
Structured Wide-Area Programming:
Orc Calculus

Jayadev Misra

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

Concurrency

• ubiquitous.

• difficult.

• important.

Some Typical Applications

• Map-Reduceusing a server farm

• Thread managementin an operating system

• Mashups(Internet Scripting)

• Reactive Programming

• Extended 911:
Using humans as components
Components join and leave
Real-time response

Traditional approaches to handling Concurrency

• Adding concurrency to serial languages:

• Threads with mutual exclusion using semaphore.

• Transaction.

• Process Networks.

Features needed in a Concurrent Programming Language

• Describe entities and their interactions.

• Describe passage of time.

• Allow birth and death of entities.

• Allow programming of novel interactions.

• Support hierarchical structure.

Orc

• Initial Goal: Internet scripting language.

• Next: Component integration language.

• Next: A general purpose, structured “concurrent programming
language”.

• A very late realization: A simulation language.

Internet Scripting

• Contact two airlines simultaneously for price quotes.

• Buy a ticket if the quote is at most $300.

• Buy the cheapest ticket if both quotes are above $300.

• Buy a ticket if the other airline does not give a timely quote.

• Notify client if neither airline provides a timely quote.

-

Structured Concurrent Programming

• Structured Sequential Programming: Dijkstra circa 1968
Component Integration in a sequential world.

• Structured Concurrent Programming:
Component Integration in a concurrent world.

Philosophy of our Language Design

• Start with Concurrency. Add sequential features later.

• Impose hierarchical structure: compose concurrent programs.

• Introduce very few composition mechanisms (Combinators).

OrcBasics

• Site: Basic service or component.

• Concurrencycombinatorsfor integrating sites.

• Theory includes nothing other than the combinators.

No notion of data type, thread, process, channel,
synchronization, parallelism· · ·

New concepts are programmed using new sites.

Examples of Sites

• + − ∗ && || = ...

• Println, Random, Prompt, Email ...

• Mutable Ref, Semaphore, Channel, ...

• Timer

• External Services:Google Search, MySpace, CNN, ...

• Any Java Class instance, Any Orc Program

• Factory sites; Sites that create sites: Semaphore, Channel ...

• Humans
...

Sites

• A site is called like a procedure with parameters.

• Site returns at most one value.

• The value ispublished.

Site calls arestrict.

Overview of Orc

• Orc program has
• agoalexpression,
• a set of definitions.

• The goal expression is executed. Its execution

• callssites,
• publishesvalues.

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Symmetric composition:f | g

• Evaluate f and g independently.

• Publish all values from both.

• No direct communication or interaction betweenf and g.
They can communicate only through sites.

Example: CNN(d) | BBC(d)

Callsboth CNN and BBC simultaneously.
Publishes values returned by both sites. (0, 1 or 2 values)

Sequential composition:f >x> g

For all values published byf do g.
Publish only the values fromg.

• CNN(d) >x> Email(address, x)

• Call CNN(d).
• Bind result (if any) tox.
• Call Email(address, x).
• Publish the value, if any, returned byEmail.

• (CNN(d) | BBC(d)) >x> Email(address, x)

• May call Email twice.
• Publishes up to two values fromEmail.

Notation: f ≫ g for f >x> g, if x is unused ing.

Schematic of Sequential composition

Figure:Schematic off >x> g

Pruning: f <x< g

For some value published byg do f .

• Evaluate f and g in parallel.

• Site calls that needx are suspended.
Consider(M() | N(x)) <x< g

• When g returns a (first) value:

• Bind the value tox.
• Kill g.
• Resume suspended calls.

• Values published byf are the values of(f <x< g).

Example of Pruning

Email(address, x) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

Fork-join parallelism

Call M and N in parallel.
Return their values as a tuple after both respond.

((u, v)
<u< M())
<v< N()

Otherwise: f ; g

Do f . If f haltswithout publishing then dog.

• An expression halts if
• its execution can take no more steps, and
• all called sites have either responded, or will never respond.

• A site call may respond with a value, indicate that it will never
respond (helpful), or do neither.

• All library sites in Orc are helpful.

Examples off ; g

1 ; 2 publishes1

(CNN(d) | BBC(d)) >x> Email(address, x) ; Retry()

If the sites are not helpful, this is equivalent to

(CNN(d) | BBC(d)) >x> Email(address, x)

Some Fundamental Sites

• Ift(b), Iff (b): booleanb,
Returns asignalif b is true/false; remainssilentotherwise.
Site is helpful: indicates when it will never respond.

• Rwait(t): integer t, t ≥ 0, returns a signalt time units later.

• stop : never responds. Same asIft(false) or Iff (true).

• signal : returns a signal immediately.
Same asIft(true) or Iff (false).

Use of Fundamental Sites

• Print all publications ofh. When h halts, publish "done".

h >x> Println(x) ≫ stop ; "done"

• Timeout:
Call site M.
Publish its response if it arrives within 10 time units.
Otherwise publish 0.

x <x< (M() | Rwait(10) ≫ 0)

Function Definition

def MailOnce(a) =
Email(a, m) <m< (CNN(d) | BBC(d))

def MailLoop(a, t) =
MailOnce(a) ≫ Rwait(t) ≫ MailLoop(a, t)

• A function is called like a procedure.
It may publish many values.MailLoop does not publish.

• Site calls are strict; Function calls non-strict.

Example of a Definition: Metronome

Publish a signal every unit.

def Metronome() = signal
︸ ︷︷ ︸

S

| (Rwait(1) ≫ Metronome()
︸ ︷︷ ︸

R

)

S R

S R

Example of Function call

• Site Query() returns a value (different ones at different times).

• Site Accept(x) returns x if x is an acceptable value;
it is silent otherwise.

• Call Query every second forever and publish all its acceptable
values.

Metronome() ≫ Query() >x> Accept(x)

Concurrent function call

• Functions are often called concurrently.

• Each call starts a new instance of function execution.

• If a function accesses shared data, concurrent invocationsmay
interfere.

Example: Publish each of "tick" and "tock" once per second,
"tock" after an initial half-second delay.

Metronome() ≫ ”tick”
| Rwait(500) ≫ Metronome() ≫ ”tock”

Laws about | and ≫

(Zero and |) f | stop = f
(Commutativity of |) f | g = g | f
(Associativity of |) (f | g) | h = f | (g | h)
(Associativity of ≫) if h is x-free

(f >x> g) >y> h = f >x> (g >y> h)
(Left zero of ≫) stop ≫ f = stop
(Left unit of ≫) signal ≫ f = f
(Right unit of ≫) f >x> x = f
(Right Distributivity of ≫ over |)

(f | g) >x> h = (f >x> h | g >x> h)

Identities that don’t hold
(Idempotence of |) f | f = f
(Right zero of ≫) f ≫ stop = stop
(Left Distributivity of ≫ over |)

f ≫ (g | h) = (f ≫ g) | (f ≫ h)

Laws about ≪

(Right unit of ≪) f ≪ stop = f

(Distributivity over |) if g is x-free
((f | g) <x< h) = (f <x< h) | g

(Distributivity over ≫) if g is x-free
((f ≫ g) <x< h) = (f <x< h) ≫ g

(Distributivity over ≪) if g is y-free andh is x-free
((f <x< g) <y< h)

= ((f <y< h) <x< g)

(Elimination of ≪) if f is x-free, for site M
(f <x< M()) = f | (M() ≫ stop)

Laws about ;

(Left unit of ;) stop ; f = f

(Right unit of ;) f ; stop = f

(Associativity of ;) (f ; g) ; h = f ; (g ; h)

