Structured Wide-Area Programming:
Orc Programming Examples

Jayadev Misra

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

Some Algorithms

Enumeration and Backtracking

Using Closures

List Fold, Map-reduce

Parsing using Recursive Descent

Exception Handling

Process Network

Quicksort

Graph Algorithms: Depth-first search, Shortest Path

Enumeration

Given: integem, list of integersxs
Return all subsequencesxd that sum ton.

sum(5,[1,2,1,2]) = [1,2,2], [2,1,2]
sum(5,[1,2,1]) is silent

def sum(0, []) = []
def sum(_,[]) = stop
def sum(n,x: xs) =

sum(n — X, Xs) >ys> X:ys
| sum(n, xs)

Backtracking: Use of Otherwise

Given: integem, list of integersxs
Return the “first” subsequence x$ that sums tan.

sum(5,[1,2,1,2]) = [1,2,2]
sum(5,[1,2,1]) is silent
def sum(0,_) = []

pJp—

def sum(_,[]) = stop

def sum(n,x: xs) = X:sum(n — X, xs) ; sum(n, xs)

Backtracking: Eight queens

Place 8 queens on a chessboard so that no queen capturesr.anoth

Figure:Backtrack Search for Eight queens

Eight queens; contd.

xs: partial placement of queens (list of values frdn?7)
extend(xs) publishesall solutions that are extensions .
open(xs) publishes the columns that awpenin the next row.
Solve the original problem by callingxtend([]).

def extend(xs) =
if (length(xs) = 8) then xs
else (open(xs) >j> extend(j : xs))

Using Closure
A UNITY Program
x,y=0,0
X<y—X:=x+1
ly:=y+1
e Program has: variable declarations
a set of functions

e Variables are initialized as given.

e Program is run by: choosing a function arbitrarily,
choosing functions fairly.

Corresponding Orc program

val (x,y) = (Ref(0), Ref(0))

def f1() = ft(x? <:y?) > x:=x7+1
def f2()=y:=y?+1

Run the program by:
¢ choosing a function arbitrarily,
e choosing functions fairly.

Scheduling the UNITY Program

def unity(fs) =
val arlen = length(fs)
val frnarray = Array(arlen)

{- populate() transfers from listfsto array fnarray -}
def populate(_, []) = signal
def populate(i,g : gs) = fnarray(i) := g > populate(i + 1, gs)

{- Execute arandom statement and loop.
Randomness guarantees fairness.
def exec() = random(arlen) >j> fnarray(j)?() > exec()

{- Initiate the work-}
populate(0, fs) > exec()

Running the example program

val (x,y) = (Ref(0), Ref(0))

def f1() = Ift(x? <:y?) > x:=x?+1
def f2() = y:=y?+1

unity([f1,12])

Associative Fold

Define afold(f, xs) where f is an associative binary function and
XSis a non-empty list.

Goal is to combine elements in parallel.
Each iteration reduces adjacent pairs of items to singleegal

Iterations continue until there is a single value.

Associative Fold; contd.

def afold(f,[X]) = x
def afold(f,xs) =

def step([]) = [
def step([x]) = [X
def step(x:y:xs) = f(xy) : step(xs)

afold(f, step(xs))
e f(Xy) : step(xs) is an implicit fork-join.

e f(x,y) executes concurrently witlstep(xs).

o All calls to f execute concurrently within each iteration afold.

Associative and Commutative Fold
e Transfer list items to a channel (arbitrary order of items).
e Fold any two channel items and put the result in the channel.

def acfold(f,xs) =
val ¢ = Channel()

def xfer([]) = stop
def xfer(x:xs) = (c.put(x), xfer(xs))

def combine(1) = c.get()
def combine(m) =
c.get() >x> c.get() >y>
(c.put(f(x,y)) > stop | combine(m— 1))

xfer(xs) | combine(length(xs))

map-reduce

Given is a list of tasks.

A processor from a processor pool is assigned to procesk.a tas
Each task may be processed independently, yielding a result

If a processor does not respond within tirfiea new processor
is assigned to the task.

After all the results have been computed, the results areest
by calling reduce.

Implementation

processlist processes a list of tasks concurrently.
process(t) processes a single tagk
process(t) publishes a resultprocesslist a list of results.

Function process first acquires a processor.

It assigns the task to the processor.

If the processor responds within timig, it publishes the result.
Else, it repeats these steps.

process(t) may never complete if the processors keep failing.

The list of published results are reduced by functi@duce.

map-reduce

def processist([]) = []
def procesdist(t : ts) = process(t) : processlist(ts)

def process(t) =
val processor = Processorpool()
val (result,b) = (processor(t),true) | (Rwait(T), false)
if bthen result else process(t)

processlist(tasks) >x> reduce(x)

Parsing using Recursive Descent

Consider the grammar:

expr = term|term+ expr
term ::= factor | factor x term
factor ::= literal | (expr)
literal := 3|5

Parsing strategy

For each non-terminal, sagxpr, define expr(xs):
publish all suffixes ofxs such that the prefix is @&xpr.

def isexpr(xs) = expr(xs) >[]> true ; false

To avoid multiple publications (in ambiguous grammars),
def isexpr(xs) =
val res= expr(xs) >[]> true ; false
res
------------ Test
isexpr
([77(77’77(77’77377’77 *77’77377’77)77’77)77’77 _1_77’77(77’77377’77 _1_77’77377’77)77])
—((3*3))+(3+3)

;o true

Function for each non-terminal

Given: expr = term|term+ expr
Rewrite: expr = term (e | + expr)

term(xs) >ys> (ys|ys >"+" :zs> expr(zs))

def expr(xs)

def term(xs) factor(xs) >ys> (ys|ys >"™" :zs> term(zs))

literal (xs)
| xs >"(" :ys>expr(ys) >")" :z5> 75

def factor(xs)

def literal(n : xs)
def literal([])

n>"3 >xs|n >"%" >xs
stop

Exception Handling

Client calls siteserver to request service.
The server “may” request authentication information.

def reguest(x) =
val exc = Channel() -- returns a channel site

server (X, exc)
| exc.get() >r> exc.put(auth(r)) > stop

Process Networks

A process network consists of: processes and channels.

The processes run autonomously, and
communicate via the channels.

A network is a process; thus hierarchical structure.
A network may be defined recursively.

A channel may have intricate communication protocol.

Network structure may be dynamic, by adding/deleting
processes/channels during its execution.

Channels

e For channelc, treat c.put and c.get as site calls.
¢ In our examples,c.get is blocking andc.put is non-blocking.
e We consider only FIFO channels.

Other kinds of channels can be programmed as sites.
We show rendezvous-based communication later.

Typical Iterative Process

Forever Read x from channelc, compute withx, output result one:

def p(c,e) = c.get() >x> Compute(x) >y> eput(y) > p(c,e)

Compute

p(c.e)

Figure:Iterative Process

Composing Processes into a Network

Process (network) to read from bothand d and write one:

def net(c,d,e) = p(c,e) | p(d,e)

— p(c.e)

—— p(e)

net(c,d,e)

Figure:Network of Iterative Processes

Workload Balancing
Read fromc, assign work randomly to one of the processes.

def bal(c,c’,d’) = c.get() >x>random(2) >t>
(if t = 0then ' .put(x) else d’.put(x)) >
bal(c,c/,d)

def workbal(c,e) = val ¢ = Channel()
val d = Channel()
bal(c,c’,d') | net(c',d’, e)

p(c'.e)

p(d'e)

workBal(c,e)

Deterministic Load Balancing

e Retain input order in the output.

e distr alternatively copies inputto' andc” .
coll alternatively copies fromd’ andd” to output.

¢ p(c,d)

—C . distr coll——~

¢ p(c”,d”)

Deterministic Load Balancing

def detbal(in, out) =
def distributor(c,c’,c”) =
c.get() >x> c.put(x) >
c.get() >y> c’.put(y) >
distributor (c,c’, c”)

def collector(d’,d”,d) =
d.get() >x> d.put(x) >
d”’.get() >y> d.put(y) >
collector (d’,d”, d)

val (in’,in”) = (Channel(), Channel())
val (out’,out”) = (Channel(), Channel())

distributor (in, i’ in”) | collector (out’, out”, out)
| p(inf, out’) | p(in”, out”)

Deterministic Load Balancing witl2" servers

Construct the network recursively.

c picd |d_

recBal(0,c,d)

Jce

’—C>recBaI(n—1,c’,d’)

——— distr coll——
C” LR} LR}
\—>recBaI(n—1,c ,d”)

recBal(n,c,d)

E

Recursive Load Balancing Network

def recbal(0,in,out) = P(in,out)

def recbal(n,in,out) =
def distributor(c,c’,c¢’) = ---

def collector(d’,d”,d) = ---

val (in',in”) = (Channel(), Channel())
val (out’,out”) = (Channel(), Channel())

distributor (in, i, in”) | collector (out’, out”, out)
| recbal(n — 1,in', out’) | recbal(n — 1,in”, out”)

An lterative Process: Transducer

Compute f(x) for each x in channelin and output toout, in order.

def transducer (in, out, fn) =
in.get() >x> out.put(fn(x)) >> transducer (in, out,fn)

Pipeline network

Apply function f to each input:f(x) = h(g(x)), for some g and h.

def pipe(in,out,g,h) =
val ¢ = Channel()
transducer (in, c,g) | transducer(c, out, h)

in C h out

Recursive Pipeline network
Consider computing factorial of each input.

fac(x):{ 1 if x=0

xx fac(x—1) if x>0

Supposex < N, for some givenN.

Fac_(N-1

in’ out’

out

front

Fac_(N)

Outline of a program

def fac(N,in,out) =

val (in’,out’) = (Channel(), Channel())
front(in, out, in’, out’) | fac(N — 1,in’, out’)

front

out

Fac_(N)

Implementation ofFacy

e receive inputx, x=10
e OuUtput 1

e loop.

def fac(0,in,out) =
in.get() > out.put(1) > fac(0,in, out)

Implementation offront
front has two subprocessegsadandwrite, doing forever:

e readreceives inputx from in.

e If x=0, outputxon b.
e If x>0, outputxon b, sendx— 1on in'.

e write receives inputx from b:
e If x=0, output 1.
e If x> 0, receiveyfrom out’, sendx x yon out

Fac_(N-1)
in’ out’
in read b write out

Code of front

Fac_(N-1)

in’ out’
read b write out

def front() =
val b= Channel()
def read() = in.get() >x> b.put(x) >
if x:> Othen in’.put(x — 1) else signal >>read()

def write() = b.get() >x>
if x = 0then out.put(1)
else (out’.get() >y> out.put(x *y)) > write()

read() | write()

Program forfac

def fac(O,in,out) =
in.get() > out.put(1) > fac(0,in, out)

def fac(N,in,out) =
val (in',out’) = (Channel(),Channel())

def front() = ---

front() | fac(N — 1,in’, out’)

Combining Server Farm and Pipeline

Fac_(N-1

in’ out’

front

Fac_(N)

— | distr coll ——

Fac_(N-1

front

Exercise: Combining Server Farm and Pipeline

A dataset is a list of positive numbers.
The datasets are available on input chanimel
Each list length is no more thaN, for some givenN.

Required: compute mean and variance of each dataset.
Output the results (as pairs) in order on chanoet.

First, divide the processing among abouiN servers.

Next, structure each server as a recursive pipeline.

Recursive Equations for Mean and Variance

¢ Use the equations:

sum([]) = 0,
sum(X : Xs) = X + sum(xs)

length([]) = 0,
length(x : xs) = 1 + length(xs)

mean(xs) = sum(xs)/length(xs)

var ([])

var (xs)

0,
mean(map(sguare, xs)) — mean(xs) #«2

e Hint: For each list, compute the sum, sum of squares, andHeng
by a recursive pipeline.

Apply a function to compute mean and variance from these data

Quicksort

e In situ permutation of an array.
e Array segments are simultaneously sorted.

e Partition of an array segment proceed from left and right
simultaneously.

e Combine Concurrency, Recursion, and Mutable Data Strestur
Traditional approaches

e Pure functional programs do not admit in-situ permutation.
e Imperative programs do not highlight concurrency.

e Typical concurrency constructs do not combine well with
recursion.

Scan over arraya; swap

e Ir(i) returns the smallest indej i <] <t, wheretis given,
such thata(i)? > p. Returnst + 1 if there is no such index.

e rl(i) returns the largest indek 0 < j <, such thata(i)? < p.
There is guranteed to be such an index.

e swap(a, b) swaps the contents of two refs, and returns a signal.
def Ir(i) = if (i <:t&& a(i)? <=p)then Ir(i +1) else i
def rl(i) = if (a(i)? :> p)then rl(i — 1) else i

def swap(a,b) = (a7,b?) >(x,y)> (a:=y, b:=x) > signal

Partition
def part(p,s,t) = -- sandtare array boundaries
def Ir(i) = if (i <:t&& a(i)? <=p)then Ir(i+ 1) else i
def rl(i) = if (a(i)? :>p)then rl(i — 1) else i
val (¢,t) = (Ir(9),rl(t)
(Ift(sS +1<:t) > swap(a(s),at’)) > part(p,s +1,t' — 1)
| Ift(sS +1=1t") > swap(a(s),at’)) > ¢
[Ift(§+1:>1t) >t
)

Returns mwhere

a(s)---a(m) < p,
am+1)---a(t) >p

Sorting

def sort(st) =
if s>=tthen signal
esepart(a(s)?, s+ 1,t) >m>
swap(a(m), a(s)) >
(sort(s,m—1),sort(m+ 1,t)) >
signal

sort(0, a.length() — 1)

Putting the Pieces together

def quicksort(a) =
def swap(a,b) = (a?,b?) >(x,y)> (a:=y, b:=x) > signal

def part(p,s,t) =

def Ir(i) = if (i <:t&& a(i)? <=p)then Ir(i+1) else i
def rl(i) = if (a(i)? :> p) then rl(i — 1) else i

al (s,t) = (Ir(s),rl(t))

(Ift(s +1<:t) > swap(a(s),at’)) > part(p,s + 1,t' — 1)

[Ift(S+1=t) > swap(as),alt’)) > ¢

[Ift(S+1:>t) >t

)

def sort(s,t) =

if s>=tthen signal

elsepart(a(s)?, s+ 1,t) >m>
swap(a(m), a(s)) >
(sort(s,m—1),sort(m+ 1,t)) >
signal

sort(0, a.length() — 1)

Remarks and Proof outline

Concurrency without locks

sort(m, n) sorts the segment; does not touch items outside the
segment.

Then, sort(s,m— 1) and sort(m -+ 1,t) are non-interfering.

part(p, s, t) does not modify any value outside this segment.
May read values.

Depth-first search of undirected graph
Recursion over Mutable Structure

N: Number of nodes in the graph.
conn: conn(i) the list of neighbors ofi

parent: Mutable array of lengthN
parent(i) = v, v >= 0, meansv is the parent node of
parent(i) < 0 means parent of is yet to be determined

Once i has a parent, it continues to have that parent.

dfs(i, xs): starts a depth-first search from all nodesxsin order,
i has a parent (of = N),
xs C conn(i),
All nodes in conn(i) — xs have parents already.

Depth-first search

val N= 6 -- N is the number of nodes in the graph
val parent = Table(N, lambda(_) = Ref(—1))

def dfs(_,[]) = signal
def dfs(i,x : xs) =
if (parent(x)? >= 0) then dfs(i, xs)
) =i >

else parent(x dfs(x, conn(x)) > dfs(i, xs)

dfs(N, [0]) -- depth-first search from node 0

Shortest path problem

¢ Directed graph; non-negative weights on edges.
e Find shortest path from source to sink.

We calculate just the length of the shortest path.

Shortest Path Algorithm with Lights and Mirrors

Source node sends rays of light to each neighbor.

Edge weight is the time for the ray to traverse the edge.

When a node receives its first ray, sends rays to all neighbors
Ignores subsequent rays.

Shortest path length time for sink to receive its first ray.
Shortest path length to node=time for i to receive its first ray.

Graph structure in functiorgucc()

u
2 s
X y y

Figure:Graph Structure

Succ(u) publishes(x, 2), (y,1), (z5).

Recording the values

For node u, record its path length in channel
uis a bounded channel of length 1.

The first “put” blocks all other puts until the recorded vaiseead
out.

Algorithm

def eval(u,t) = record valuet for u >
for every successov with d = length of (u,v) :
wait for d time units >
eval(v,t+d)

Goal : eval (source, 0) |
read the value recorded for thenk

Algorithm(contd.)

def eval(u,t) = record valuet for u >
for every successov with d = length of (u,v) :
wait for d time units >
eval(v,t +d)

Goal : eval (source, 0) |
read the value recorded for thenk

def eval(u,t) = u.put(t) >
Succ(u) >(v,d)>
Rwait(d) >
eval(v,t + d)

{- Goal :-} eval (source, 0) | sink.get()

Algorithm(contd.)

def eval(u,t) = u.put(t) >
Succ(u) >(v,d)>
Rwait(d) >
eval(v,t + d)

{- Goal :-} eval (source, 0) | sink.get()

Any call to eval(u,t): Length of a path from source ta s t.

First call to eval(u,t): Length of the shortest path from source to
uis t.

eval does not publish.

Drawbacks of this algorithm

e Running time proportional to shortest path length.

e Executions ofSucc, put and get should take no time.

