As in the cross
product, take each tuple r of R and s of S. If r and s have no common attributes,
or do not match in their common attributes, then their join produces an empty
tuple. Otherwise, concatenate r and s keeping only one set of values for the
common attributes (which match). Consider Tables 6.4 (page 182) and 6.5
(page 183). Their join is shown in Table 6.8 (page 185). And, the join of
Tables 6.9 (page 186) and 6.10 (page 186) is Table 6.1 (page 180).

Theatre Title Time Rating Address
General Cinema Jurassic Park Sat, 9PM G 2901 S 360
General Cinema Men in Black Sat, 9PM PG 2901 S 360
General Cinema Men in Black Sun, 3PM PG 2901 S 360
Tinseltown USA Independence Day Sat, 9PM PG-13 5501 S I.H. 35
Dobie Theater My Fair Lady Sun, 3PM G 2021 Guadalupe St
Entertainment Film Ghostbusters Sun, 3PM PG-13 6700 Middle Fiskville

Table 6.8: Join of Tables 6.4 and 6.5

If R and S have no common attributes, we see that R ./ S is an empty
relation, though it has all the attributes of R and S. We will avoid taking
R ./ S if R and S have no common attributes.

Writing attr(R) for the set of attributes of R, we have

attr(R ./ S) = attr(R) ∪ attr(S), and
x ∈ R ./ S ≡ (attr(R) ∩ attr(S) 6= φ) ∧ πattr(R)(x ) ∈ R ∧ πattr(S)(x ) ∈ S

The condition attr(R)∩ attr(S) 6= φ, i.e., R and S have a common attribute, is
essential. Without this condition, R ./ S would be R× S in case the attributes
are disjoint.
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Title Director Genre Year
Jurassic Park Steven Spielberg Action 1993
Men in Black Barry Sonnenfeld SciFi 1997
Independence Day Roland Emmerich SciFi 1996
My Fair Lady George Cukor Classics 1964
The Sound of Music Robert Wise Classics 1965
Bad Boys II Michael Bay Action 2003
Ghostbusters Ivan Reitman Comedy 1984
Tootsie Sydney Pollack Comedy 1982

Table 6.9: Compact representation of a portion of Table 6.1 (page 180)

The join operator selects only the tuples which match in certain attributes;
so, join results in a much smaller table than the cross product. Additionally,
the result is usually more meaningful. In many cases, a large table can be
decomposed into two much smaller tables whose join recreates the original table.
See the relations in Tables 6.9 (page 186) and 6.10 (page 186) whose join gives
us the relation in Table 6.1. The storage required for these two relations is much
smaller than that for Table 6.1 (page 180).

Title Actor
Jurassic Park Jeff Goldblum
Jurassic Park Sam Neill
Men in Black Tommy Lee Jones
Men in Black Will Smith
Independence Day Will Smith
Independence Day Bill Pullman
My Fair Lady Audrey Hepburn
My Fair Lady Rex Harrison
The Sound of Music Julie Andrews
The Sound of Music Christopher Plummer
Bad Boys II Martin Lawrence
Bad Boys II Will Smith
Ghostbusters Bill Murray
Ghostbusters Dan Aykroyd
Tootsie Dustin Hoffman
Tootsie Jessica Lange

Table 6.10: Table 6.1 (page 180) arranged by Title and Actor

Exercise 80

Suppose R and S are compatible. Show that R ./ S = R ∩ S.
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6.3.2 Identities of Relational Algebra

We develop a number of identities in this section. I don’t prove the identities;
I recommend that you do. These identities are used to transform a relational
expression into an equivalent form whose evaluation is more efficient, a proce-
dure known as query optimization. Query optimization can reduce evaluation
time of relational expressions by several orders of magnitude. In the following,
R , S and T denote relations, a and b are sets of attributes, and p and q are
predicates.

1. (Selection splitting) σp∧q(R) = σp(σq(R))

2. (Commutativity of selection)

σp(σq(R)) = σq(σp(R))

This is a corollary of Selection splitting given above.

3. (Projection refinement) Let a and b be subsets of attributes of relation R,
and a ⊆ b. Then,

πa(R) = πa(πb(R))

4. (Commutativity of selection and projection) Given that p names only
attributes in a,

πa(σp(R)) = σp(πa(R))

5. (Commutativity and Associativity of union, cross product, join)

R ∪ S = S ∪R
(R ∪ S) ∪ T = R ∪ (S ∪ T )
R× S = S ×R
(R× S)× T = R× (S × T )
R ./ S = S ./ R
(R ./ S) ./ T = R ./ (S ./ T ),

provided R and S have common attributes and so do S and T , and
no attribute is common to all three relations.

6. (Selection pushing)

σp(R ∪ S ) = σp(R) ∪ σp(S )
σp(R ∩ S ) = σp(R) ∩ σp(S )
σp(R − S ) = σp(R)− σp(S )

Suppose predicate p names only attributes of R. Then,
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σp(R × S ) = σp(R)× S
σp(R ./ S ) = σp(R) ./ S

7. (Projection pushing)

πa(R ∪ S ) = πa(R) ∪ πa(S )

8. (Distributivity of projection over join)

πa(R ./ S ) = πa(πb(R) ./ πc(S ))

where R and S have common attributes d, a is a subset of attributes of
both R and S, b is a’s subset from R plus d and c is a’s subset from S
plus d. That is,

a ⊆ attr(R) ∪ attr(S)
b = (a ∩ attr(R)) ∪ d
c = (a ∩ attr(S)) ∪ d
d = attr(R) ∩ attr(S) 2

Selection splitting law says that evaluations of σp∧q(R) and σp(σq(R)) are
interchangeable; so, apply either of the following procedures: look at each tuple
of R and decide if it satisfies p∧ q, or first identify the tuples of R which satisfy
q and from those identify the ones which satisfy p. The benefit of one strategy
over another depends on the relative costs of access times to the tuples and
predicate evaluation times. For large databases, which are stored in secondary
storage, access time is the major cost. Then it is preferable to evaluate σp∧q(R).

It is a good heuristic to apply projection and selection to as small a rela-
tion as possible. Therefore, it is almost always better to evaluate σp(R) ./ S
instead of σp(R ./ S ), i.e., apply selection to R which tends to be smaller than
R ./ S. Similarly, distributivity of projection over join is often used in query
optimizations.

Exercise 81

Suppose predicate p names only the attributes of S. Show that σp(R ./ S ) =
R ./ σp(S ).

Exercise 82

Show that πa(R ∩ S ) = πa(R) ∩ πa(S ) does not necessarily hold.

6.3.3 Example of Query Optimization

We consider the relations in Tables 6.1 (page 180), 6.5 (page 183), and 6.4
(page 182). We call these relations R, S and T , respectively. Relation R is
prepared by some movie distribution agency independent of the theatres; theatre
owners in Austin compile the databases S and T . Note that T is relatively stable.
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We would like to know the answer to: What are the addresses of theatres
where Will Smith is playing on Saturday at 9PM. We write a relational expres-
sion for this query and then transform it in several stages to a form which can
be efficiently evaluated. Let predicates

p be Actor = Will Smith
q be Time = Sat, 9PM

The query has the form πAddress(σp∧q(x )), where x is a relation yet to be
defined. Since x has to include information about Actor, Time and Address,
we take x to be R ./ S ./ T . Relation x includes many more attributes than
the ones we desire; we will project away the unneeded attributes. The selection
operation extracts the tuples which satisfy the predicate p ∧ q, and then the
projection operation simply lists the addresses. So, the entire query is

πAddress(σp∧q〈R ./ S ./ T 〉)

Above and in the following expressions, we use brackets of different shapes to
help readibility.

We transform this relational expression.

πAddress(σp∧q〈R ./ S ./ T 〉)
≡ {Associativity of join; note that the required conditions are met}

πAddress(σp∧q〈(R ./ S ) ./ T 〉)
≡ {Selection pushing over join}

πAddress(σp∧q〈R ./ S 〉 ./ T )
≡ {See lemma below. p names only the attributes of R and q of S}

πAddress(〈σp(R) ./ σq(S )〉 ./ T )
≡ {Distributivity of projection over join; d = {Theatre}}

πAddress(πTheatre〈σp(R) ./ σq(S )〉 ./ πAddress,Theatre(T ))
≡ {πAddress,Theatre(T ) = T}

πAddress(πTheatre〈σp(R) ./ σq(S )〉 ./ T )
≡ {Distributivity of projection over join;

the common attribute of σp(R) and σq(S ) is Title}
πAddress(〈πTitle(σp(R)) ./ πTheatre,Title(σq(S ))〉 ./ T )

Lemma Suppose predicate p names only the attributes of R and q of S. Then,

σp∧q(R ./ S ) = σp(R) ./ σq(S )

Proof:

σp∧q(R ./ S )
≡ {Selection splitting}

σp〈σq(R ./ S )〉
≡ {Commutativity of join}

σp〈σq(S ./ R)〉
≡ {Selection pushing over join}
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σp〈σq(S ) ./ R〉
≡ {Commutativity of join}

σp〈R ./ σq(S )〉
≡ {Selection pushing over join}

σp(R) ./ σq(S )

Compare the original query πAddress(σp∧q〈R ./ S ./ T 〉) with the transformed
query πAddress(〈πTitle(σp(R)) ./ πTheatre,Title(σq(S ))〉 ./ T ) in terms of the ef-
ficiency of evaluation. The original query would first compute R ./ S ./ T , a
very expensive operation involving three tables. Then selection operation will
go over all the tuples again, and the projection incurs a small cost. In the
transformed expression, selections are applied as soon as possible, in σp(R) and
σq(S ). This results in much smaller relations, 3 tuples in σp(R) and 3 in σq(S ).
Next, projections will reduce the number of columns in both relations, though
not the number of rows. The join of the resulting relation is much more efficient,
being applied over smaller tables. Finally, the join with T and projection over
Address is, again, over smaller tables.

6.3.4 Additional Operations on Relations

The operations on relations that have appeared so far are meant to move the
data around from one relation to another. There is no way to compute with the
data. For example, we cannot ask: How many movies has Will Smith acted in
since 1996. To answer such questions we have to count (or add), and none of the
operations allow that. We describe two classes of operations, Aggregation and
Grouping, to do such processing. Aggregation operations combine the values in
a column in a variety of ways. Grouping creates a number of subrelations from a
relation based on some specified attribute values, applies a specified aggregation
operation on each, and stores the result in a relation.

Aggregation The following aggregation functions are standard; all except
Count apply to numbers. For attribute t of a relation,

Count: the number of distinct values (in t)
Sum: sum
Avg: average
Min: minimum
Max: maximum

We write Af t, g u, h v···(R) where f , g and h are aggregation functions
(shown above) and t, u and v are attribute names in R. The result is a relation
which has just one tuple, with values obtained by applying f , g and h to the
values of attributes t, u and v of R, respectively. The number of columns in the
result is the number of attributes chosen.
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Student Id Dept Q1 Q2 Q3
216285932 CS 61 72 49
228544932 CS 35 47 56
859454261 CS 72 68 75
378246719 EE 70 30 69
719644435 EE 60 70 75
549876321 Bus 56 60 52

Table 6.11: Relation Grades

Avg Q1
59

Table 6.12: Relation Grades, Table 6.11, averaged on Q1

Example of Aggregation Consider theGrades relation in Table 6.11 (page 191).
Now AAvg Q1(Grades) creates Table 6.12 (page 191).
We create Table 6.13 (page 191) by AMin Q1, Min Q2, Min Q3(Grades).

Min Q1 Min Q2 Min Q3
35 30 49

Table 6.13: Min of each quiz from relation Grades, Table 6.11

Consider the names of the attributes in the result Table 6.13, created by
AMin Q1, Min Q2, Min Q3(Grades). We have simply concatenated the name of
the aggregation function and the attribute in forming those names. In general,
the user specifies what names to assign to each resulting attribute; we do not
develop the notation for such specification here.

Grouping A grouping operation has the form gAL(R) where g is a group
(see below) and AL(R) is the aggregation (L is a list of function, attribute pairs
and R is a relation). Whereas AL(R) creates a single tuple, gAL(R) typically
creates multiple tuples. The parameter g is a set of attributes of R. First, R is
divided into subrelations R0, R1 · · · , based on the attributes g; tuples in each Ri
have the same values for g and tuples from different Ris have different values.
Then aggregation is applied to each subrelation Ri. The resulting relation has
one tuple for each Ri.

Example of Grades, contd. Compute the average score in each quiz for each
department. We write DeptAAvg Q1, Avg Q2, Avg Q3(Grades) to get Table 6.14
(page 192). Count the number of students in each department whose total score
exceeds 170: DeptACount, Student Id〈σQ1+Q2+Q3>170 (Grades)〉.
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Dept Avg Q1 Avg Q2 Avg Q3
CS 56 62 60
EE 65 50 72
Bus 56 60 52

Table 6.14: Avg of each quiz by department from relation Grades, Table 6.11

Query Language SQL A standard in the database community, SQL is a
widely used language for data definition and manipulation. SQL statements
can appear as part of a C++ program, and, also they can be executed from a
command line. A popular version is marketed as MySQL.

Query facility of SQL is based on relational algebra (most SQL queries can
be expressed as relational expressions). But, SQL also provides facilities to
insert, delete and update items in a database.



Chapter 7

String Matching

7.1 Introduction

In this chapter, we study a number of algorithms on strings, principally, string
matching algorithms. The problem of string matching is to locate all (or some)
occurrences of a given pattern string within a given text string. There are many
variations of this basic problem. The pattern may be a set of strings, and the
matching algorithm has to locate the occurrence of any pattern in the text.
The pattern may be a regular expression for which the “best” match has to be
found. The text may consist of a set of strings if, for instance, you are trying
to find the occurrence of “to be or not to be” in the works of Shakespeare. In
some situations the text string is fixed, but the pattern changes, as in searching
Shakespeare’s works. Quite often, the goal is not to find an exact match but a
close enough match, as in DNA sequences or Google searches.

The string matching problem is quite different from dictionary or database
search. In dictionary search, you are asked to determine if a given word belongs
to a set of words. Usually, the set of words —the dictionary— is fixed. A
hashing algorithm suffices in most cases for such problems. Database searches
can be more complex than exact matches over strings. The database entries
may be images (say, thumbprints), distances among cities, positions of vehicles
in a fleet or salaries of individuals. A query may involve satisfying a predicate,
e.g., find any “hospital that is within 10 miles of a specific vehicle and determine
the shortest path to it”.

We spend most of this chapter on the exact string matching problem: given
a text string t and a pattern string p over some alphabet, construct a list of
positions where p occurs within t. See Table 7.1 for an example.

The naive algorithm for this problem matches the pattern against the string
starting at every possible position in the text. This may take O(m × n) time
where m and n are the two string lengths. We show three different algorithms
all of which run much faster, and one is an O(m+ n) algorithm.

193
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index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
text a g c t t a c g a a c g t a a c g a
pattern a a c g
output * *

Table 7.1: The pattern matching problem

Exercise 83

You are given strings x and y of equal length, and asked to determine if x is a
rotation of y. Solve the problem through string matching. 2

Solution Determine if x occurs as a substring in yy.

Notation Let the text be t and the pattern be p. The symbols in a string
are indexed starting at 0. We write t[i] for the ith symbol of t, and t[i..j] for
the substring of t starting at i and ending just before j, i ≤ j. Therefore, the
length of t[i..j] is j − i; it is empty if i = j. Similar conventions apply to p.

For a string r, write r for its length. Henceforth, the length of the pattern p,
p, is m; so, its elements are indexed 0 through m−1. Text t is an infinite string.
This assumption is made so that we do not have to worry about terminations
of algorithms; we simply show that every substring in t that matches p will be
found ultimately.

7.2 Rabin-Karp Algorithm

The idea of this algorithm is based on hashing. Given text t and pattern p, com-
pute val(p), where function val will be specified later. Then, for each substring
s of t whose length is p, compute val(s). Since

p = s ⇒ val(p) = val(s), or
val(p) 6= val(s) ⇒ p 6= s

we may discard string s if val(p) 6= val(s). We illustrate the procedure for strings
of 5 decimal digits where val returns the sum of the digits in its argument string.

Let p = 27681; so, val(p) = 24. Consider the text given in Table 7.2; the
function values are also shown there (at the position at which a string ends).
There are two strings for which the function value is 24, namely 27681 and
19833. We compare each of these strings against the original string, 27681, to
find that there is one exact match.

Function val is similar to a hash function. It is used to remove most strings
from consideration. Only when val(s) = val(p) do we have a collision, and we
match s against p. As in hashing, we require that there should be very few col-
lisions on the average; moreover, val should be easily computable incrementally,
i.e., from one string to the next.
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text 2 4 1 5 7 2 7 6 8 1 9 8 3 3 7 8 1 4
val(s) 19 19 22 27 30 24 31 32 29 24 30 29 22 23

Table 7.2: Computing function values in Rabin-Karp algorithm

Minimizing Collisions A function like val partitions the set of strings into
equivalence classes: two strings are in the same equivalence class if their function
values are identical. Strings in the same equivalence class cause collisions, as
in the case of 27681 and 19833, shown above. In order to reduce collisions, we
strive to make the equivalence classes equal in size. Then, the probability of
collision is 1/n, where n is the number of possible values of val .

For the function that sums the digits of a 5-digit number, the possible values
range from 0 (all digits are 0s) to 45 (all digits are 9s). But the 46 equiva-
lence classes are not equal in size. Note that val(s) = 0 iff s = 00000; thus if
you are searching for pattern 00000 you will never have a collision. However,
val(s) = 24 for 5875 different 5-digit strings. So, the probability of collision
is around 0.05875 (since there are 105 5-digit strings). If there had been an
even distribution among the 46 equivalence classes, the probability of collision
would have been 1/46, or around 0.02173, almost three times fewer collisions
than when val(s) = 24.

One way of distributing the numbers evenly is to let val(s) = s mod q, for
some q; we will choose q to be a prime, for efficient computation. Since the
number of 5-digit strings may not be a multiple of q, the distribution may not
be completely even, but no two classes differ by more than 1 in their sizes. So,
this is as good as it gets.

Incremental computation of val The next question is how to calculate val
efficiently, for all substrings in the text. If the function adds up the digits in
5-digit strings, then it is easy to compute: suppose we have already computed
the sum, s, for a five digit string b0b1b2b3b4; to compute the sum for the next
substring b1b2b3b4b5, we assign s := s−b0 +b5. I show that the modulo function
can be calculated equally easily.

The main observation for performing this computation is as follows. Suppose
we have already scanned a n-digit string “ar”, where a is the first symbol of the
string and r is its tail; let ar denote the numerical value of “ar”. The function
value, ar mod q, has been computed already. When we scan the digit b following
r, we have to evaluate rb mod q where rb is the numerical value of “rb”. We
represent rb in terms of ar, a and b. First, remove a from ar by subtracting
a × 10n−1; this gives us r. Next, left shift r by one position, which is r × 10.
Finally, add b. So, rb = (ar − a × 10n−1) × 10 + b. To compute rb mod q, for
prime q, we need a few simple results about mod.

(a+ b) mod q = (a+ b mod q) mod q
(a− b) mod q = (a− b mod q) mod q
(a× b) mod q = (a× b mod q) mod q
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Modular Simplification Rule
Let e be any expression over integers that has only addition, subtraction,

multiplication and exponention as its operators. Let e′ be obtained from e

by replacing any subexpression t of e by (t mod p). Then, e
mod p
≡ e′, i.e.,

e mod p = e′ mod p.
Note that an exponent is not a subexpression; so, it can’t be replaced by its

mod.

Examples

(20 + 5) mod 3 = ((20 mod 3) + 5) mod 3
((x× y) + g) mod p = (((x mod p)× y) + (g mod p)) mod p
xn mod p = (x mod p)n mod p
x2n mod p = (x2)n mod p = (x2 mod p)n mod p
xn mod p = xn mod p mod p, is wrong. 2

We use this rule to compute rb mod q.

rb mod q
= {rb = (ar − a× 10n−1)× 10 + b}

((ar − a× 10n−1)× 10 + b) mod q
= {replace ar and 10n−1}

(((ar mod q)− a× (10n−1 mod q))× 10 + b) mod q
= {let u = ar mod q and f = 10n−1 mod q, both already computed}

((u− a× f)× 10 + b) mod q

Example Let q be 47. Suppose we have computed 12768 mod 47, which is
31. And, also 104 mod 47 which is 36. We compute 27687 mod 47 by

((31− 1× 36)× 10 + 7) mod 47
= ((−5)× 10 + 7) mod 47
= (−43) mod 47
= 4 2

Exercise 84

Show that the equivalence classes under mod q are almost equal in size. 2

Exercise 85

Derive a general formula for incremental calculation when the alphabet has d
symbols, so that each string can be regarded as a d-ary number. 2

7.3 Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt algorithm (KMP) locates all occurrences of a pattern
in a text in linear time (in the combined lengths of the two strings). It is a
refined version of the naive algorithm.
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7.3.1 Informal Description

Let the pattern be “JayadevMisra”. Suppose, we have matched the portion
“JayadevM” against some part of the text string, but the next symbol in the
text differs from ’i’, the next symbol in the pattern. The naive algorithm would
shift one position beyond ’J’ in the text, and start the match all over, starting
with ’J’, the first symbol of the pattern. The KMP algorithm is based on the
observation that no symbol in the text that we have already matched with
“JayadevM” can possibly be the start of a full match: we have just discovered
that the there is no match starting at ’J’, and there is no match starting at any
other symbol because none of them is a ’J’. So, we may skip this entire string
in the text and shift to the next symbol beyond “JayadevM” to begin a match.

In general, we will not be lucky enough to skip the entire piece of text that
we had already matched, as we could in the case of “JayadevM”. For instance,
suppose the pattern is “axbcyaxbts”, and we have already matched “axbcyaxb”;
see Table 7.3. Suppose the next symbol in the text does not match ’s’, the next
symbol in the pattern. A possible match could begin at the second occurrence
of ’a’, because the text beginning at that point is “axb”, a prefix of the pattern.
So, we shift to that position in the text, but we avoid scanning any symbol in
this portion of the text again. The formal description, given next, establishes
the conditions that need to be satisfied for this scheme to work.

7.3.2 Algorithm Outline

At any point during the algorithm we have matched a portion of the pattern
against the text; that is, we maintain the following invariant where l and r are
indices in t defining the two ends of the matched portion.

KMP-INV:
l ≤ r ∧ t[l..r] = p[0..r − l], and
all occurrences of p starting prior to l in the text have been located.

The invariant is established initially by setting

l, r := 0, 0

In subsequent steps we compare the next symbols from the text and the
pattern. If there is no next symbol in the pattern, we have found a match, and
we discuss what to do next below. For the moment, assume that p has a next
symbol, p[r − l].

t[r] = p[r − l] → r := r + 1
{ more text has been matched }

t[r] 6= p[r − l] ∧ r = l → l := l + 1; r := r + 1
{ we have an empty string matched so far;

the first pattern symbol differs from the next text symbol }
t[r] 6= p[r − l] ∧ r > l → l := l′

{ a nonempty prefix of p has matched but the next symbols don’t }
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Note that in the third case, r is not changed; so, none of the symbols in
t[l′..r] will be scanned again.

The question (in the third case) is, what is l′? Abbreviate t[l..r] by v and
t[l′..r] by u. We show below that u is a proper prefix and a proper suffix of v.
Thus, l′ is given by the longest u that is both a proper prefix and a proper suffix
of v.

From the invariant, v is a prefix of p. Also, from the invariant, u is a prefix
of p, and, since l′ > l, u is a shorter prefix than v. Therefore, u is a proper
prefix of v. Next, since their right ends match, t[l′..r] is a proper suffix of t[l..r],
i.e., u is a proper suffix of v.

We describe the algorithm in schematic form in Table 7.3. Here, we have
already matched the prefix “axbcyaxb”, which is v. There is a mismatch in
the next symbol. We shift the pattern so that the prefix “axb”, which is u, is
aligned with a portion of the text that matches it.

index l l′ r
text a x b c y a x b z - - - - - -
pattern a x b c y a x b t s
newmatch a x b c y a x b t s

Table 7.3: Matching in the KMP algorithm

In general, there may be many strings, u, which are both proper prefix and
suffix of v; in particular, the empty string satisfies this condition for any v.
Which u should we choose? Any u we choose could possibly lead to a match,
because we have not scanned beyond t[r]. So, we increment l by the minimum
required amount, i.e., u is the longest string that is both a proper prefix and
suffix of v; we call u the core of v.

The question of computing l′ then reduces to the following problem: given a
string v, find its core. Then l′ = l+(length of v)− (length of core of v). Since v
is a prefix of p, we precompute the cores of all prefixes of the pattern, so that we
may compute l′ whenever there is a failure in the match. In the next subsection
we develop a linear algorithm to compute cores of all prefixes of the pattern.

After the pattern has been completely matched, we record this fact and let
l′ = l + (length of p)− (length of core of p).

We show that KMP runs in linear time. Observe that l+ r increases in each
step (in the last case, l′ > l). Both l and r are bounded by the length of the
text string; so the number of steps is bounded by a linear function of the length
of text. The core computation, in the next section, is linear in the size of the
pattern. So, the whole algorithm is linear.
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7.3.3 The Theory of Core

First, we develop a small theory about prefixes and suffixes from which the
computation of the core will follow.

A Partial Order over Strings For strings u and v, we write u � v to mean
that u is both a prefix and a suffix of v. Observe that u � v holds whenever u
is a prefix of v and the reverse of u is a prefix of the reverse of v. As is usual,
we write u ≺ v to mean that u � v and u 6= v.

Exercise 86

Find all strings u such that u ≺ ababab. 2

The following properties of� follow from the properties of the prefix relation;
you are expected to develop the proofs. Henceforth, u and v denote arbitrary
strings and ε is the empty string.

Exercise 87

1. ε � u.

2. � is a partial order. Use the fact that prefix relation is a partial order.

3. There is a total order among all u where u � v, i.e.,

(u � v ∧ w � v) ⇒ (u � w ∨ w � u) 2

7.3.3.1 Definition of core

For any nonempty v, core of v, written as c(v), is the longest string such that
c(v) ≺ v. The core is defined for every v, v 6= ε, because there is at least one
string, namely ε, that is a proper prefix and suffix of every nonempty string.

Example We compute cores of several strings.

a ab abb abba abbab abbabb abbabba abbabbb
ε ε ε a ab abb abba ε

Table 7.4: Examples of Cores

The traditional way to formally define core of v, c(v), is as follows: (1)
c(v) ≺ v, and (2) for any w where w ≺ v, w � c(v). We give a different, though
equivalent, definition that is more convenient for formal manipulations. For any
u and v, v 6= ε,

(core definition): u � c(v) ≡ u ≺ v
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It follows, by replacing u with c(v), that c(v) ≺ v. In particular, c(v) < v. Also,
every non-empty string has a unique core. To see this, let r and s be cores of
v. We show that r = s. For any u, u � c(v) ≡ u ≺ v. Using r and s for c(v),
we get

u � r ≡ u ≺ v and u � s ≡ u ≺ v

That is, u � r ≡ u � s, for all u. Setting u to r, we get r � r ≡ r � s, i.e.,
r � s. Similarly, we can deduce s � r. So, r = s from the antisymmetry of �.2

Exercise 88

Let u be a longer string than v. Is c(u) necessarily longer than c(v)? 2

Exercise 89

Show that the core function is monotonic, that is,

u � v ⇒ c(u) � c(v) 2

We write ci(v) for i-fold application of c to v, i.e., ci(v) =

i times︷ ︸︸ ︷
c(c(..(c (v)..)))

and c0(v) = v. Since c(v) < v, ci(v) is defined only for some i, not necessarily
all i, in the range 0 ≤ i ≤ v. Note that, ci+1(v) ≺ ci(v) . . . c1(v) ≺ c0(v) = v.

Exercise 90

Compute ci(ababab) for all possible i. What is ci(ab)n, for any i, i ≤ n? 2

7.3.3.2 A characterization of � in terms of core

The following proposition says that any string u, where u ≺ v, can be obtained
by applying function c a sufficient (non-zero) number of times to v.

P1: For any u and v,

u � v ≡ 〈∃i : 0 ≤ i : u = ci(v)〉

Proof: The proof is by induction on the length of v.

• v = 0:

u � v
≡ {v = 0, i.e., v = ε}

u = ε ∧ v = ε
≡ {definition of c0: v = ε ⇒ ci(v) is defined for i = 0 only}

〈∃i : 0 ≤ i : u = ci(v)〉
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• v > 0:

u � v
≡ {definition of �}

u = v ∨ u ≺ v
≡ {definition of core}

u = v ∨ u � c(v)

≡ {c(v) < v; apply induction hypothesis on second term}
u = v ∨ 〈∃i : 0 ≤ i : u = ci(c(v))〉

≡ {rewrite}
u = c0(v) ∨ 〈∃i : 0 < i : u = ci(v)〉

≡ {rewrite}
〈∃i : 0 ≤ i : u = ci(v)〉 2

Corollary For any u and v, v 6= ε,

u ≺ v ≡ 〈∃i : 0 < i : u = ci(v)〉 2

7.3.3.3 Incremental Computation of Core

We show how to compute the core of string us, where u is a string and s a
symbol, from c(u), c2(u), c3(u), · · · . First, suppose that us has a non-empty
core. Then that core is of the form vs for some string v, because the core of us
has to be a suffix of us; therefore, its last symbol has to be s.

vs ≺ us
≡ {definition of ≺}

vs is a proper prefix of us, vs is a proper suffix of us
≡ {vs is a proper prefix of us ≡ v is a proper prefix of u and u[|v|] = s}

v is a proper prefix of u, u[|v|] = s, vs is a proper suffix of us
≡ {vs is a proper suffix of us ≡ v is a proper suffix of u}

v is a proper prefix of u, u[|v|] = s, v is a proper suffix of u
≡ {definition of ≺}

v ≺ u, u[|v|] = s
≡ {proposition P1: v ≺ u ≡ (∃i : i > 0 : v = ci(u))}

(∃i : i > 0 : v = ci(u)), u[|v|] = s

To compute the core of us find the longest v such that v = ci(u)) for some
positive i, and u[|v|] = s. So, we have to find the smallest i meeting these
conditions. That is, check if u[|c1(u)|] = s, if not, check if u[|c2(u)|] = s, · · · .
These checks continue until we either find some j such that u[|cj(u)|] = s —then,
v = cj(u) and the c(us) = vs— or, cj(u) is not defined —then c(us) = ε.

Example In Figure 7.1, u is a string and s is the symbol following it. The
prefixes of u ending at A, B, C are c1(u), c2(u) and c3(u), and the symbols
following them are a, b, c, respectively. Here C is the empty string. To compute
the core of us, match s against a; in case of failure, match s against b, and again
in case of failure, match s against c.
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sabc

AC uB

Figure 7.1: Incremental Core Computation

7.3.4 Computing Cores of all Non-empty Prefixes

The KMP algorithm needs the core of string q when the pattern match fails
after having matched q. String q is a prefix of the pattern string p. Therefore,
we pre-compute the cores of all non-empty prefixes of p.

7.3.4.1 Computing cores of all prefixes of a pattern

We compute the cores of pattern p using the scheme of Section 7.3.3.3. The
core for the empty prefix is undefined. For a prefix of length 1, the core is ε.
Next, suppose we have computed the cores of all prefixes of p up to length j;
we then compute the core of the next longer prefix, of length j + 1, using the
scheme of Section 7.3.3.3.

First, let us decide how to store the cores. Any core of a prefix of p is a prefix
of p. So, we can simply store the length of the core. We store the cores in array
d, where d[k], for k > 0, is the length of the core of p[0..k], i.e., d[k] = |c(p[0..k])|.
(Prefix of length 0 is ε which does not have a core.)

The following program has the invariant that the cores of all prefixes up to
and including p[0..j] are known; let u be p[0..j]. The goal of the program is to
next compute the core of us where s = p[j]. To this end, we apply the scheme
of Section 7.3.3.3, whereby we successively check if u[|c1(u)|] = s, u[|c2(u)|] = s,
· · · , . Suppose u[|ck(u)|] 6= s for all k, 0 < k < t. We next have to check if
u[|ct(u)|] = s. Let i = |ct(u)|; so the check is if u[i] = s, or since u is a prefix of
p, p[i] = s, or since p[j] = s, if p[i] = p[j]. If this check succeeds, we have found
the core of us, i.e., of p[0..j + 1]; it is simply p[0..i + 1], or d[j + 1] = i + 1. If
the check fails, we have to set i := |ct+1(u)| = |c(ct(u))| = |c(p[0..i])| = d(i).
However, if i = 0 then d(i) is not defined, and we conclude that the core of
p[0..j + 1] = ε, or d[j + 1] = 0.

Below, b → C, where b is a predicate and S a sequence of statements, is
known as a guarded command ; b is the guard and C the command. Command
C is executed only if b holds. Below, exactly one guard is true in any iteration.

j := 1; d[1] := 0; i := 0;
while j < p do

S1:: p[i] = p[j] → d[j + 1] := i+ 1; j := j + 1; i := d[j]
S2:: p[i] 6= p[j] ∧ i 6= 0 → i := d[i]
S3:: p[i] 6= p[j] ∧ i = 0 → d[j + 1] := 0; j := j + 1; i := d[j] {i = 0}

endwhile
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7.3.4.2 Analysis of the running time of core computation

We show that the program for core computation runs in linear time in the
length of pattern p. Specifically, execution of each guarded command increases
2j − i. Since j ≤ p and i ≥ 0 (prove these as invariants), 2j − i never exceeds
2p. Initially, 2j − i = 2. Therefore, the number of executions of all guarded
commands is O(p).

Now, we consider the right side of each guarded command Sk, 1 ≤ k ≤ 3,
and show that each one strictly increases 2j − i, i.e.,

{2j − i = n} right side of Sk {2j − i > n}

• Proof for S1:

{2j − i = n} d[j + 1] := i+ 1; j := j + 1; i := d[j] {2j − i > n}
, goal

{2j − i = n} d[j + 1] := i+ 1; j := j + 1 {2j − d[j] > n}
, axiom of assignment

{2j − i = n} d[j + 1] := i+ 1 {2(j + 1)− d[j + 1] > n}
, axiom of assignment

{2j − i = n} {2(j + 1)− (i+ 1) > n}
, axiom of assignment

2j − i = n ⇒ 2(j + 1)− (i+ 1) > n
, simplify

true , arithmetic 2

• Proof for S2:

{2j − i = n} i := d[i] {2j − i > n}
, goal

2j − i = n ⇒ 2j − d[i] > n , axiom of assignment
2j − i < 2j − d[i] , arithmetic
d[i] < i , arithmetic

true , i = u and d[i] = c(u) 2

• Proof for S3:

{2j − i = n} d[j + 1] := 0; j := j + 1; i := d[j] {2j − i > n}
, goal

{2j − i = n} d[j + 1] := 0; j := j + 1 {2j − d[j] > n}
, axiom of assignment

{2j − i = n} d[j + 1] := 0 {2(j + 1)− d[j + 1] > n}
, axiom of assignment

{2j − i = n} {2(j + 1)− 0 > n}
, axiom of assignment

2j − i = n ⇒ 2(j + 1) > n , simplify
true , arithmetic and i ≥ 0 (invariant) 2
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Exercise 91

1. Show that you can match pattern p against text t by computing the cores
of all prefixes of pt (pt is the concatenation of p and t).

2. Define u to be the k-core of string v, where k ≥ 0 and v 6= ε, if u ≺ v, u’s
length is at most k and u is the longest string with this property. Show
that the k-core is well-defined. Devise an algorithm to compute the k-core
of a string for a given k. 2

7.4 Boyer-Moore Algorithm

The next string matching algorithm we study is due to Boyer and Moore. It has
the best performance, on the average, of all known algorithms for this problem.
In many cases, it runs in sublinear time, because it may not even scan all
the symbols of the text. Its worst case behavior could be as bad as the naive
matching algorithm.

At any moment, imagine that the pattern is aligned with a portion of the
text of the same length, though only a part of the aligned text may have been
matched with the pattern. Henceforth, alignment refers to the substring of t
that is aligned with p and l is the index of the left end of the alignment; i.e.,
p[0] is aligned with t[l] and, in general, p[i], 0 ≤ i < m, with t[l + i]. Whenever
there is a mismatch, the pattern is shifted to the right, i.e., l is increased, as
explained in the following sections.

7.4.1 Algorithm Outline

The overall structure of the program is a loop that has the invariant:

Q1: Every occurrence of p in t that starts before l has been recorded.

The following loop records every occurrence of p in t eventually.

l := 0;
{ Q1 }
loop

{ Q1 }
“increase l while preserving Q1”
{ Q1 }

endloop

Next, we show how to increase l while preserving Q1. To do so, we need to
match certain symbols of the pattern against the text. We introduce variable j,
0 ≤ j < m, with the meaning that the suffix of p starting at position j matches
the corresponding portion of the alignment; i.e.,

Q2: 0 ≤ j ≤ m, p[j..m] = t[l + j..l +m]
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Thus, the whole pattern is matched when j = 0, and no part has been matched
when j = m.

We establish Q2 by setting j to m. Then, we match the symbols from right
to left of the pattern (against the corresponding symbols in the alignment) until
we find a mismatch or the whole pattern is matched.

j := m;
{ Q2 }
while j > 0 ∧ p[j − 1] = t[l + j − 1] do j := j − 1 endwhile

{ Q1 ∧ Q2 ∧ (j = 0 ∨ p[j − 1] 6= t[l + j − 1]) }
if j = 0

then { Q1 ∧ Q2 ∧ j = 0 } record a match at l; l := l′ { Q1 }
else { Q1 ∧ Q2 ∧ j > 0 ∧ p[j − 1] 6= t[l + j − 1] } l := l′′{ Q1 }

endif

{ Q1 }

Next, we show how to compute l and l′, l′ > l and l′′ > l, so that Q1 is
satisfied. For better performance, l should be increased as much as possible in
each case. We take up the computation of l′′ next; computation of l′ is a special
case of this.

The precondition for the computation of l′′ is,

Q1 ∧ Q2 ∧ j > 0 ∧ p[j − 1] 6= t[l + j − 1].

We consider two heuristics, each of which can be used to calculate a value
of l′′; the greater value is assigned to l. The first heuristic, called the bad
symbol heuristic, exploits the fact that we have a mismatch at position j − 1
of the pattern. The second heuristic, called the good suffix heuristic, uses the
fact that we have matched a suffix of p with the suffix of the alignment, i.e.,
p[j..m] = t[l + j..l +m] (though the suffix may be empty).

7.4.2 The Bad Symbol Heuristic

Suppose we have the pattern “attendance” that we have aligned against a por-
tion of the text whose suffix is “hce”, as shown in Table 7.5.

text - - - - - - - h c e
pattern a t t e n d a n c e
align a t t e n d a n c e

Table 7.5: The bad symbol heuristic

The suffix “ce” has been matched; the symbols ’h’ and ’n’ do not match.
We now reason as follows. If symbol ’h’ of the text is part of a full match,
that symbol has to be aligned with an ’h’ of the pattern. There is no ’h’ in
the pattern; so, no match can include this ’h’ of the text. Hence, the pattern
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may be shifted to the symbol following ’h’ in the text, as shown under align
in Table 7.5. Since the index of ’h’ in the text is l + j − 1 (that is where the
mismatch occurred), we have to align p[0] with t[l+j], i.e., l should be increased
to l + j. Observe that we have shifted the alignment several positions to the
right without scanning the text symbols shown by dashes, ’-’, in the text; this
is how the algorithm achieves sublinear running time in many cases.

Next, suppose the mismatched symbol in the text is ’t’, as shown in Table 7.6.

text - - - - - - - t c e
pattern a t t e n d a n c e

Table 7.6: The bad symbol heuristic

Unlike ’h’, symbol ’t’ appears in the pattern. We align some occurrence of ’t’
in the pattern with that in the text. There are two possible alignments, which
we show in Table 7.7.

text - - t c e - - - - - -
align1 a t t e n d a n c e
align2 a t t e n d a n c e

Table 7.7: New alignment in the bad symbol heuristic

Which alignment should we choose? The same question also comes up in
the good suffix heuristic. We have several possible shifts each of which matches
a portion of the alignment. We adopt the following rule for shift:

Minimum shift rule: Shift the pattern by the minimum allowable amount.

According to this rule, in Table 7.8 we would shift the pattern to get align1 .

Justification for the rule: This rule preserves Q1; we never skip over a possible
match following this rule, because no smaller shift yields a match at the given
position, and, hence no full match.

Conversely, consider the situation shown in Table 7.8. The first pattern line
shows an alignment where there is a mismatch at the rightmost symbol in the
alignment. The next two lines show two possible alignments that correct the
mismatch. Since the only text symbol we have examined is ’x’, each dash in
Table 7.8 could be any symbol at all; so, in particular, the text could be such
that the pattern matches against the first alignment, align1 . Then, we will
violate invariant Q1 if we shift the pattern as shown in align2 . 2

For each symbol in the alphabet, we precalculate its rightmost position in
the pattern. The rightmost ’t’ in “attendance” is at position 2. To align the
mismatched ’t’ in the text in Table 7.7 that is at position t[l+j−1], we align p[2]
with t[l+ j − 1], that is, p[0] with t[l− 2 + j − 1]. In general, if the mismatched
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text - - x - -
pattern x x y
align1 x x y
align2 x x y

Table 7.8: Realignment in the good suffix heuristic

symbol’s rightmost occurrence in the pattern is at p[k], then p[0] is aligned with
t[l− k+ j − 1], or l is increased by −k+ j − 1. For a nonexistent symbol in the
pattern, like ’h’, we set its rightmost occurrence to −1 so that l is increased to
l + j, as required.

The quantity −k + j − 1 is negative if k > j − 1. That is, the rightmost
occurrence of the mismatched symbol in the pattern is to the right of the mis-
match. Fortunately, the good suffix heuristic, which we discuss in Section 7.4.3,
always yields a positive increment for l; so, we ignore this heuristic if it yields a
negative increment.

Computing the rightmost positions of the symbols in the pattern
For a given alphabet, we compute an array rt, indexed by the symbols of the
alphabet, so that for any symbol ’a’,

rt(’a’) =

{
position of the rightmost ’a’ in p, if ’a’ is in p
−1 otherwise

The following simple loop computes rt.

let rt[’a’] := −1, for every symbol ’a’ in the alphabet;
for j = 0 to m− 1 do

rt[p[j]] := j
endfor

7.4.3 The Good Suffix Heuristic

Suppose we have a pattern “abxabyab” of which we have already matched the
suffix “ab”, but there is a mismatch with the preceding symbol ’y’, as shown in
Table 7.9.

text - - - - - z a b - -
pattern a b x a b y a b

Table 7.9: A good suffix heuristic scenario

Then, we shift the pattern to the right so that the matched part is occupied
by the same symbols, “ab”; this is possible only if there is another occurrence
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of “ab” in the pattern. For the pattern of Table 7.9, we can form the new
alignment in two possible ways, as shown in Table 7.10.

text - - z a b - - - - - -
align1 a b x a b y a b
align2 a b x a b y a b

Table 7.10: Realignment in the good suffix heuristic

No complete match of the suffix s is possible if s does not occur elsewhere
in p. This possibility is shown in Table 7.11, where s is “xab”. In this case, the
best that can be done is to match with a suffix of “xab”, as shown in Table 7.11.
Note that the matching portion “ab” is a prefix of p. Also, it is a suffix of p,
being a suffix of “xab”, that is a suffix of p.

text - - x a b - - -
pattern a b x a b
align a b x a b

Table 7.11: The matched suffix is nowhere else in p

As shown in the preceding examples, in all cases we shift the pattern to align
the right end of a proper prefix r with the right end of the previous alignment.
Also, r is a suffix of s or s is a suffix of r. In the example in Table 7.10, s is
“ab” and there are two possible r, “abxab” and “ab”, for which s is a suffix.
Additionally, ε is a suffix of s. In Table 7.11, s is “xab” and there is exactly one
nonempty r, “ab”, which is a suffix of s. Let

R = {r is a proper prefix of p ∧
(r is a suffix of s ∨ s is a suffix of r)}

The good suffix heuristic aligns an r in R with the end of the previous
alignment, i.e., the pattern is shifted to the right by m − r. Let b(s) be the
amount by which the pattern should be shifted for a suffix s. According to the
minimum shift rule,

b(s) = min{m− r | r ∈ R}

In the rest of this section, we develop an efficient algorithm for computing b(s).

7.4.3.1 Shifting the pattern in the algorithm of Section 7.4.1

In the algorithm outlined in Section 7.4.1, we have two assignments to l, the
assignment

l := l′, when the whole pattern has matched, and
l := l′′, when p[j..m] = t[l + j..l +m] and p[j − 1] 6= t[l + j − 1]
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l := l′ is implemented by
l := l + b(p), and

l := l′′ is implemented by
l := l + max(b(s), j − 1− rt(h)),

where s = p[j..m] and h = t[l + j − 1]

7.4.3.2 Properties of b(s), the shift amount for suffix s

We repeat the definition of b(s).

b(s) = min{m− r | r ∈ R}

Notation We abbreviate min{m− r | r ∈ R} to min(m− R). In general, let
S be a set of strings and e(S) an expression that includes S as a term. Then,
min(e(S)) = min{e(i) | i ∈ S}, where e(i) is obtained from e by replacing S by
i. 2

Rewrite R as R′ ∪R′′, where

R′ = {r is a proper prefix of p ∧ r is a suffix of s}
R′′ = {r is a proper prefix of p ∧ s is a suffix of r}

Then,

b(s) = min(min(m−R′), min(m−R′′))

where minimum over empty set is ∞.

P1: R is nonempty and b(s) is well-defined.
Proof: Note that ε ∈ R′ and R = R′ ∪ R′′. Then, from its definition, b(s) is
well-defined. 2

P2: c(p) ∈ R
Proof: From the definition of core, c(p) ≺ p. Hence, c(p) is a proper prefix of p.
Also, c(p) is a suffix of p, and, since s is a suffix of p, they are totally ordered.
So, either c(p) is a suffix of s or s is a suffix of c(p). Hence, c(p) ∈ R. 2

P3: min(m−R′) ≥ m− c(p)
Proof: Consider any r in R′. Since r is a suffix of s and s is a suffix of p, r is
a suffix of p. Also, r is a proper prefix of p. So, r ≺ p. From the definition of
core, r � c(p). Hence, m− r ≥ m− c(p) for every r in R′. 2

P4: Let V = {v | v is a suffix of p ∧ c(v) = s}.
Then, min(m−R′′) = min(V − s)
Proof: Note that R′′ may be empty. In that case, V will be empty too and both
will have the same minimum, ∞. This causes no problem in computing b(s)
because, from (P1), R is nonempty.
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Consider any r in R′′. Note that r is a prefix of p and has s as a suffix; so
p = xsy, for some x and y, where r = xs and y is the remaining portion of p.
Also, y 6= ε because r is a proper prefix. Let u stand for sy; then u is a suffix
of p. And, u 6= ε because y 6= ε, though u may be equal to p, because x could
be empty. Also, s is a prefix of u (u = sy) and a suffix of u (s and u are both
suffixes of p and u is longer than s). Therefore, s ≺ u. Define

U = {u | u is a suffix of p ∧ s ≺ u}

We have thus shown that there is a one-to-one correspondence between the
elements of R′′ and U . Given that p = xsy, r = xs, and u = sy, we have
m− r = y = u− s. Hence,

min(m−R′′) = min(U − s).

For a fixed s, the minimum value of u− s over all u in U is achieved for the
shortest string v of U . We show that c(v) = s. This proves the result in (P4).

v is the shortest string in U

⇒ {c(v) < v}
v ∈ U ∧ c(v) 6∈ U

⇒ {definition of U}
s ≺ v ∧ (c(v) is not a suffix of p ∨ ¬(s ≺ c(v))

⇒ {c(v) is a suffix of v and v is a suffix of p; so, c(v) is a suffix of p}
s ≺ v ∧ ¬(s ≺ c(v))

⇒ {definition of core}
(s = c(v) ∨ s ≺ c(v)) ∧ (¬(s ≺ c(v)))

⇒ {predicate calculus}
s = c(v) 2

Note: The converse of this result is not true. There may be several u in U for
which c(u) = s. For example, consider “sxs” and “sxyx”, where the symbols ’x’
and ’y’ do not appear in “s”. Cores for both of these strings are “s”. 2

7.4.3.3 An abstract program for computing b(s)

We derive a formula for b(s), and use that to develop an abstract program.

b(s)
= {definition of b(s) from Section 7.4.3.2}

min(m−R)
= {from (P2): c(p) ∈ R}

min(m− c(p), min(m−R))
= {R = R′ ∪R′′, from Section 7.4.3.2}

min(m− c(p), min(m−R′), min(m−R′′))
= {from (P3): min(m−R′) ≥ m− c(p)}

min(m− c(p), min(m−R′′))
= {from (P4): min(m−R′′) = min(V − s)}

min(m− c(p), min(V − s))
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Recall that

V = {v | v is a suffix of p ∧ c(v) = s}

Now, we propose an abstract program to compute b(s), for all suffixes s of p.
We employ an array b where b[s] ultimately holds the value of b(s), though it is
assigned different values during the computation. Initially, set b[s] to m− c(p).
Next, scan the suffixes v of p: let s = c(v); update b[s] to v − s provided this
value is lower than the current value of b[s].

The program

assign m− c(p) to all elements of b;
for all suffixes v of p do

s := c(v);
if b[s] > v − s then b[s] := v − s endif

endfor

7.4.3.4 A concrete program for computing b(s)

The goal of the concrete program is to compute an array e, where e[j] is the
amount by which the pattern is to be shifted when the matched suffix is p[j..m],
0 ≤ j ≤ m. That is,

e[j] = b[s], where j + s = m, or
e[m− s] = b[s], for any suffix s of p

We have no need to keep explicit prefixes and suffixes; instead, we keep their
lengths, s in i and v in j. Let array f hold the lengths of the cores of all suffixes
of p. Summarizing, for suffixes s and v of p,

i = s,
j = v,
e[m− i] = b[s], using i = s,

f [v] = c(v), i.e., f [j] = c(v)

The abstract program, given earlier, is transformed to the following concrete
program.

assign m− c(p) to all elements of e;
for j, 0 ≤ j ≤ m, do

i := f [j];
if e[m− i] > j − i then e[m− i] := j − i endif

endfor
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Computation of f The given program is complete except for the computa-
tion of f , the lengths of the cores of the suffixes of p. We have already developed
a program to compute the cores of the prefixes of a string; we employ that pro-
gram to compute f , as described next.

For any string r, let r̂ be its reverse. Now, v is a suffix of p iff v̂ is a prefix
of p̂. Moreover for any r (see exercise below)

c(r̂) = ĉ(r)

Therefore, for any suffix v of p and u = v̂,

c(u) = ĉ(v), replace r by v, above; note: r̂ = v̂ = u

c(v) = ĉ(v), r = r̂, for any r; let r = c(v)

c(u) = c(v), from the above two

Since our goal is to compute the lengths of the cores, c(v), we compute c(u)
instead, i.e., the lengths of the cores of the prefixes of p̂, and store them in f .

Exercise 92
Show that

1. r � s ≡ r̂ � ŝ

2. r ≺ s ≡ r̂ ≺ ŝ

3. c(r̂) = ĉ(r)

Solution

1. r � s
≡ {definition of �}

r is a prefix of s and r is a suffix of s
≡ {properties of prefix, suffix and reverse}

r̂ is a suffix of ŝ and r̂ is a prefix of ŝ
≡ {definition of �}

r̂ � ŝ

2. Similarly.

3. Indirect proof of equality is a powerful method for proving equality. This
can be applied to elements in a set which has a reflexive and antisymmetric
relation like �. To prove y = z for specific elements y and z, show that
for every element x,

x � y ≡ x � z.

Then, set x to y to get y � y ≡ y � z, or y � z since � is reflexive.
Similarly, get z � y. Next, use antisymmetry of � to get y = z.

We apply this method to prove the given equality: we show that for any

s, s � c(r̂) ≡ s � ĉ(r).
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s � c(r̂)
≡ {definition of core}

s ≺ r̂
≡ {second part of this exercise}

ŝ ≺ r
≡ {definition of core}

ŝ � c(r)
≡ {first part of this exercise}

s � ĉ(r) 2

Execution time for the computation of b The computation of b(s), for
all suffixes s of p, requires (1) computing c(p), (2) computing array f , and (3)
executing the concrete program of this section. Note that (1) can be computed
from array f ; so, the steps (1,2) can be combined. The execution times of
(1), (2) and (3) are linear in m, the length of p, from the text of the concrete
program. So, array b can be computed in time that is linear in the length of the
pattern.
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Chapter 8

Parallel Recursion

8.1 Parallelism and Recursion

Many important synchronous parallel algorithms—Fast Fourier Transform, rout-
ing and permutation, Batcher sorting schemes, solving tridiagonal linear systems
by odd-even reduction, prefix-sum algorithms—are conveniently formulated in a
recursive fashion. The network structures on which parallel algorithms are typ-
ically implemented—butterfly, sorting networks, hypercube, complete binary
tree—are, also, recursive in nature. However, parallel recursive algorithms are
typically described iteratively, one parallel step at a time1. Similarly, the con-
nection structures are often explained pictorially, by displaying the connections
between one “level” and the next. The mathematical properties of the algo-
rithms and connection structures are rarely evident from these descriptions.

A data structure, powerlist, is proposed in this paper that highlights the role
of both parallelism and recursion. Many of the known parallel algorithms—
FFT, Batcher Merge, prefix sum, embedding arrays in hypercubes, etc.—have
surprisingly concise descriptions using powerlists. Simple algebraic properties of
powerlists permit us to deduce properties of these algorithms employing struc-
tural induction.

8.2 Powerlist

The basic data structure on which recursion is employed (in LISP[37] or ML[38])
is a list. A list is either empty or it is constructed by concatenating an element
to a list. (We restrict ourselves to finite lists throughout this paper.) We call
such a list linear (because the list length grows by 1 as a result of applying
the basic constructor). Such a list structure seems unsuitable for expressing
parallel algorithms succinctly; an algorithm that processes the list elements has
to describe how successive elements of the list are processed.

1A notable exception is the recursive description of a prefix sum algorithm in [26].

215
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We propose powerlist as a data structure that is more suitable for describing
parallel algorithms. The base—corresponding to the empty list for the linear
case—is a list of one element. A longer powerlist is constructed from the ele-
ments of two powerlists of the same length, as described below. Thus, a powerlist
is multiplicative in nature; its length doubles by applying the basic constructor.

There are two different ways in which powerlists are joined to create a longer
powerlist. If p, q are powerlists of the same length then

p | q is the powerlist formed by concatenating p and q, and

p ./ q is the powerlist formed by successively taking alternate items
from p and q, starting with p.

Further, we restrict p, q to contain similar elements (defined in Section 8.2.1).
In the following examples the sequence of elements of a powerlist are enclosed

within angular brackets.

〈0〉 | 〈1〉 = 〈0 1〉
〈0〉 ./ 〈1〉 = 〈0 1〉
〈0 1〉 | 〈2 3〉 = 〈0 1 2 3〉
〈0 1〉 ./ 〈2 3〉 = 〈0 2 1 3〉

The operation | is called tie and ./ is zip.

8.2.1 Definitions

A data item from the linear list theory will be called a scalar. (Typical scalars
are the items of base types—integer, boolean, etc.—tuples of scalars, functions
from scalars to scalars and linear lists of scalars.) Scalars are uninterpreted in
our theory. We merely assume that scalars can be checked for type compatibility.
We will use several standard operations on scalars for purposes of illustration.

Notational Convention : Linear lists will be enclosed within square brackets,
[ ].

A powerlist is a list of length 2n, for some n, n ≥ 0, all of whose elements
are similar. We enclose powerlists within angular brackets, 〈 〉.

Two scalars are similar if they are of the same type. Two powerlists are
similar if they have the same length and any element of one is similar to any
element of the other. (Observe that similar is an equivalence relation.)

Let S denote an arbitrary scalar, P a powerlist and u, v similar powerlists.
A recursive definition of a powerlist is

〈S〉 or 〈P 〉 or u | v or u ./ v

Examples
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〈〈c〉 〈d〉〉

〈〈〈a〉 〈b〉〉 〈〈c〉 〈d〉〉〉

〈〈a〉 〈b〉〉

〈d〉〈c〉〈b〉〈a〉
Figure 8.1: Representation of a complete binary tree where the data are at the
leaves. For leaf nodes, the powerlist has one element. For non-leaf nodes, the
powerlist has two elements, namely, the powerlists for the left and right subtrees.

〈2〉 powerlist of length 1 containing a scalar
〈〈2〉〉 powerlist of length 1 containing a powerlist of length 1 of scalar
〈 〉 not a powerlist
〈[ ]〉 powerlist of length 1 containing the empty linear list
〈 〈[2] [3 4 7]〉 〈[4] [ ]〉 〉

powerlist of length 2, each element of which is a powerlist of length
2, whose elements are linear lists of numbers

〈 〈0 4〉 〈1 5〉 〈2 6〉 〈3 7〉 〉

a representation of the matrix

[
0 1 2 3
4 5 6 7

]
where each column is

an element of the outer powerlist.
〈 〈0 1 2 3〉 〈4 5 6 7〉 〉

another representation of the above matrix where each row is an
element of the outer powerlist.

〈〈〈a〉 〈b〉〉 〈〈c〉 〈d〉〉〉
a representation of the tree in Figure 8.1. The powerlist contains
two elements, one each for the left and right subtrees.

8.2.2 Functions over Powerlists

Convention : We write function application without parantheses where no
confusion is possible. Thus, we write “f x” instead of “f(x)” and “g x y”
instead of “g(x, y)”. The constructors | and ./ have the same binding power
and their binding power is lower than that of function application. Throughout
this paper, S denotes a scalar, P a powerlist and x, y either scalar or powerlist.
Typical names for powerlist variables are p, q, r, s, t, u, v. 2

Functions over linear lists are typically defined by case analysis—a function
is defined over the empty list and, recursively, over non-empty lists. Functions
over powerlists are defined analogously. For instance, the following function,
rev, reverses the order of the elements of the argument powerlist.

rev〈x〉 = 〈x〉
rev(p | q) = (rev q) | (rev p)
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The case analysis, as for linear lists, is based on the length of the argument
powerlist. We adopt the pattern matching scheme of ML[38] and Miranda[52]2

to deconstruct the argument list into its components, p and q, in the recursive
case. Deconstruction, in general, uses the operators | and ./ ; see Section 8.3.
In the definition of rev, we have used | for deconstruction; we could have used
./ instead and defined rev in the recursive case by

rev(p ./ q) = (rev q) ./ (rev p)

It can be shown, using the laws in Section 8.3, that the two proposed definitions
of rev are equivalent and that

rev(rev P ) = P

for any powerlist P .

Scalar Functions

Operations on scalars are outside our theory. Some of the examples in this
paper, however, use scalar functions, particularly, addition and multiplication
(over complex numbers) and cons over linear lists. A scalar function, f , has zero
or more scalars as arguments and its value is a scalar. We coerce the application
of f to a powerlist by applying f “pointwise” to the elements of the powerlist.
For a scalar function f of one argument we define

f〈x〉 = 〈f x〉
f(p | q) = (f p) | (f q)

It can be shown that

f(p ./ q) = (f p) ./ (f q)

A scalar function that operates on two arguments will often be written as an
infix operator. For any such function ⊕ and similar powerlists p, q, u, v, we have

〈x〉 ⊕ 〈y〉 = 〈x ⊕ y〉
(p | q) ⊕ (u | v) = (p ⊕ u) | (q ⊕ v)
(p ./ q) ⊕ (u ./ v) = (p ⊕ u) ./ (q ⊕ v)

Thus, scalar functions commute with both | and ./ .

Note : Since a scalar function is applied recursively to each element of a pow-
erlist, its effect propagates through all “levels”. Thus, + applied to matrices
forms their elementwise sum. 2

2Miranda is a trademark of Research Software Ltd.



8.3. LAWS 219

8.2.3 Discussion

The base case of a powerlist is a singleton list, not an empty list. Empty lists (or,
equivalent data structures) do not arise in the applications we have considered.
For instance, in matrix algorithms the base case is a 1×1 matrix rather than an
empty matrix, Fourier transform is defined for a singleton list (not the empty
list) and the smallest hypercube has one node.

The recursive definition of a powerlist says that a powerlist is either of the
form u ./ v or u | v. In fact, every non-singleton powerlist can be written in
either form in a unique manner (see Laws in Section 8.3). A simple way to view
p | q = L is that if the elements of L are indexed by n-bit strings in increasing
numerical order (where the length of L is 2n) then p is the sublist of elements
whose highest bit of the index is 0 and q is the sublist with 1 in the highest bit
of the index. Similarly, if u ./ v = L then u is the sublist of elements whose
lowest bit of the index is 0 and v’s elements have 1 as the lowest bit of the index.

At first, it may seem strange to allow two different ways for constructing the
same list—using tie or zip. As we see in this paper this causes no difficulty, and
further, this flexibility is essential because many parallel algorithms—the Fast
Fourier Transform being the most prominent—exploit both forms of construc-
tion.

We have restricted u, v in u | v and u ./ v to be similar. This restriction
allows us to process a powerlist by recursive divide and conquer, where each
division yields two halves that can be processed in parallel, by employing the
same algorithm. (Square matrices, for instance, are often processed by quarter-
ing them. We will show how quartering, or quadrupling, can be expressed in
our theory.) The similarity restriction allows us to define complete binary trees,
hypercubes and square matrices that are not “free” structures.

The length of a powerlist is a power of 2. This restricts our theory somewhat.
It is possible to design a more general theory eliminating this constraint; we
sketch an outline in Section 8.6.

8.3 Laws

L0. For singleton powerlists, 〈x〉, 〈y〉
〈x〉 | 〈y〉 = 〈x〉 ./ 〈y〉

L1. (Dual Deconstruction)
For any non-singleton powerlist, P , there exist similar powerlists
r, s, u, v such that
P = r | s and P = u ./ v

L2. (Unique Deconstruction)
(〈x〉 = 〈y〉) ≡ (x = y)
(p | q = u | v) ≡ (p = u ∧ q = v)
(p ./ q = u ./ v) ≡ (p = u ∧ q = v)
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L3. (Commutativity of | and ./ )
(p | q) ./ (u | v) = (p ./ u) | (q ./ v)

These laws can be derived by suitably defining tie and zip, using the standard
functions from the linear list theory. One possible strategy is to define tie as
the concatenation of two equal length lists and then, use the Laws L0 and L3
as the definition of zip; Laws L1, L2 can be derived next. Alternatively, these
laws may be regarded as axioms relating tie and zip.

Law L0 is often used in proving base cases of algebraic identities. Laws
L1, L2 allow us to uniquely deconstruct a non-singleton powerlist using either
| or ./ . Law L3 is crucial. It is the only law relating the two construction

operators, | and ./ , in the general case. Hence, it is invariably applied in
proofs by structural induction where both constructors play a role.

Inductive Proofs

Most proofs on powerlists are by induction on the length, depth or shape of the
list. The length, len, of a powerlist is the number of elements in it. Since the
length of a powerlist is a power of 2, the logarithmic length, lgl, is a more useful
measure. Formally,

lgl〈x〉 = 0
lgl(u | v) = 1 + (lgl u)

The depth of a powerlist is the number of “levels” in it.

depth 〈S〉 = 0
depth 〈P 〉 = 1 + (depth P )
depth (u | v) = depth u

(In the last case, since u, v are similar powerlists they have the same depth.)
Most inductive proofs on powerlists order them lexicographically on the pair
(depth, logarithmic length). For instance, to prove that a property Π holds for
all powerlists, it is sufficient to prove

Π〈S〉, and
Π P ⇒ Π〈P 〉, and
(Π u) ∧ (Π v) ∧ (u, v) similar ⇒ Π(u | v)

The last proof step could be replaced by

(Π u) ∧ (Π v) ∧ (u, v) similar ⇒ Π(u ./ v)

The shape of a powerlist P is a sequence of natural numbers n0, n1, . . . , nd where
d is the depth of P and

n0 is the logarithmic length of P ,
n1 is the logarithmic length of (any) element of P , say r
n2 is the logarithmic length of any element of r, . . .
...
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A formal definition of shape is similar to that of depth. The shape is a linear
sequence because all elements, at any level, are similar. The shape and the
type of the scalar elements define the structure of a powerlist completely. For
inductive proofs, the powerlists may be ordered lexicographically by the pair
(depth, shape), where the shapes are compared lexicographically.

Example : The len, lgl and depth of 〈 〈0 1 2 3〉 〈4 5 6 7〉 〉 are, 2, 1, 1,
respectively. The shape of this powerlist is the sequence, 1 2, because there are
2 elements at the outer level and 4 elements at the inner level.

8.4 Examples

We show a few small algorithms on powerlists. These include such well-known
examples as the Fast Fourier Transform and Batcher sorting schemes. We re-
strict the discussion in this section to simple (unnested) powerlists (where the
depth is 0); higher dimensional lists (and algorithms for matrices and hyper-
cubes) are taken up in a later section. Since the powerlists are unnested, induc-
tion based on length is sufficient to prove properties of these algorithms.

8.4.1 Permutations

We define a few functions that permute the elements of powerlists. The function
rev, defined in Section 8.2.2, is a permutation function. These functions appear
as components of many parallel algorithms.

Rotate
Function rr rotates a powerlist to the right by one; thus, rr〈a b c d〉 =

〈d a b c〉. Function rl rotates to the left: rl〈a b c d〉 = 〈b c d a〉.

rr〈x〉 = 〈x〉 , rl〈x〉 = 〈x〉
rr(u ./ v) = (rr v) ./ u , rl(u ./ v) = v ./ (rl u)

There does not seem to be any simple definition of rr or rl using | as the
deconstruction operator. It is easy to show, using structural induction, that rr,
rl are inverses. An amusing identity is rev(rr(rev(rr P ))) = P .

A powerlist may be rotated through an arbitrary amount, k, by applying
k successive rotations. A better scheme for rotating (u ./ v) by k is to rotate
both u, v by about k/2. More precisely, the function grr (given below) rotates
a powerlist to the right by k, where k ≥ 0. It is straightforward to show that for
all k, k ≥ 0, and all p, (grr k p) = (rr(k) p), where rr(k) is the k-fold application
of rr.

grr k 〈x〉 = 〈x〉
grr (2× k) (u ./ v) = (grr k u) ./ (grr k v)
grr (2× k + 1) (u ./ v) = (grr (k + 1) v) ./ (grr k u)
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P ’s indices = (000 001 010 011 100 101 110 111)
List P = 〈a b c d e f g h〉

P ’s indices rotated right = (000 100 001 101 010 110 011 111)
rs P = 〈a c e g b d f h〉

P ’s indices rotated left = (000 010 100 110 001 011 101 111)
ls P = 〈a e b f c g d h〉

Figure 8.2: Permutation functions rs, ls defined in Section 8.4.1.

Rotate Index
A class of permutation functions can be defined by the transformations

on the element indices. For a powerlist of 2n elements we associate an n-bit
index with each element, where the indices are the binary representations of
0, 1, .., 2n − 1 in sequence. (For a powerlist u | v, indices for the elements in
u have “0” as the highest bit and in v have “1” as the highest bit. In u ./ v,
similar remarks apply for the lowest bit.) Any bijection, h, mapping indices
to indices defines a permutation of the powerlist: The element with index i is
moved to the position where it has index (h i). Below, we consider two simple
index mapping functions; the corresponding permutations of powerlists are use-
ful in describing the shuffle-exchange network. Note that indices are not part
of our theory.

A function that rotates an index to the right (by one position) has the
permutation function rs (for right shuffle) associated with it. The definition
of rs may be understood as follows. The effect of rotating an index to the
right is that the lowest bit of an index becomes the highest bit; therefore, if
rs is applied to u ./ v, the elements of u—those having 0 as the lowest bit—
will occupy the first half of the resulting powerlist (because their indices have
“0” as the highest bit, after rotation); similarly, v will occupy the second half.
Analogously, the function that rotates an index to the left (by one position)
induces the permutation defined by ls (for left shuffle), below. Figure 8.2 shows
the effects of index rotations on an 8-element list.

rs〈x〉 = 〈x〉 , ls〈x〉 = 〈x〉
rs(u ./ v) = u | v , ls(u | v) = u ./ v

It is trivial to see that rs, ls are inverses.

Inversion
The function inv is defined by the following function on indices. An element

with index b in P has index b′ in (inv P ), where b′ is the reversal of the bit
string b. Thus,

000 001 010 011 100 101 110 111

inv〈 a b c d e f g h 〉 =
〈 a e c g b f d h 〉
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The definition of inv is

inv〈x〉 = 〈x〉
inv(p | q) = (inv p) ./ (inv q)

This function arises in a variety of contexts. In particular, inv is used to permute
the output of a Fast Fourier Transform network into the correct order.

The following proof shows a typical application of structural induction.

INV1. inv(p ./ q) = (inv p) | (inv q)

Proof is by structural induction on p and q.
Base : inv(〈x〉 ./ 〈y〉)

= {From Law L0 : 〈x〉 ./ 〈y〉 = 〈x〉 | 〈y〉}
inv(〈x〉 | 〈y〉)

= {definition of inv}
inv〈x〉 ./ inv〈y〉

= {inv〈x〉 = 〈x〉, inv〈y〉 = 〈y〉. Thus, they are singletons. Applying Law L0}
inv〈x〉 | inv〈y〉

Induction :

inv((r | s) ./ (u | v))

= {commutativity of | , ./ }
inv((r ./ u) | (s ./ v))

= {definition of inv}
inv(r ./ u) ./ inv(s ./ v)

= {induction}
(inv r | inv u) ./ (inv s | inv v)

= { | , ./ commute}
(inv r ./ inv s) | (inv u ./ inv v)

= {apply definition of inv to both sides of | }
inv(r | s) | inv(u | v) 2

Using INV1 and structural induction, it is easy to establish

inv(inv P ) = P ,

inv(rev P ) = rev(inv P )

and for any scalar operator ⊕

inv(P ⊕Q) = (inv P )⊕ (inv Q)

The last result holds for any permutation function in place of inv.
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n = 0 〈[ ]〉
n = 1 〈[0] [1]〉
n = 2 〈[00] [01] [11] [10]〉
n = 3 〈[000] [001] [011] [010] [110] [111] [101] [100]〉

Figure 8.3: Standard Gray code sequence for n, n = 0, 1, 2, 3

8.4.2 Reduction

In the linear list theory [5], reduction is a higher order function of two argu-
ments, an associative binary operator and a list. Reduction applied to ⊕ and
[a0a1 . . . an] yields (a0 ⊕ a1 ⊕ . . .⊕ an). This function over powerlists is defined
by

red⊕ 〈x〉 = x
red⊕ (p | q) = (red⊕ p) ⊕ (red⊕ q)

8.4.3 Gray Code

Gray code sequence [19] for n, n ≥ 0, is a sequence of 2n n-bit strings where
the consecutive strings in the sequence differ in exactly one bit position. (The
last and the first strings in the sequence are considered consecutive.) Standard
Gray code sequences for n = 0, 1, 2, 3 are shown in Figure 8.3. We represent the
n-bit strings by linear lists of length n and a Gray code sequence by a powerlist
whose elements are these linear lists. The standard Gray code sequence may be
computed by function G, for any n.

G 0 = 〈[ ]〉
G (n+ 1) = (0 : P ) | (1 : (rev P ))

where P = (G n)

Here, (0 :) is a scalar function that takes a linear list as an argument and
appends 0 as its prefix. According to the coercion rule, (0 : P ) is the powerlist
obtained by prefixing every element of P by 0. Similarly, (1 : (rev P )) is defined,
where the function rev is from Section 8.2.2.

8.4.4 Polynomial

A polynomial with coefficients pj , 0 ≤ j < 2n, where n ≥ 0, may be represented
by a powerlist p whose jth element is pj . The polynomial value at some point

ω is
∑

0≤j<2n

pj × ωj . For n > 0 this quantity is∑
0≤j<2n−1

p2j × ω2j +
∑

0≤j<2n−1

p2j+1 × ω2j+1.
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The following function, ep, evaluates a polynomial p using this strategy.
In anticipation of the Fast Fourier Transform, we generalize ep to accept an
arbitrary powerlist as its second argument. For powerlists p, w (of, possibly,
unequal lengths) let (p ep w) be a powerlist of the same length as w, obtained
by evaluating p at each element of w.

〈x〉 ep w = 〈x〉
(p ./ q) ep w = (p ep w2) + (w × (q ep w2))

Note that w2 is the pointwise squaring of w. Also, note that ep is a pointwise
function in its second argument, i.e.,

p ep (u | v) = (p ep u) | (p ep v)

8.4.5 Fast Fourier Transform

For a polynomial p with complex coefficients, its Fourier transform is obtained
by evaluating p at a sequence (i.e., powerlist) of points, (W p). Here, (W p)
is the powerlist 〈ω0, ω1, .. , ωn−1〉, where n is the length of p and ω is the nth

principal root of 1. Note that (W p) depends only on the length of p but not
its elements; hence, for similar powerlists p, q, (W p) = (W q). It is easy to
define the function W in a manner similar to ep.

We need the following properties of W for the derivation of FFT . Equation
(1) follows from the definition of W and the fact that ω2×N = 1, where N is the
length of p (and q). The second equation says that the right half of W (p ./ q)
is the negation of its left half. This is because each element in the right half is
the same as the corresponding element in the left half multiplied by ωN ; since
ω is the (2×N)th root of 1, ωN = −1.

W 2(p ./ q) = (W p) | (W q) (8.1)

W (p ./ q) = u | (−u), for some u (8.2)

The Fourier transform, FT , of a powerlist p is a powerlist of the same length
as p, given by

FT p = p ep (W p)

where ep is the function defined in Section 8.4.4.
The straightforward computation of (p ep v) for any p, v consists of eval-

uating p at each element of v; this takes time O(N2) where p, v have length
N . Since (W p) is of a special form the Fourier transform can be computed in
O(N logN) steps, using the the Fast Fourier Transform algorithm [12]. This
algorithm also admits an efficient parallel implementation, requiring O(logN)
steps on O(N) processors. We derive the FFT algorithm next.

FT 〈x〉
= {definition of FT}

x ep (W 〈x〉)
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= {Since W 〈x〉 is a singleton, from the definition of ep}
〈x〉

For the general case,

FT (p ./ q)

= {From the definition of FT}
(p ./ q) ep W (p ./ q)

= {from the definition of ep}
p ep W 2(p ./ q) +W (p ./ q)× (q ep W 2(p ./ q))

= {from the property of W ; see equation (1)}
p ep ((W p) | (W q)) +W (p ./ q)× (q ep ((W p) | (W q)))

= {distribute each ep over its second argument}
((p ep (W p)) | (p ep (W q))) +W (p ./ q)× ((q ep (W p)) | (q ep (W q)))

= {(W p) = (W q), p ep (W p) = FT p, q ep (W q) = FT q }
((FT p) | (FT p)) +W (p ./ q)× ((FT q) | (FT q))

= {using P,Q for FT p, FT q, and u | (−u) for W (p ./ q); see equation (2)}
(P | P ) + (u | − u)× (Q | Q)

= { | and × in the second term commute}
(P | P ) + ((u×Q) | (−u×Q))

= { | and + commute}
(P + u×Q) | (P − u×Q)

We collect the two equations for FT to define FFT , the Fast Fourier Trans-
form. In the following, (powers p) is the powerlist 〈ω0, ω1, .. , ωN−1〉 where N
is the length of p and ω is the (2×N)th principal root of 1. This was the value
of u in the previous paragraph. The function powers can be defined similarly
to ep.

FFT 〈x〉 = 〈x〉
FFT (p ./ q) = (P + u×Q) | (P − u×Q)

where P = FFT p
Q = FFT q
u = powers p

It is clear that FFT (p ./ q) can be computed from (FFT p) and (FFT q) in
O(N) sequential steps or O(1) parallel steps using O(N) processors (u can be
computed in parallel), where N is the length of p. Therefore, FFT (p ./ q) can
be computed in O(N logN) sequential steps or, O(logN) parallel steps using
O(N) processors.

The compactness of this description of FFT is in striking contrast to the
usual descriptions; for instance, see [10, Section 6.13]. The compactness can be
attributed to the use of recursion and the avoidance of explicit indexing of the
elements by employing | and ./ . FFT illustrates the need for including both
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| and ./ as constructors for powerlists. (Another function that employs both
| and ./ is inv of Section 8.4.1.)

Inverse Fourier Transform
The inverse of the Fourier Transform, IFT, can be defined similarly to the

FFT. We derive the definition of IFT from that of the FFT by pattern matching.
For a singleton powerlist, 〈x〉, we compute

IFT 〈x〉
= {〈x〉 = FFT 〈x〉}
IFT (FFT 〈x〉)

= {IFT, FFT are inverses}
〈x〉

For the general case, we have to compute IFT (r | s) given r, s. Let

IFT (r | s) = p ./ q

in the unknowns p, q. This form of deconstruction is chosen so that we can
easily solve the equations we generate, next. Taking FFT of both sides,

FFT (IFT (r | s)) = FFT (p ./ q)

The left side is (r | s) because IFT, FFT are inverses. Replacing the right
side by the definition of FFT (p ./ q) yields the following equations.

r | s = (P + u×Q) | (P − u×Q)
P = FFT p
Q = FFT q
u = powers p

These equations are easily solved for the unknowns P,Q, u, p, q. (The law of
unique deconstruction, L2, can be used to deduce from the first equation that
r = P +u×Q and s = P −u×Q. Also, since p and r are of the same length we
may define u using r instead of p.) The solutions of these equations yield the
following definition for IFT. Here, /2 divides each element of the given powerlist
by 2.

IFT 〈x〉 = 〈x〉
IFT (r | s) = p ./ q

where P = (r + s)/2
u = powers r
Q = ((r − s)/2)/u
p = IFT P
q = IFT Q

As in the FFT, the definition of IFT includes both constructors, | and ./ .
It can be implemented efficiently on a butterfly network. The complexity of
IFT is same as that of the FFT.
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8.4.6 Batcher Sort

In this section, we develop some elementary results about sorting and discuss
two remarkable sorting methods due to Batcher[4]. We find it interesting that
./ (not | ) is the preferred operator in discussing the principles of parallel

sorting. Henceforth, a list is sorted means that its elements are arranged in
non-decreasing order.

A general method of sorting is given by

sort〈x〉 = 〈x〉
sort(p ./ q) = (sort p) merge (sort q)

where merge (written as a binary infix operator) creates a single sorted powerlist
out of the elements of its two argument powerlists each of which is sorted. In
this section, we show two different methods for implementing merge. One
scheme is Batcher merge, given by the operator bm. Another scheme is given
by bitonic sort where the sorted lists u, v are merged by applying the function
bi to (u | (rev v)).

A comparison operator, l, is used in these algorithms. The operator is
applied to a pair of equal length powerlists, p, q; it creates a single powerlist out
of the elements of p, q by

p l q = (p min q) ./ (p max q)

That is, the 2ith and (2i+ 1)th items of p l q are (pi min qi) and (pi max qi),
respectively. The powerlist p l q can be computed in constant time using
O(len p) processors.

Bitonic Sort
A sequence of numbers, x0, x1, .., xi, .., xN , is bitonic if there is an index

i, 0 ≤ i ≤ N , such that x0, x1, .., xi is monotonic (ascending or descending)
and xi, .., xN is monotonic. The function bi, given below, applied to a bitonic
powerlist returns a sorted powerlist of the original items.

bi〈x〉 = 〈x〉
bi(p ./ q) = (bi p) l (bi q)

For sorted powerlists u, v, the powerlist (u | (rev v)) is bitonic; thus u, v can
be merged by applying bi to (u | (rev v)). The form of the recursive definition
suggests that bi can be implemented on O(N) processors in O(log N) parallel
steps, where N is the length of the argument powerlist.

Batcher Merge
Batcher has also proposed a scheme for merging two sorted lists. We define

this scheme, bm, as an infix operator below.

〈x〉 bm 〈y〉 = 〈x〉 l 〈y〉
(r ./ s) bm (u ./ v) = (r bm v) l (s bm u)
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The function bm is well-suited for parallel implementation. The recursive form
suggests that (r bm v) and (s bm u) can be computed in parallel. Since l can be
applied in O(1) parallel steps using O(N) processors, where N is the length of
the argument powerlists, the function bm can be evaluated in O(logN) parallel
steps. In the rest of this section, we develop certain elementary facts about
sorting and prove the correctness of bi and bm.

Elementary Facts about Sorting

We consider only “compare and swap” type sorting methods. It is known (see
[29]) that such a sorting scheme is correct if and only if it sorts lists containing
0’s and 1’s only. Therefore, we restrict our discussion to powerlists containing
0’s and 1’s, only.

For a powerlist p, let (z p) be the number of 0’s in it. To simplify notation,
we omit the space and write zp. Clearly,

A0. z(p ./ q) = zp+ zq and z〈x〉 is either 0 or 1.

Powerlists containing only 0’s and 1’s have the following properties.

A1. 〈x〉 sorted and 〈x〉 bitonic.
A2. (p ./ q) sorted ≡ p sorted ∧ q sorted ∧ 0 ≤ zp− zq ≤ 1
A3. (p ./ q) bitonic ⇒ p bitonic ∧ q bitonic ∧ |zp− zq| ≤ 1

Note : The condition analogous to (A2) under which p | q is sorted is,

A2′. (p | q) sorted ≡ p sorted ∧ q sorted ∧ (zp < (len p) ⇒ zq = 0)

The simplicity of (A2), compared with (A2′), may suggest why ./ is the pri-
mary operator in parallel sorting. 2

The following results, (B1, B2), are easy to prove. We prove (B3).

B1. p sorted, q sorted, zp ≥ zq ⇒ (p min q) = p ∧ (p max q) = q 2

B2. z(p l q) = zp+ zq 2

B3. p sorted, q sorted, |zp− zq| ≤ 1 ⇒ (p l q) sorted

Proof: Since the statement of B3 is symmetric in p, q, assume zp ≥ zq.

p sorted, q sorted, |zp− zq| ≤ 1

⇒ {assumption: zp ≥ zq}
p sorted, q sorted, 0 ≤ zp− zq ≤ 1

⇒ {A2 and B1}
p ./ q sorted, (p min q) = p, (p max q) = q

⇒ {replace p, q in p ./ q by (p min q), (p max q)}
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(p min q) ./ (p max q) sorted

⇒ {definition of p l q}
p l q sorted

Correctness of Bitonic Sort

We show that the function bi applied to a bitonic powerlist returns a sorted
powerlist of the original elements: (B4) states that bi preserves the number
of zeroes of its argument list (i.e., it loses no data) and (B5) states that the
resulting list is sorted.

B4. z(bi p) = zp

Proof: By structural induction, using B2. 2

B5. L bitonic ⇒ (bi L) sorted

Proof: By structural induction.

Base: Straightforward.

Induction: Let L = p ./ q
p ./ q bitonic

⇒ {A3}
p bitonic, q bitonic, |zp− zq| ≤ 1

⇒ {induction on p and q}
(bi p) sorted, (bi q) sorted, |zp− zq| ≤ 1

⇒ {from B4: z(bi p) = zp, z(bi q) = zq}
(bi p) sorted, (bi q) sorted, |z(bi p)− z(bi q)| ≤ 1

⇒ {apply B3 with (bi p), (bi q) for p, q}
(bi p) l (bi q) sorted

⇒ {definition of bi}
bi(p ./ q) sorted

Correctness of Batcher Merge

We can show that bm merges two sorted powerlists in a manner similar to the
proof of bi. Instead, we establish a simple relationship between the functions
bm and bi from which the correctness of the former is obvious. We show that

B6. p bm q = bi(p | (rev q)), where rev reverses a powerlist (Section 8.2.2).

If p, q are sorted then p | (rev q) is bitonic (a fact that we don’t prove here).
Then, from the correctness of bi it follows that bi(p | (rev q)) and, hence, p bm q
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is sorted (and it contains the elements of p and q).

Proof of B6: By structural induction.

Base: Let p, q = 〈x〉, 〈y〉

bi(〈x〉 | rev〈y〉)
= {definition of rev}

bi(〈x〉 | 〈y〉)
= {(〈x〉 | 〈y〉) = (〈x〉 ./ 〈y〉)}

bi(〈x〉 ./ 〈y〉)
= {definition of bi}
〈x〉 l 〈y〉

= {definition of bm}
〈x〉 bm 〈y〉

Induction: Let p, q = r ./ s, u ./ v

bi(p | (rev q))

= {expanding p, q}
bi((r ./ s) | rev(u ./ v))

= {definition of rev}
bi((r ./ s) | (rev v ./ rev u))

= { | , ./ commute}
bi((r | rev v) ./ (s | rev u))

= {definition of bi}
bi(r | rev v) l bi(s | rev u)

= {induction}
(r bm v) l (s bm u)

= {definition of bm}
(r ./ s) bm (u ./ v)

= {using the definitions of p, q}
p bm q 2

The compactness of the description of Batcher’s sorting schemes and the
simplicity of their correctness proofs demonstrate the importance of treating
recursion and parallelism simultaneously.
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Figure 8.4: A network to compute the prefix sum of 8 elements.

8.4.7 Prefix Sum

Let L be a powerlist of scalars and ⊕ be a binary, associative operator on that
scalar type. The prefix sum of L with respect to ⊕, (ps L), is a list of the same
length as L given by

ps 〈x0, x1, .., xi, .., xN 〉 = 〈x0, x0 ⊕ x1, .., x0 ⊕ x1 ⊕ ..xi, .., x0 ⊕ x1 ⊕ ..⊕ xN 〉,

that is, in (ps L) the element with index i, i > 0, is obtained by applying ⊕ to
the first (i+ 1) elements of L in order. We will give a formal definition of prefix
sum later in this section.

Prefix sum is of fundamental importance in parallel computing. We show
that two known algorithms for this problem can be concisely represented and
proved in our theory. Again, zip turns out to be the primary operator for
describing these algorithms.

A particularly simple scheme for prefix sum of 8 elements is shown in Fig-
ure 8.4. In that figure, the numbered nodes represent processors, though the
same 8 physical processors are used at all levels. Initially, processor i holds the
list element Li, for all i. The connections among the processors at different
levels depict data transmissions. In level 0, each processor, from 0 through 6,
sends its data to its right neighbor. In the ith level, processor i sends its data
to (i + 2i), if such a processor exists (this means that for j < 2i, processor j
receives no data in level i data transmission). Each processor updates its own
data, d, to r⊕d where r is the data it receives; if it receives no data in some level
then d is unchanged. It can be shown that after completion of the computation
at level (log2(len L)), processor i holds the ith element of (ps L).

Another scheme, due to Ladner and Fischer[32], first applies ⊕ to adjacent
elements x2i, x2i+1 to compute the list 〈x0 ⊕ x1, .. x2i ⊕ x2i+1, ..〉. This list
has half as many elements as the original list; its prefix sum is then computed
recursively. The resulting list is 〈x0 ⊕ x1, .., x0 ⊕ x1 ⊕ .. ⊕ x2i ⊕ x2i+1, . . .〉.
This list contains half of the elements of the final list; the missing elements are
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x0, x0 ⊕ x1 ⊕ x2, .., x0 ⊕ x1 ⊕ .. ⊕ x2i, ... These elements can be computed by
“adding” x2, x4, .., appropriately to the elements of the already computed list.

Both schemes for prefix computation are inherently recursive. Our formula-
tions will highlight both parallelism and recursion.

Specification

As we did for the sorting schemes (Section 8.4.6), we introduce an operator
in terms of which the prefix sum problem can be defined. First, we postulate
that 0 is the left identity element of ⊕, i.e., 0 ⊕ x = x. For a powerlist p, let
p∗ be the powerlist obtained by shifting p to the right by one. The effect of
shifting is to append a 0 to the left and discard the rightmost element of p;
thus, 〈a b c d〉∗ = 〈0 a b c〉. Formally,

〈x〉∗ = 〈0〉
(p ./ q)∗ = q∗ ./ p

It is easy to show

S1.(r ⊕ s)∗ = r∗ ⊕ s∗
S2.(p ./ q)∗∗ = p∗ ./ q∗

Consider the following equation in the powerlist variable z.

z = z∗ ⊕ L (DE)

where L is some given powerlist. This equation has a unique solution in z,
because

z0 = (z∗)0 ⊕ L0

= 0⊕ L0

= L0 , and
zi+1 = zi ⊕ Li+1 , 0 ≤ i < (len L)− 1

For L = 〈a b c d〉, z = 〈a a ⊕ b a ⊕ b ⊕ c a ⊕ b ⊕ c ⊕ d〉 which is exactly
(ps L). We define (ps L) to be the unique solution of (DE), and we call (DE)
the defining equation for (ps L).

Notes

1. The operator ⊕ is not necessarily commutative. Therefore, the rhs of (DE)
may not be the same as L⊕ z∗.

2. The operator ⊕ is scalar; so, it commutes with ./ .

3. The uniqueness of the solution of (DE) can be proved entirely within the
powerlist algebra, similar to the derivation of Ladner-Fischer scheme given
later in this section.
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4. Adams[1] has specified the prefix-sum problem without postulating an
explicit “0” element. For any ⊕, he introduces a binary operator ~⊕ over
two similar powerlists such that p~⊕ q = p∗ ⊕ q. The operator ~⊕ can be
defined without introducing a “0”.

Computation of the Prefix Sum

The function sps (simple prefix sum) defines the scheme of Figure 8.4.

sps 〈x〉 = 〈x〉
sps L = (sps u) ./ (sps v)

where u ./ v = L∗ ⊕ L

In the first level in Figure 8.4, L∗ ⊕ L is computed. If L = 〈x0, x1, .., xi, . . .〉
then this is 〈x0, x0 ⊕ x1, .., xi ⊕ xi+1..〉. This is the zip of the two sublists
〈x0, x1 ⊕ x2, .., x2i−1 ⊕ x2i, ..〉 and 〈x0 ⊕ x1, .., x2i ⊕ x2i+1, ..〉. Next, prefix sums
of these two lists are computed (independently) and then zipped.

The Ladner-Fischer scheme is defined by the function lf .

lf 〈x〉 = 〈x〉
lf (p ./ q) = (t∗ ⊕ p) ./ t

where t = lf (p⊕ q)

Correctness

We can prove the correctness of sps and lf by showing that the function ps
satisfies the equations defining each of these functions. It is more instructive to
see that both sps and lf can be derived easily from the specification (DE). We
carry out this derivation for the Fischer-Ladner scheme as an illustration of the
power of algebraic manipulations. First, we note, ps〈x〉 = 〈x〉.

ps〈x〉
= {from the defining equation DE for ps〈x〉}

(ps〈x〉)∗ ⊕ 〈x〉
= {definition of ∗}
〈0〉 ⊕ 〈x〉

= {⊕ is a scalar operation}
〈0⊕ x〉

= {0 is the identity of ⊕}
〈x〉

Derivation of Ladner-Fischer Scheme

Given a powerlist p ./ q, we derive an expression for ps(p ./ q). Let r ./ t, in
unknowns r, t, be ps(p ./ q). We solve for r, t.
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r ./ t

= {r ./ t = ps (p ./ q). Using (DE)}
(r ./ t)∗ ⊕ (p ./ q)

= {(r ./ t)∗ = t∗ ./ r}
(t∗ ./ r)⊕ (p ./ q)

= {⊕, ./ commute}
(t∗ ⊕ p) ./ (r ⊕ q)

Applying law L2 (unique deconstruction) to the equation r ./ t = (t∗⊕p) ./ (r⊕
q), we conclude that

LF1. r = t∗ ⊕ p , and

LF2. t = r ⊕ q

Now, we eliminate r from (LF2) using (LF1) to get t = t∗ ⊕ p ⊕ q. Using
(DE) and this equation we obtain

LF3. t = ps(p⊕ q)

We summarize the derivation of ps(p ./ q).

ps(p ./ q)

= {by definition}
r ./ t

= { Using (LF1) for r}
(t∗ ⊕ p) ./ t

where t is defined by LF3. This is exactly the definition of the function lf for a
non-singleton powerlist. We also note that

r

= {by eliminating t from (LF1) using (LF2) }
(r ⊕ q)∗ ⊕ p

= { definition of *}
r∗ ⊕ q∗ ⊕ p

Using (DE) and this equation we obtain LF4 that is used in proving the cor-
rectness of sps, next.

LF4. r = ps(q∗ ⊕ p)
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Correctness of sps

We show that for a non-singleton powerlist L,

ps L = (ps u) ./ (ps v), where u ./ v = L∗ ⊕ L.

Proof: Let L = p ./ q. Then

ps L

= {L = p ./ q}
ps(p ./ q)

= {ps(p ./ q) = r ./ t, where r, t are given by (LF4,LF3)}
ps(q∗ ⊕ p) ./ ps(p⊕ q)

= {Letting u = q∗ ⊕ p, v = p⊕ q}
(ps u) ./ (ps v)

Now, we show that u ./ v = L∗ ⊕ L.

u ./ v

= {u = q∗ ⊕ p, v = p⊕ q}
(q∗ ⊕ p) ./ (p⊕ q)

= {⊕, ./ commute}
(q∗ ./ p)⊕ (p ./ q)

= {Apply the definition of ∗ to the first term}
(p ./ q)∗ ⊕ (p ./ q)

= {L = p ./ q}
L∗ ⊕ L

Remarks. A more traditional way of describing a prefix sum algorithm, such
as the simple scheme of Figure 8.4, is to explicitly name the quantities that are
being computed, and establish relationships among them. Let yij be computed
by the ith processor at the jth level. Then, for all i, j, 0 ≤ i < 2n, 0 ≤ j < n,
where n is the logarithmic length of the list,

yi0 = xi, and

yi,j+1 =

{
yi−2j ,j , i ≥ 2j

0 , i < 2j

}
⊕ yij

The correctness criterion is

yin = x0 ⊕ ..⊕ xi

This description is considerably more difficult to manipulate. The parallelism
in it is harder to see. The proof of correctness requires manipulations of indices:
for this example, we have to show that for all i, j
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yij = xk ⊕ ..⊕ xi
where k = max(0, i− 2j + 1).

The Ladner-Fischer scheme is even more difficult to specify in this manner.
Algebraic methods are to be preferred for describing uniform operations on
aggregates of data.

8.5 Higher Dimensional Arrays

A major part of parallel computing involves arrays of one or more dimensions.
An array of m dimensions (dimensions are numbered 0 through m − 1) is rep-
resented by a powerlist of depth (m − 1). Conversely, since powerlist elements
are similar, a powerlist of depth (m − 1) may be regarded as an array of di-
mension m. For instance, a matrix of r rows and c columns may be represented
as a powerlist of c elements, each element being a powerlist of length r storing
the items of a column; conversely, the same matrix may be represented by a
powerlist of r elements, each element being a powerlist of c elements.

In manipulating higher dimensional arrays we prefer to think in terms of
array operations rather than operations on nested powerlists. Therefore, we
introduce construction operators, analogous to | and ./ , for tie and zip along
any specified dimension. We use |′, ./′ for the corresponding operators in di-
mension 1, |′′, ./′′ for the dimension 2, etc. The definitions of these operators
are in Section 8.5.2; for the moment it is sufficient to regard |′ as the point-
wise application of | to the argument powerlists (and similarly, ./′). Thus,
for similar (power) matrices A,B that are stored columnwise (i.e., each element
is a column), A | B is the concatenation of A,B by rows and A |′ B is their
concatenation by columns. Figure 8.5 shows applications of these operators on
specific matrices.

Given these constructors we may define a matrix to be either

a singleton matrix 〈〈x〉〉, or
p | q where p, q are (similar) matrices, or
u |′ v where u, v are (similar) matrices.

Analogous definitions can be given for n-dimensional arrays. Observe that the
length of each dimension is a power of 2. As we had in the case of a pow-
erlist, the same matrix can be constructed in several different ways, say, first
by constructing the rows and then the columns, or vice versa. We will show, in
Section 8.5.2, that

(p | q) |′ (u | v) = (p |′ u) | (q |′ v)

i.e., | , |′ commute.

Note : We could have defined a matrix using ./ and ./′ instead of | and
|′. As | and ./ are duals in the sense that either can be used to construct



238 CHAPTER 8. PARALLEL RECURSION

A =

〈 ∧ ∧
2 4
3 5
∨ ∨

〉
B =

〈 ∧ ∧
0 1
6 7
∨ ∨

〉

A | B =

〈 ∧ ∧ ∧ ∧
2 4 0 1
3 5 6 7
∨ ∨ ∨ ∨

〉
A ./ B =

〈 ∧ ∧ ∧ ∧
2 0 4 1
3 6 5 7
∨ ∨ ∨ ∨

〉

A |′ B =

〈 ∧ ∧
2 4
3 5
0 1
6 7
∨ ∨

〉
A ./′ B =

〈 ∧ ∧
2 4
0 1
3 5
6 7
∨ ∨

〉

Figure 8.5: Applying | , ./ , |′, ./′ over matrices. Matrices are stored by
columns. Typical matrix format is used for display, though each matrix is
to be regarded as a powerlist of powerlists.

(or uniquely deconstruct) a powerlist, |′ and ./′ are also duals, as we show in
Section 8.5.2. Therefore, we will freely use all four construction operators for
matrices. 2

Example : (Matrix Transposition)
Let τ be a function that transposes matrices. From the definition of a matrix,

we have to consider three cases in defining τ .

τ〈〈x〉〉 = 〈〈x〉〉
τ(p | q) = (τ p) |′ (τ q)
τ(u |′ v) = (τ u) | (τ v)

The description of function τ , though straightforward, has introduced the pos-
sibility of an inconsistent definition. For a 2 × 2 matrix, for instance, either of
the last two deconstructions apply, and it is not obvious that the same result
is obtained independent of the order in which the rules are applied. We show
that τ is a function.

We prove the result by structural induction. For a matrix of the form 〈〈x〉〉,
only the first deconstruction applies, and, hence, the claim holds. Next, consider
a matrix to which both of the last two deconstructions apply. Such a matrix is
of the form (p | q) |′ (u | v) which, as remarked above, is also (p |′ u) | (q |′ v).
Applying one step of each of the last two rules in different order, we get

τ((p | q) |′ (u | v))
= {applying the last rule}

(τ(p | q)) | (τ(u | v))
= {applying the middle rule}
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σ q σ v

σ uσ p
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vu

qp

Figure 8.6: Schematic of the transposition of a square powermatrix.

((τ p) |′ (τ q)) | ((τ u) |′ (τ v))
And,

τ((p |′ u) | (q |′ v))
= {applying first the middle rule, then the last rule}

((τ p) | (τ u)) |′ ((τ q) | (τ v))
= { | , |′ commute}

((τ p) |′ (τ q)) | ((τ u) |′ (τ v))

From the induction hypothesis, (τ p), (τ q), etc., are well defined. Hence,

τ((p | q) |′ (u | v)) = τ((p |′ u) | (q |′ v))

Crucial to the above proof is the fact that | and |′ commute; this is remi-
niscent of the “Church-Rosser Property” [11] in term rewriting systems. Com-
mutativity is so important that we discuss it further in the next subsection.

It is easy to show that

τ (p ./ q) = (τ p) ./′ (τ q) and
τ (u ./′ v) = (τ u) ./ (τ v)

Transposition of a square (power) matrix can be defined by deconstructing
the matrix into quarters, transposing them individually and rearranging them,
as shown in Figure 8.6. From the transposition function τ for general matrices,
we get a function σ for transpositions of square matrices

σ〈〈x〉〉 = 〈〈x〉〉
σ((p | q) |′ (u | v)) = ((σ p) |′ (σ q)) | ((σ u) |′ (σ v))

Note the effectiveness of pattern matching in this definition.

8.5.1 Pointwise Application

Let g be a function mapping items of type α to type β. Then g′ maps a powerlist
of α-items to a powerlist of β-items.

g′〈x〉 = 〈g x〉
g′(r | s) = (g′ r) | (g′ s)

Similarly, for a binary operator op



240 CHAPTER 8. PARALLEL RECURSION

〈x〉 op′ 〈y〉 = 〈x op y〉
(r | s) op′ (u | v) = (r op′ u) | (s op′ v)

We have defined these two forms explicitly because we use one or the other
in all our examples; f ′ for a function f of arbitrary arity is similarly defined.
Observe that f ′ applied to a powerlist of length N yields a powerlist of length N .
The number of primes over f determines the dimension at which f is applied
(the outermost dimension is numbered 0; therefore writing ./ , for instance,
without primes, simply zips two lists). The operator for pointwise application
also appears in [3] and in [49].

Common special cases for the binary operator, op, are | and ./ and their

pointwise application operators. In particular, writing ./m to denote ./

m︷ ︸︸ ︷
′′ . . .′ ,

we define, ./ 0 = ./ and for m > 0,

〈x〉 ./m 〈y〉 = 〈x ./ m−1 y〉
(r | s) ./m (u | v) = (r ./m u) | (s ./m v)

From the definition of f ′, we conclude that f ′ and | commute. Below, we
prove that f ′ commutes with ./ .

Theorem 1 f ′, ./ commute.

Proof: We prove the result for unary f ; the general case is similar. Proof is
by structural induction.

Base: f ′(〈x〉 ./ 〈y〉)
= {〈x〉 ./ 〈y〉 = 〈x〉 | 〈y〉}
f ′(〈x〉 | 〈y〉)

= {definition of f ′}
f ′〈x〉 | f ′〈y〉

= {f ′〈x〉, f ′〈y〉 = 〈f x〉, 〈f y〉. These are singleton lists}
f ′〈x〉 ./ f ′〈y〉

Induction:
f ′((p | q) ./ (u | v))

= { | , ./ in the argument commute}
f ′((p ./ u) | (q ./ v))

= {f ′, | commute}
f ′(p ./ u) | f ′(q ./ v)

= {induction}
((f ′ p) ./ (f ′ u)) | ((f ′ q) ./ (f ′ v))

= { | , ./ commute}
((f ′ p) | (f ′ q)) ./ ((f ′ u) | (f ′ v))

= {f ′, | commute}
(f ′(p | q)) ./ (f ′(u | v)) 2
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Theorem 2 For a scalar function f , f ′ = f .

Proof: Proof by structural induction is straightforward. 2

Theorem 3 If f, g commute then so do f ′, g′.

Proof: By structural induction. 2

The following results about commutativity can be derived from Theorems
1,2,3. In the following, m,n are natural numbers.

C1. For any f and m > n, fm, |n commute, and fm, ./n commute.
C2. For m 6= n, |m, |n commute, and ./m, ./n commute.
C3. For all m,n, |m, ./n commute.
C4. For any scalar function f, f, |m commute, and f, ./n commute.

C1 follows by applying induction on Theorems 1 and 3 (and the fact that f ′, |
commute). C2 follows from C1; C3 from C1, Law L3 and Theorem 3; C4 from
C1 and Theorem 2.

8.5.2 Deconstruction

In this section we show that any powerlist that can be written as p |m q for
some p, q can also be written as u ./m v for some u, v and vice versa; this is
analogous to Law L1, for dual deconstruction. Analogous to Law L2, we show
that such deconstructions are unique.

Theorem 4 (dual deconstruction): For any p, q and m ≥ 0, if p |m q is defined
then there exist u, v such that

u ./m v = p |m q

Conversely, for any u, v and m ≥ 0, if u ./m v is defined then there exist some
p, q such that

p |m q = u ./m v 2

We do not prove this theorem; its proof is similar to the theorem given below.

Theorem 5 (unique deconstruction): Let ⊗ be | or ./ . For any natural
number m,

(p⊗m q = u⊗m v) ≡ (p = u ∧ q = v)

Proof: Proof is by induction on m.
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m = 0 : The result follows from Law L2.
m = n+ 1 : Assume that ⊗ = | . The proof is similar for ⊗ = ./ . We prove

the result by structural induction on p.

Base: p = 〈a〉 , q = 〈b〉 , u = 〈c〉 , v = 〈d〉
〈a〉 |n+1 〈b〉 = 〈c〉 |n+1 〈d〉

≡ {definition of |n+1}
〈a |n b〉 = 〈c |n d〉

≡ {unique deconstruction using Law L2}
a |n b = c |n d

≡ {induction on n}
(a = c) ∧ (b = d)

≡ {Law L2}
(〈a〉 = 〈c〉) ∧ (〈b〉 = 〈d〉)

Induction: p = p0 | p1 , q = q0 | q1 , u = u0 | u1 , v = v0 | v1
(p0 | p1) |n+1 (q0 | q1) = (u0 | u1) |n+1 (v0 | v1)

≡ {definition of |n+1}
(p0 |n+1 q0) | (p1 |n+1 q1) = (u0 |n+1 v0) | (u1 |n+1 v1)

≡ {unique deconstruction using Law L2}
(p0 |n+1 q0) = (u0 |n+1 v0) ∧ (p1 |n+1 q1) = (u1 |n+1 v1)

≡ {induction on the length of p0, q0, p1, q1}
(p0 = u0) ∧ (q0 = v0) ∧ (p1 = u1) ∧ (q1 = v1)

≡ {Law L2}
(p0 | p1) = (u0 | u1) ∧ (q0 | q1) = (v0 | v1)

Theorems 4 and 5 allow a richer variety of pattern matching in function
definitions, as we did for matrix transposition. We may employ |m, ./n for any
natural m,n to construct a pattern over which a function can be defined.

8.5.3 Embedding Arrays in Hypercubes

An n-dimensional hypercube is a graph of 2n nodes, n ≥ 0, where each node has
a unique n-bit label. Two nodes are neighbors, i.e., there is an edge between
them, exactly when their labels differ in a single bit. Therefore, every node
has n neighbors. We may represent a n-dimensional hypercube as a powerlist
of depth n; each level, except the innermost, consists of two powerlists. The
operators |m, ./n for natural m,n can be used to access the nodes in any one
(or any combination of) dimensions.

We conclude with an example that shows how higher dimensional structures,
such as hypercubes, are easily handled in our theory. Given an array of size
2m0 × 2m1 × . . . 2md , we claim that its elements can be placed at the nodes of a
hypercube (of dimension m0+m1+..+md) such that two “adjacent” data items
in the array are placed at neighboring nodes in the hypercube. Here, two data
items of the array are adjacent if their indices differ in exactly one dimension,
and by 1 modulo N , where N is the size of that dimension. (This is called
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“wrap around” adjacency.)
The following embedding algorithm is described in [34, Section 3.1.2]; it

works as follows. If the array has only one dimension with 2m elements, then
we create a gray code sequence, G m (see Section 8.4.3). Abbreviate G m by g.
We place the ith item of the array at the node with label gi. Adjacent items,
at positions i and i+ 1 (+ is taken modulo 2m − 1), are placed at nodes gi and
gi+1 which differ in exactly one bit, by the construction.

This idea can be generalized to higher dimensional arrays as follows. Con-
struct gray code sequences for each dimension independently; store the item
with index (i0, i1, . . . , id) at the node (gi0 ; gi1 ; . . . ; gid) where “;” denotes the
concatenations of the bit strings. By definition, adjacent items differ by 1 in
exactly one dimension, k. Then, their gray code indices are identical in all
dimensions except k and they differ in exactly one bit in dimension k.

We describe a function, em, that embeds an array in a hypercube. Given an
array of size 2m0×2m1×..2md it permutes its elements to an array 2× 2× . . .× 2︸ ︷︷ ︸

m

,

where m = m0 + ..+md, and the permutation preserves array adjacency as de-
scribed. The algorithm is inspired by the gray code function of Section 8.4.3.
In the following, S matches only with a scalar and P with a powerlist.

em〈S〉 = 〈S〉
em〈P 〉 = em P
em(u | v) = 〈em u〉 | 〈em (rev v)〉

The first line is the rule for embedding a single item in 0-dimensional hypercube.
The next line, simply, says that an array having length 1 in a dimension can be
embedded by ignoring that dimension. The last line says that a non-singleton
array can be embedded by embedding the left half of dimension 0 and the reverse
of the right half in the two component hypercubes of a larger hypercube.

8.6 Remarks

Related Work

Applying uniform operations on aggregates of data have proved to be extremely
powerful in APL [23]; see [3] and [5] for algebras of such operators. One of the
earliest attempts at representing data parallel algorithms is in [42]. In their
words, “an algorithm... performs a sequence of basic operations on pairs of
data that are successively 2(k−1), 2(k−2), .., 20 = 1 locations apart”. An algo-
rithm operating on 2N pieces of data is described as a sequence of N parallel
steps of the above form where the kth step, 0 < k ≤ N , applies in parallel a
binary operation, OPER, on pairs of data that are 2(N−k) apart. They show
that this paradigm can be used to describe a large number of known parallel
algorithms, and any such algorithm can be efficiently implemented on the Cube
Connected Cycle connection structure. Their style of programming was imper-
ative. It is not easy to apply algebraic manipulations to such programs. Their
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programming paradigm fits in well within our notation. Mou and Hudak[40]
and Mou[41] propose a functional notation to describe divide and conquer-type
parallel algorithms. Their notation is a vast improvement over Preparata and
Vuillemin’s in that changing from an imperative style to a functional style of
programming allows more succinct expressions and the possibility of algebraic
manipulations; the effectiveness of this programming style on a scientific prob-
lem may be seen in [53]. They have constructs similar to tie and zip, though
they allow unbalanced decompositions of lists. An effective method of pro-
gramming with vectors has been proposed in [7, 8]. He proposes a small set of
“vector-scan” instructions that may be used as primitives in describing parallel
algorithms. Unlike our method he is able to control the division of the list and
the number of iterations depending on the values of the data items, a necessary
ingredient in many scientific problems. Jones and Sheeran[24] have developed
a relational algebra for describing circuit components. A circuit component is
viewed as a relation and the operators for combining relations are given ap-
propriate interpretations in the circuit domain. Kapur and Subramaniam[25]
have implemented the powerlist notation for the purpose of automatic theorem
proving. They have proved many of the algorithms in this paper using an in-
ductive theorem prover, called RRL (Rewrite Rule Laboratory), that is based
on equality reasoning and rewrite rules. They are now extending their theorem
prover so that the similarity constraints on the powerlist constructors do not
have to be stated explicitly.

One of the fundamental problems with the powerlist notation is to devise
compilation strategies for mapping programs (written in the powerlist notation)
to specific architectures. The architecture that is the closest conceptually is the
hypercube. Kornerup[31] has developed certain strategies whereby each parallel
step in a program is mapped to a constant number of local operations and
communications at a hypercube node.

Combinational circuit verification is an area in which the powerlist nota-
tion may be fruitfully employed. Adams[1] has proved the correctness of adder
circuits using this notation. A ripple-carry adder is typically easy to describe
and prove, whereas a carry-lookahead adder is much more difficult. Adams has
described both circuits in our notation and proved their equivalence in a remark-
ably concise fashion. He obtains a succinct description of the carry-lookahead
circuit by employing the prefix-sum function (See Section 4.7).

Powerlists of Arbitrary Length

The lengths of the powerlists have been restricted to be of the form 2n, n ≥ 0,
because we could then develop a simple theory. For handling arbitrary length
lists, Steele[48] suggests padding enough “dummy” elements to a list to make
its length a power of 2. This scheme has the advantage that we still retain the
simple algebraic laws of powerlist. Another approach is based on the observation
that any positive integer is either 1 or 2 ×m or 2 ×m + 1, for some positive
integer m; therefore, we deconstruct a non-singleton list of odd length into two
lists p, q and an element e, where e is either the first or the middle or the last
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element. For instance, the following function, rev, reverses a list.

rev 〈x〉 = 〈x〉
rev (p | q) = (rev q) | (rev p)
rev (p | e | q) = (rev q | e | rev p)

The last line of this definition applies to a non-singleton list of odd length; the
list is deconstructed into two lists p, q of equal length and e, the middle element.
(We have abused the notation, applying | to three arguments). Similarly, the
function lf for prefix sum may be defined by

lf 〈x〉 = 〈x〉
lf (p ./ q) = (t∗ ⊕ p) ./ t
lf (e ./ p ./ q) = e ./ (e⊕ (t∗ ⊕ p)) ./ (e⊕ t)

where t = lf (p⊕ q)

In this definition, the singleton list and lists of even length are treated as
before. A list of odd length is deconstructed into e, p, q, where e is the first
element of the argument list and p ./ q constitutes the remaining portion of the
list. For this case, the prefix sum is obtained by appending the element e to
the list obtained by applying e⊕ to each element of lf (p ./ q); we have used the
convention that (e ⊕ L) is the list obtained by applying e⊕ to each element of
list L.

The Interplay between Sequential and Parallel Computa-
tions.

The notation proposed in this paper addresses only a small aspect of parallel
computing. Powerlists have proved to be highly successful in expressing com-
putations that are independent of the specific data values; such is the case, for
instance, in the Fast Fourier Transform, Batcher merge and prefix sum. Typi-
cally, however, parallel and sequential computations are interleaved. While Fast
Fourier Transform and Batcher merge represent highly parallel computations,
binary search is inherently sequential (there are other parallel search strate-
gies). Gaussian elimination represents a mixture; the computation consists of
a sequence of pivoting steps where each step can be applied in parallel. Thus
parallel computations may have to be performed in a certain sequence and the
sequence may depend on the data values during a computation. More general
methods, as in [7], are then required.

The powerlist notation can be integrated into a language that supports se-
quential computation. In particular, this notation blends well with ML [38] and
LISP[37, 49]. A mixture of linear lists and powerlists can exploit the various
combinations of sequential and parallel computing. A powerlist consisting of lin-
ear lists as components admits of parallel processing in which each component
is processed sequentially. A linear list whose elements are powerlists suggests a
sequential computation where each step can be applied in parallel. Powerlists
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of powerlists allow multidimensional parallel computations, whereas a linear list
of linear lists may represent a hierarchy of sequential computations.
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