
Powerlist: A Structure for Parallel Recursion

JAYADEV MISRA
The University of Texas at Austin

Many data parallel algorithms – Fast Fourier Transform, Batcher’s sorting schemes and prefix-
sum – exhibit recursive structure. We propose a data structure, powerlist, that permits succinct
descriptions of such algorithms, highlighting the roles of both parallelism and recursion. Simple
algebraic properties of this data structure can be exploited to derive properties of these algorithms
and establish equivalence of different algorithms that solve the same problem.

Categories and Subject Descriptors: D3.3 [Programming Languages]: Language Constructs
and Features—Concurrent Programming Structures; Recursion; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General terms: Parallel Programs, Recursion
Additional Key Words and Phrases: Algebra of Parallel Programs, Fast Fourier Transform,
Batcher Sort, Prefix sum, Hypercube

1. PARALLELISM AND RECURSION

Many important synchronous parallel algorithms—Fast Fourier Transform, routing
and permutation, Batcher sorting schemes, solving tridiagonal linear systems by
odd-even reduction, prefix-sum algorithms—are conveniently formulated in a re-
cursive fashion. The network structures on which parallel algorithms are typically
implemented—butterfly, sorting networks, hypercube, complete binary tree—are,
also, recursive in nature. However, parallel recursive algorithms are typically de-
scribed iteratively, one parallel step at a time1. Similarly, the connection structures
are often explained pictorially, by displaying the connections between one “level”
and the next. The mathematical properties of the algorithms and connection struc-
tures are rarely evident from these descriptions.

A data structure, powerlist, is proposed in this paper that highlights the role
of both parallelism and recursion. Many of the known parallel algorithms—FFT,
Batcher Merge, prefix sum, embedding arrays in hypercubes, etc.—have surpris-
ingly concise descriptions using powerlists. Simple algebraic properties of powerlists

1A notable exception is the recursive description of a prefix sum algorithm in [Karp and Ra-
machandran 1990].

Author’s address: Jayadev Misra, Department of Computer Sciences, The University of Texas at
Austin, Austin, Texas 78712, (512) 471-9550, misra@cs.utexas.edu
This material is based in part upon work supported by the Texas Advanced Research Program
under Grant No. 003658–219 and by the National Science Foundation Award CCR–9111912.
A preliminary version of this paper appeared in [Misra 1994].
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
c©

2 ·

permit us to deduce properties of these algorithms employing structural induction.

2. POWERLIST

The basic data structure on which recursion is employed (in LISP[McCarthy, Abra-
hams, Edwards, Hart, and Levin 1962] or ML[Milner, Tofte, and Harper 1990]) is
a list. A list is either empty or it is constructed by concatenating an element to
a list. (We restrict ourselves to finite lists throughout this paper.) We call such
a list linear (because the list length grows by 1 as a result of applying the basic
constructor). Such a list structure seems unsuitable for expressing parallel algo-
rithms succinctly; an algorithm that processes the list elements has to describe how
successive elements of the list are processed.

We propose powerlist as a data structure that is more suitable for describing
parallel algorithms. The base—corresponding to the empty list for the linear case—
is a list of one element. A longer powerlist is constructed from the elements of two
powerlists of the same length, as described below. Thus, a powerlist is multiplicative
in nature; its length doubles by applying the basic constructor.

There are two different ways in which powerlists are joined to create a longer
powerlist. If p, q are powerlists of the same length then

p | q is the powerlist formed by concatenating p and q, and
p ./ q is the powerlist formed by successively taking alternate items from
p and q, starting with p.

Further, we restrict p, q to contain similar elements (defined in Section 2.1).
In the following examples the sequence of elements of a powerlist are enclosed

within angular brackets.

〈0〉 | 〈1〉 = 〈0 1〉
〈0〉 ./ 〈1〉 = 〈0 1〉
〈0 1〉 | 〈2 3〉 = 〈0 1 2 3〉
〈0 1〉 ./ 〈2 3〉 = 〈0 2 1 3〉

The operation | is called tie and ./ is zip.

2.1 Definitions

A data item from the linear list theory will be called a scalar. (Typical scalars are
the items of base types—integer, boolean, etc.—tuples of scalars, functions from
scalars to scalars and linear lists of scalars.) Scalars are uninterpreted in our theory.
We merely assume that scalars can be checked for type compatibility. We will use
several standard operations on scalars for purposes of illustration.
Notational Convention: Linear lists will be enclosed within square brackets, [].

A powerlist is a list of length 2n, for some n, n ≥ 0, all of whose elements are
similar. We enclose powerlists within angular brackets, 〈 〉.

Two scalars are similar if they are of the same type. Two powerlists are similar
if they have the same length and any element of one is similar to any element of
the other. (Observe that similar is an equivalence relation.)

Let S denote an arbitrary scalar, P a powerlist and u, v similar powerlists. A
recursive definition of a powerlist is

〈S〉 or 〈P 〉 or u | v or u ./ v

· 3

〈〈c〉 〈d〉〉

〈〈〈a〉 〈b〉〉 〈〈c〉 〈d〉〉〉

〈〈a〉 〈b〉〉

〈d〉〈c〉〈b〉〈a〉
Fig. 1: Representation of a complete binary tree where the data are at the leaves. For leaf nodes,
the powerlist has one element. For non-leaf nodes, the powerlist has two elements, namely, the
powerlists for the left and right subtrees.

Examples

〈2〉 powerlist of length 1 containing a scalar
〈〈2〉〉 powerlist of length 1 containing a powerlist of length 1 of scalar
〈 〉 not a powerlist
〈[]〉 powerlist of length 1 containing the empty linear list
〈 〈[2] [3 4 7]〉 〈[4] []〉 〉

powerlist of length 2, each element of which is a powerlist of length
2, whose elements are linear lists of numbers

〈 〈0 4〉 〈1 5〉 〈2 6〉 〈3 7〉 〉

a representation of the matrix
[

0 1 2 3
4 5 6 7

]

where each column is an

element of the outer powerlist.
〈 〈0 1 2 3〉 〈4 5 6 7〉 〉

another representation of the above matrix where each row is an
element of the outer powerlist.

〈〈〈a〉 〈b〉〉 〈〈c〉 〈d〉〉〉
a representation of the tree in Figure 1. The powerlist contains two
elements, one each for the left and right subtrees.

2.2 Functions over Powerlists

Convention: We write function application without parantheses where no confusion
is possible. Thus, we write “f x” instead of “f(x)” and “g x y” instead of “g(x, y)”.
The constructors | and ./ have the same binding power and their binding power
is lower than that of function application. Throughout this paper, S denotes a
scalar, P a powerlist and x, y either scalar or powerlist. Typical names for powerlist
variables are p, q, r, s, t, u, v. 2

Functions over linear lists are typically defined by case analysis—a function is
defined over the empty list and, recursively, over non-empty lists. Functions over
powerlists are defined analogously. For instance, the following function, rev, reverses
the order of the elements of the argument powerlist.

rev〈x〉 = 〈x〉
rev(p | q) = (rev q) | (rev p)

The case analysis, as for linear lists, is based on the length of the argument powerlist.
We adopt the pattern matching scheme of ML[Milner, Tofte, and Harper 1990] and

4 ·

Miranda[Turner 1986]2 to deconstruct the argument list into its components, p and
q, in the recursive case. Deconstruction, in general, uses the operators | and ./ ;
see Section 3. In the definition of rev, we have used | for deconstruction; we could
have used ./ instead and defined rev in the recursive case by

rev(p ./ q) = (rev q) ./ (rev p)

It can be shown, using the laws in Section 3, that the two proposed definitions of
rev are equivalent and that

rev(rev P) = P

for any powerlist P .
Scalar Functions

Operations on scalars are outside our theory. Some of the examples in this
paper, however, use scalar functions, particularly, addition and multiplication (over
complex numbers) and cons over linear lists. A scalar function, f , has zero or more
scalars as arguments and its value is a scalar. We coerce the application of f to a
powerlist by applying f “pointwise” to the elements of the powerlist. For a scalar
function f of one argument we define

f〈x〉 = 〈f x〉
f(p | q) = (f p) | (f q)

It can be shown that

f(p ./ q) = (f p) ./ (f q)

A scalar function that operates on two arguments will often be written as an infix
operator. For any such function ⊕ and similar powerlists p, q, u, v, we have

〈x〉 ⊕ 〈y〉 = 〈x ⊕ y〉
(p | q) ⊕ (u | v) = (p ⊕ u) | (q ⊕ v)
(p ./ q) ⊕ (u ./ v) = (p ⊕ u) ./ (q ⊕ v)

Thus, scalar functions commute with both | and ./ .
Note: Since a scalar function is applied recursively to each element of a powerlist,
its effect propagates through all “levels”. Thus, + applied to matrices forms their
elementwise sum. 2

2.3 Discussion

The base case of a powerlist is a singleton list, not an empty list. Empty lists (or,
equivalent data structures) do not arise in the applications we have considered. For
instance, in matrix algorithms the base case is a 1×1 matrix rather than an empty
matrix, Fourier transform is defined for a singleton list (not the empty list) and the
smallest hypercube has one node.

The recursive definition of a powerlist says that a powerlist is either of the form
u ./ v or u | v. In fact, every non-singleton powerlist can be written in either form
in a unique manner (see Laws in Section 3). A simple way to view p | q = L is
that if the elements of L are indexed by n-bit strings in increasing numerical order
(where the length of L is 2n) then p is the sublist of elements whose highest bit of

2Miranda is a trademark of Research Software Ltd.

· 5

the index is 0 and q is the sublist with 1 in the highest bit of the index. Similarly,
if u ./ v = L then u is the sublist of elements whose lowest bit of the index is 0 and
v’s elements have 1 as the lowest bit of the index.

At first, it may seem strange to allow two different ways for constructing the
same list—using tie or zip. As we see in this paper this causes no difficulty, and fur-
ther, this flexibility is essential because many parallel algorithms—the Fast Fourier
Transform being the most prominent—exploit both forms of construction.

We have restricted u, v in u | v and u ./ v to be similar. This restriction allows us
to process a powerlist by recursive divide and conquer, where each division yields
two halves that can be processed in parallel, by employing the same algorithm.
(Square matrices, for instance, are often processed by quartering them. We will
show how quartering, or quadrupling, can be expressed in our theory.) The simi-
larity restriction allows us to define complete binary trees, hypercubes and square
matrices that are not “free” structures.

The length of a powerlist is a power of 2. This restricts our theory somewhat.
It is possible to design a more general theory eliminating this constraint; we sketch
an outline in Section 6.

3. LAWS

L0. For singleton powerlists, 〈x〉, 〈y〉
〈x〉 | 〈y〉 = 〈x〉 ./ 〈y〉

L1. (Dual Deconstruction)
For any non-singleton powerlist, P , there exist similar powerlists
r, s, u, v such that
P = r | s and P = u ./ v

L2. (Unique Deconstruction)
(〈x〉 = 〈y〉) ≡ (x = y)
(p | q = u | v) ≡ (p = u ∧ q = v)
(p ./ q = u ./ v) ≡ (p = u ∧ q = v)

L3. (Commutativity of | and ./)
(p | q) ./ (u | v) = (p ./ u) | (q ./ v)

These laws can be derived by suitably defining tie and zip, using the standard
functions from the linear list theory. One possible strategy is to define tie as the
concatenation of two equal length lists and then, use the Laws L0 and L3 as the
definition of zip; Laws L1, L2 can be derived next. Alternatively, these laws may
be regarded as axioms relating tie and zip.

Law L0 is often used in proving base cases of algebraic identities. Laws L1, L2
allow us to uniquely deconstruct a non-singleton powerlist using either | or ./ .
Law L3 is crucial. It is the only law relating the two construction operators, |
and ./ , in the general case. Hence, it is invariably applied in proofs by structural
induction where both constructors play a role.

Inductive Proofs

Most proofs on powerlists are by induction on the length, depth or shape of the list.
The length, len, of a powerlist is the number of elements in it. Since the length of

6 ·

a powerlist is a power of 2, the logarithmic length, lgl, is a more useful measure.
Formally,

lgl〈x〉 = 0
lgl(u | v) = 1 + (lgl u)

The depth of a powerlist is the number of “levels” in it.

depth 〈S〉 = 0
depth 〈P 〉 = 1 + (depth P)
depth (u | v) = depth u

(In the last case, since u, v are similar powerlists they have the same depth.) Most
inductive proofs on powerlists order them lexicographically on the pair (depth,
logarithmic length). For instance, to prove that a property Π holds for all powerlists,
it is sufficient to prove

Π〈S〉, and
Π P ⇒ Π〈P 〉, and
(Π u) ∧ (Π v) ∧ (u, v) similar ⇒ Π(u | v)

The last proof step could be replaced by

(Π u) ∧ (Π v) ∧ (u, v) similar ⇒ Π(u ./ v)

The shape of a powerlist P is a sequence of natural numbers n0, n1, . . . , nd where d
is the depth of P and

n0 is the logarithmic length of P ,
n1 is the logarithmic length of (any) element of P , say r
n2 is the logarithmic length of any element of r, . . .
...

A formal definition of shape is similar to that of depth. The shape is a linear
sequence because all elements, at any level, are similar. The shape and the type
of the scalar elements define the structure of a powerlist completely. For inductive
proofs, the powerlists may be ordered lexicographically by the pair (depth, shape),
where the shapes are compared lexicographically.

Example: The len, lgl and depth of 〈 〈0 1 2 3〉 〈4 5 6 7〉 〉 are, 2, 1, 1, respectively.
The shape of this powerlist is the sequence, 1 2, because there are 2 elements at
the outer level and 4 elements at the inner level.

4. EXAMPLES

We show a few small algorithms on powerlists. These include such well-known
examples as the Fast Fourier Transform and Batcher sorting schemes. We restrict
the discussion in this section to simple (unnested) powerlists (where the depth is
0); higher dimensional lists (and algorithms for matrices and hypercubes) are taken
up in a later section. Since the powerlists are unnested, induction based on length
is sufficient to prove properties of these algorithms.

· 7

4.1 Permutations

We define a few functions that permute the elements of powerlists. The function
rev, defined in Section 2.2, is a permutation function. These functions appear as
components of many parallel algorithms.
Rotate

Function rr rotates a powerlist to the right by one; thus, rr〈a b c d〉 = 〈d a b c〉.
Function rl rotates to the left: rl〈a b c d〉 = 〈b c d a〉.

rr〈x〉 = 〈x〉 , rl〈x〉 = 〈x〉
rr(u ./ v) = (rr v) ./ u , rl(u ./ v) = v ./ (rl u)

There does not seem to be any simple definition of rr or rl using | as the
deconstruction operator. It is easy to show, using structural induction, that rr, rl
are inverses. An amusing identity is rev(rr(rev(rr P))) = P .

A powerlist may be rotated through an arbitrary amount, k, by applying k suc-
cessive rotations. A better scheme for rotating (u ./ v) by k is to rotate both u, v
by about k/2. More precisely, the function grr (given below) rotates a powerlist to
the right by k, where k ≥ 0. It is straightforward to show that for all k, k ≥ 0, and
all p, (grr k p) = (rr(k) p), where rr(k) is the k-fold application of rr.

grr k 〈x〉 = 〈x〉
grr (2× k) (u ./ v) = (grr k u) ./ (grr k v)
grr (2× k + 1) (u ./ v) = (grr (k + 1) v) ./ (grr k u)

Rotate Index
A class of permutation functions can be defined by the transformations on the

element indices. For a powerlist of 2n elements we associate an n-bit index with
each element, where the indices are the binary representations of 0, 1, .., 2n − 1 in
sequence. (For a powerlist u | v, indices for the elements in u have “0” as the highest
bit and in v have “1” as the highest bit. In u ./ v, similar remarks apply for the
lowest bit.) Any bijection, h, mapping indices to indices defines a permutation of
the powerlist: The element with index i is moved to the position where it has index
(h i). Below, we consider two simple index mapping functions; the corresponding
permutations of powerlists are useful in describing the shuffle-exchange network.
Note that indices are not part of our theory.

A function that rotates an index to the right (by one position) has the permu-
tation function rs (for right shuffle) associated with it. The definition of rs may
be understood as follows. The effect of rotating an index to the right is that the
lowest bit of an index becomes the highest bit; therefore, if rs is applied to u ./ v,
the elements of u—those having 0 as the lowest bit—will occupy the first half of the
resulting powerlist (because their indices have “0” as the highest bit, after rotation);
similarly, v will occupy the second half. Analogously, the function that rotates an
index to the left (by one position) induces the permutation defined by ls (for left
shuffle), below. Figure 2 shows the effects of index rotations on an 8-element list.

rs〈x〉 = 〈x〉 , ls〈x〉 = 〈x〉
rs(u ./ v) = u | v , ls(u | v) = u ./ v

8 ·
P ’s indices = (000 001 010 011 100 101 110 111)

List P = 〈a b c d e f g h〉

P ’s indices rotated right = (000 100 001 101 010 110 011 111)
rs P = 〈a c e g b d f h〉

P ’s indices rotated left = (000 010 100 110 001 011 101 111)
ls P = 〈a e b f c g d h〉

Fig. 2. Permutation functions rs, ls defined in Section 4.1.

It is trivial to see that rs, ls are inverses.
Inversion

The function inv is defined by the following function on indices. An element with
index b in P has index b′ in (inv P), where b′ is the reversal of the bit string b. Thus,

000 001 010 011 100 101 110 111

inv〈 a b c d e f g h 〉 =
〈 a e c g b f d h 〉

The definition of inv is

inv〈x〉 = 〈x〉
inv(p | q) = (inv p) ./ (inv q)

This function arises in a variety of contexts. In particular, inv is used to permute
the output of a Fast Fourier Transform network into the correct order.

The following proof shows a typical application of structural induction.
INV1. inv(p ./ q) = (inv p) | (inv q)

Proof is by structural induction on p and q.
Base : inv(〈x〉 ./ 〈y〉)

= {From Law L0 : 〈x〉 ./ 〈y〉 = 〈x〉 | 〈y〉}
inv(〈x〉 | 〈y〉)

= {definition of inv}
inv〈x〉 ./ inv〈y〉

= {inv〈x〉 = 〈x〉, inv〈y〉 = 〈y〉. Thus, they are singletons. Applying Law L0}
inv〈x〉 | inv〈y〉

Induction :

inv((r | s) ./ (u | v))

= {commutativity of | , ./ }
inv((r ./ u) | (s ./ v))

= {definition of inv}
inv(r ./ u) ./ inv(s ./ v)

= {induction}
(inv r | inv u) ./ (inv s | inv v)

= { | , ./ commute}

· 9

n = 0 〈[]〉
n = 1 〈[0] [1]〉
n = 2 〈[00] [01] [11] [10]〉
n = 3 〈[000] [001] [011] [010] [110] [111] [101] [100]〉

Fig. 3. Standard Gray code sequence for n, n = 0, 1, 2, 3

(inv r ./ inv s) | (inv u ./ inv v)

= {apply definition of inv to both sides of | }
inv(r | s) | inv(u | v) 2

Using INV1 and structural induction, it is easy to establish

inv(inv P) = P ,

inv(rev P) = rev(inv P)

and for any scalar operator ⊕

inv(P ⊕Q) = (inv P)⊕ (inv Q)

The last result holds for any permutation function in place of inv.

4.2 Reduction

In the linear list theory [Bird 1989], reduction is a higher order function of two
arguments, an associative binary operator and a list. Reduction applied to ⊕ and
[a0a1 . . . an] yields (a0 ⊕ a1 ⊕ . . .⊕ an). This function over powerlists is defined by

red ⊕ 〈x〉 = x
red ⊕ (p | q) = (red ⊕ p) ⊕ (red ⊕ q)

4.3 Gray Code

Gray code sequence [Gray 1953] for n, n ≥ 0, is a sequence of 2n n-bit strings where
the consecutive strings in the sequence differ in exactly one bit position. (The last
and the first strings in the sequence are considered consecutive.) Standard Gray
code sequences for n = 0, 1, 2, 3 are shown in Figure 3. We represent the n-bit
strings by linear lists of length n and a Gray code sequence by a powerlist whose
elements are these linear lists. The standard Gray code sequence may be computed
by function G, for any n.

G 0 = 〈[]〉
G (n + 1) = (0 : P) | (1 : (rev P))

where P = (G n)

Here, (0 :) is a scalar function that takes a linear list as an argument and appends
0 as its prefix. According to the coercion rule, (0 : P) is the powerlist obtained by
prefixing every element of P by 0. Similarly, (1 : (rev P)) is defined, where the
function rev is from Section 2.2.

4.4 Polynomial

A polynomial with coefficients pj , 0 ≤ j < 2n, where n ≥ 0, may be represented
by a powerlist p whose jth element is pj . The polynomial value at some point ω is

10 ·
∑

0≤j<2n

pj × ωj . For n > 0 this quantity is

∑

0≤j<2n−1

p2j × ω2j +
∑

0≤j<2n−1

p2j+1 × ω2j+1.

The following function, ep, evaluates a polynomial p using this strategy. In
anticipation of the Fast Fourier Transform, we generalize ep to accept an arbitrary
powerlist as its second argument. For powerlists p, w (of, possibly, unequal lengths)
let (p ep w) be a powerlist of the same length as w, obtained by evaluating p at
each element of w.

〈x〉 ep w = 〈x〉
(p ./ q) ep w = (p ep w2) + (w × (q ep w2))

Note that w2 is the pointwise squaring of w. Also, note that ep is a pointwise
function in its second argument, i.e.,

p ep (u | v) = (p ep u) | (p ep v)

4.5 Fast Fourier Transform

For a polynomial p with complex coefficients, its Fourier transform is obtained by
evaluating p at a sequence (i.e., powerlist) of points, (W p). Here, (W p) is the
powerlist 〈ω0, ω1, .. , ωn−1〉, where n is the length of p and ω is the nth principal
root of 1. Note that (W p) depends only on the length of p but not its elements;
hence, for similar powerlists p, q, (W p) = (W q). It is easy to define the function
W in a manner similar to ep.

We need the following properties of W for the derivation of FFT . Equation
(1) follows from the definition of W and the fact that ω2×N = 1, where N is the
length of p (and q). The second equation says that the right half of W (p ./ q) is
the negation of its left half. This is because each element in the right half is the
same as the corresponding element in the left half multiplied by ωN ; since ω is the
(2×N)th root of 1, ωN = −1.

W 2(p ./ q) = (W p) | (W q) (1)

W (p ./ q) = u | (−u), for some u (2)

The Fourier transform, FT , of a powerlist p is a powerlist of the same length as
p, given by

FT p = p ep (W p)

where ep is the function defined in Section 4.4.
The straightforward computation of (p ep v) for any p, v consists of evaluating

p at each element of v; this takes time O(N2) where p, v have length N . Since
(W p) is of a special form the Fourier transform can be computed in O(N log N)
steps, using the the Fast Fourier Transform algorithm [Cooley and Tukey 1965].
This algorithm also admits an efficient parallel implementation, requiring O(log N)
steps on O(N) processors. We derive the FFT algorithm next.

FT 〈x〉
= {definition of FT}

x ep (W 〈x〉)

· 11

= {Since W 〈x〉 is a singleton, from the definition of ep}
〈x〉

For the general case,

FT (p ./ q)

= {From the definition of FT}
(p ./ q) ep W (p ./ q)

= {from the definition of ep}
p ep W 2(p ./ q) + W (p ./ q)× (q ep W 2(p ./ q))

= {from the property of W ; see equation (1)}
p ep ((W p) | (W q)) + W (p ./ q)× (q ep ((W p) | (W q)))

= {distribute each ep over its second argument}
((p ep (W p)) | (p ep (W q))) + W (p ./ q)× ((q ep (W p)) | (q ep (W q)))

= {(W p) = (W q), p ep (W p) = FT p, q ep (W q) = FT q }
((FT p) | (FT p)) + W (p ./ q)× ((FT q) | (FT q))

= {using P,Q for FT p, FT q, and u | (−u) for W (p ./ q); see equation (2)}
(P | P) + (u | − u)× (Q | Q)

= { | and × in the second term commute}
(P | P) + ((u×Q) | (−u×Q))

= { | and + commute}
(P + u×Q) | (P − u×Q)

We collect the two equations for FT to define FFT , the Fast Fourier Transform.
In the following, (powers p) is the powerlist 〈ω0, ω1, .. , ωN−1〉 where N is the
length of p and ω is the (2 × N)th principal root of 1. This was the value of u in
the previous paragraph. The function powers can be defined similarly to ep.

FFT 〈x〉 = 〈x〉
FFT (p ./ q) = (P + u×Q) | (P − u×Q)

where P = FFT p
Q = FFT q
u = powers p

It is clear that FFT (p ./ q) can be computed from (FFT p) and (FFT q) in O(N)
sequential steps or O(1) parallel steps using O(N) processors (u can be computed
in parallel), where N is the length of p. Therefore, FFT (p ./ q) can be computed
in O(N log N) sequential steps or, O(log N) parallel steps using O(N) processors.

The compactness of this description of FFT is in striking contrast to the usual
descriptions; for instance, see [Chandy and Misra 1988, Section 6.13]. The com-
pactness can be attributed to the use of recursion and the avoidance of explicit
indexing of the elements by employing | and ./ . FFT illustrates the need for
including both | and ./ as constructors for powerlists. (Another function that
employs both | and ./ is inv of Section 4.1.)
Inverse Fourier Transform

The inverse of the Fourier Transform, IFT, can be defined similarly to the FFT.
We derive the definition of IFT from that of the FFT by pattern matching.

12 ·

For a singleton powerlist, 〈x〉, we compute

IFT 〈x〉
= {〈x〉 = FFT 〈x〉}

IFT (FFT 〈x〉)
= {IFT, FFT are inverses}
〈x〉

For the general case, we have to compute IFT (r | s) given r, s. Let

IFT (r | s) = p ./ q

in the unknowns p, q. This form of deconstruction is chosen so that we can easily
solve the equations we generate, next. Taking FFT of both sides,

FFT (IFT (r | s)) = FFT (p ./ q)

The left side is (r | s) because IFT, FFT are inverses. Replacing the right side
by the definition of FFT (p ./ q) yields the following equations.

r | s = (P + u×Q) | (P − u×Q)
P = FFT p
Q = FFT q
u = powers p

These equations are easily solved for the unknowns P, Q, u, p, q. (The law of unique
deconstruction, L2, can be used to deduce from the first equation that r = P +u×Q
and s = P − u × Q. Also, since p and r are of the same length we may define u
using r instead of p.) The solutions of these equations yield the following definition
for IFT. Here, /2 divides each element of the given powerlist by 2.

IFT 〈x〉 = 〈x〉
IFT (r | s) = p ./ q

where P = (r + s)/2
u = powers r
Q = ((r − s)/2)/u
p = IFT P
q = IFT Q

As in the FFT, the definition of IFT includes both constructors, | and ./ . It
can be implemented efficiently on a butterfly network. The complexity of IFT is
same as that of the FFT.

4.6 Batcher Sort

In this section, we develop some elementary results about sorting and discuss two
remarkable sorting methods due to Batcher[1968]. We find it interesting that ./
(not |) is the preferred operator in discussing the principles of parallel sorting.
Henceforth, a list is sorted means that its elements are arranged in non-decreasing
order.

A general method of sorting is given by

sort〈x〉 = 〈x〉
sort(p ./ q) = (sort p) merge (sort q)

· 13

where merge (written as a binary infix operator) creates a single sorted powerlist
out of the elements of its two argument powerlists each of which is sorted. In this
section, we show two different methods for implementing merge. One scheme is
Batcher merge, given by the operator bm. Another scheme is given by bitonic sort
where the sorted lists u, v are merged by applying the function bi to (u | (rev v)).

A comparison operator, l, is used in these algorithms. The operator is applied
to a pair of equal length powerlists, p, q; it creates a single powerlist out of the
elements of p, q by

p l q = (p min q) ./ (p max q)

That is, the 2ith and (2i + 1)th items of p l q are (pi min qi) and (pi max qi),
respectively. The powerlist p l q can be computed in constant time using O(len p)
processors.
Bitonic Sort

A sequence of numbers, x0, x1, .., xi, .., xN , is bitonic if there is an index i, 0 ≤
i ≤ N , such that x0, x1, .., xi is monotonic (ascending or descending) and xi, .., xN
is monotonic. The function bi, given below, applied to a bitonic powerlist returns
a sorted powerlist of the original items.

bi〈x〉 = 〈x〉
bi(p ./ q) = (bi p) l (bi q)

For sorted powerlists u, v, the powerlist (u | (rev v)) is bitonic; thus u, v can be
merged by applying bi to (u | (rev v)). The form of the recursive definition suggests
that bi can be implemented on O(N) processors in O(log N) parallel steps, where
N is the length of the argument powerlist.
Batcher Merge

Batcher has also proposed a scheme for merging two sorted lists. We define this
scheme, bm, as an infix operator below.

〈x〉 bm 〈y〉 = 〈x〉 l 〈y〉
(r ./ s) bm (u ./ v) = (r bm v) l (s bm u)

The function bm is well-suited for parallel implementation. The recursive form
suggests that (r bm v) and (s bm u) can be computed in parallel. Since l can be
applied in O(1) parallel steps using O(N) processors, where N is the length of the
argument powerlists, the function bm can be evaluated in O(log N) parallel steps.
In the rest of this section, we develop certain elementary facts about sorting and
prove the correctness of bi and bm.

Elementary Facts about Sorting

We consider only “compare and swap” type sorting methods. It is known (see
[Knuth 1973]) that such a sorting scheme is correct if and only if it sorts lists
containing 0’s and 1’s only. Therefore, we restrict our discussion to powerlists
containing 0’s and 1’s, only.

For a powerlist p, let (z p) be the number of 0’s in it. To simplify notation, we
omit the space and write zp. Clearly,

A0. z(p ./ q) = zp + zq and z〈x〉 is either 0 or 1.

14 ·

Powerlists containing only 0’s and 1’s have the following properties.

A1. 〈x〉 sorted and 〈x〉 bitonic.
A2. (p ./ q) sorted ≡ p sorted ∧ q sorted ∧ 0 ≤ zp− zq ≤ 1
A3. (p ./ q) bitonic ⇒ p bitonic ∧ q bitonic ∧ |zp− zq| ≤ 1

Note: The condition analogous to (A2) under which p | q is sorted is,

A2′. (p | q) sorted ≡ p sorted ∧ q sorted ∧ (zp < (len p) ⇒ zq = 0)

The simplicity of (A2), compared with (A2′), may suggest why ./ is the primary
operator in parallel sorting. 2

The following results, (B1, B2), are easy to prove. We prove (B3).
B1. p sorted, q sorted, zp ≥ zq ⇒ (p min q) = p ∧ (p max q) = q 2

B2. z(p l q) = zp + zq 2

B3. p sorted, q sorted, |zp− zq| ≤ 1 ⇒ (p l q) sorted
Proof: Since the statement of B3 is symmetric in p, q, assume zp ≥ zq.

p sorted, q sorted, |zp− zq| ≤ 1

⇒ {assumption: zp ≥ zq}
p sorted, q sorted, 0 ≤ zp− zq ≤ 1

⇒ {A2 and B1}
p ./ q sorted, (p min q) = p, (p max q) = q

⇒ {replace p, q in p ./ q by (p min q), (p max q)}
(p min q) ./ (p max q) sorted

⇒ {definition of p l q}
p l q sorted

Correctness of Bitonic Sort

We show that the function bi applied to a bitonic powerlist returns a sorted powerlist
of the original elements: (B4) states that bi preserves the number of zeroes of its
argument list (i.e., it loses no data) and (B5) states that the resulting list is sorted.
B4. z(bi p) = zp
Proof: By structural induction, using B2. 2

B5. L bitonic ⇒ (bi L) sorted
Proof: By structural induction.

Base: Straightforward.

Induction: Let L = p ./ q
p ./ q bitonic

⇒ {A3}
p bitonic, q bitonic, |zp− zq| ≤ 1

⇒ {induction on p and q}
(bi p) sorted, (bi q) sorted, |zp− zq| ≤ 1

· 15

⇒ {from B4: z(bi p) = zp, z(bi q) = zq}
(bi p) sorted, (bi q) sorted, |z(bi p)− z(bi q)| ≤ 1

⇒ {apply B3 with (bi p), (bi q) for p, q}
(bi p) l (bi q) sorted

⇒ {definition of bi}
bi(p ./ q) sorted

Correctness of Batcher Merge

We can show that bm merges two sorted powerlists in a manner similar to the proof
of bi. Instead, we establish a simple relationship between the functions bm and bi
from which the correctness of the former is obvious. We show that

B6. p bm q = bi(p | (rev q)), where rev reverses a powerlist (Section 2.2).

If p, q are sorted then p | (rev q) is bitonic (a fact that we don’t prove here).
Then, from the correctness of bi it follows that bi(p | (rev q)) and, hence, p bm q
is sorted (and it contains the elements of p and q).

Proof of B6: By structural induction.

Base: Let p, q = 〈x〉, 〈y〉

bi(〈x〉 | rev〈y〉)
= {definition of rev}

bi(〈x〉 | 〈y〉)
= {(〈x〉 | 〈y〉) = (〈x〉 ./ 〈y〉)}

bi(〈x〉 ./ 〈y〉)
= {definition of bi}
〈x〉 l 〈y〉

= {definition of bm}
〈x〉 bm 〈y〉

Induction: Let p, q = r ./ s, u ./ v

bi(p | (rev q))

= {expanding p, q}
bi((r ./ s) | rev(u ./ v))

= {definition of rev}
bi((r ./ s) | (rev v ./ rev u))

= { | , ./ commute}
bi((r | rev v) ./ (s | rev u))

= {definition of bi}
bi(r | rev v) l bi(s | rev u)

16 ·

= {induction}
(r bm v) l (s bm u)

= {definition of bm}
(r ./ s) bm (u ./ v)

= {using the definitions of p, q}
p bm q 2

The compactness of the description of Batcher’s sorting schemes and the sim-
plicity of their correctness proofs demonstrate the importance of treating recursion
and parallelism simultaneously.

4.7 Prefix Sum

Let L be a powerlist of scalars and ⊕ be a binary, associative operator on that
scalar type. The prefix sum of L with respect to ⊕, (ps L), is a list of the same
length as L given by

ps 〈x0, x1, .., xi, .., xN 〉 = 〈x0, x0 ⊕ x1, .., x0 ⊕ x1 ⊕ ..xi, .., x0 ⊕ x1 ⊕ ..⊕ xN 〉,
that is, in (ps L) the element with index i, i > 0, is obtained by applying ⊕ to the
first (i + 1) elements of L in order. We will give a formal definition of prefix sum
later in this section.

Prefix sum is of fundamental importance in parallel computing. We show that
two known algorithms for this problem can be concisely represented and proved in
our theory. Again, zip turns out to be the primary operator for describing these
algorithms.

A particularly simple scheme for prefix sum of 8 elements is shown in Figure 4. In
that figure, the numbered nodes represent processors, though the same 8 physical
processors are used at all levels. Initially, processor i holds the list element Li,
for all i. The connections among the processors at different levels depict data
transmissions. In level 0, each processor, from 0 through 6, sends its data to its
right neighbor. In the ith level, processor i sends its data to (i + 2i), if such a
processor exists (this means that for j < 2i, processor j receives no data in level i
data transmission). Each processor updates its own data, d, to r⊕ d where r is the
data it receives; if it receives no data in some level then d is unchanged. It can be
shown that after completion of the computation at level (log2(len L)), processor i
holds the ith element of (ps L).

Another scheme, due to Ladner and Fischer[1980], first applies ⊕ to adjacent
elements x2i, x2i+1 to compute the list 〈x0⊕x1, .. x2i⊕ x2i+1, ..〉. This list has half
as many elements as the original list; its prefix sum is then computed recursively.
The resulting list is 〈x0⊕x1, .., x0⊕x1⊕ ..⊕x2i⊕x2i+1, . . .〉. This list contains half
of the elements of the final list; the missing elements are x0, x0⊕x1⊕x2, .., x0⊕x1⊕
..⊕x2i, ... These elements can be computed by “adding” x2, x4, .., appropriately to
the elements of the already computed list.

Both schemes for prefix computation are inherently recursive. Our formulations
will highlight both parallelism and recursion.

Specification

As we did for the sorting schemes (Section 4.6), we introduce an operator in terms
of which the prefix sum problem can be defined. First, we postulate that 0 is the

· 17

•7•6•5•4•3•2•1

•7•6•5•4•3•2•1

•7•6•5•4•3•2•1

•7•6•5•4•3•2•1

level 3

level 2

level 1

level 0

•0

•0

•0

•0

Fig. 4. A network to compute the prefix sum of 8 elements.

left identity element of ⊕, i.e., 0⊕ x = x. For a powerlist p, let p∗ be the powerlist
obtained by shifting p to the right by one. The effect of shifting is to append a
0 to the left and discard the rightmost element of p; thus, 〈a b c d〉∗ = 〈0 a b c〉.
Formally,

〈x〉∗ = 〈0〉
(p ./ q)∗ = q∗ ./ p

It is easy to show

S1.(r ⊕ s)∗ = r∗ ⊕ s∗

S2.(p ./ q)∗∗ = p∗ ./ q∗

Consider the following equation in the powerlist variable z.

z = z∗ ⊕ L (DE)

where L is some given powerlist. This equation has a unique solution in z, because

z0 = (z∗)0 ⊕ L0

= 0⊕ L0
= L0 , and

zi+1 = zi ⊕ Li+1 , 0 ≤ i < (len L)− 1

For L = 〈a b c d〉, z = 〈a a⊕ b a⊕ b⊕ c a⊕ b⊕ c⊕ d〉 which is exactly (ps L).
We define (ps L) to be the unique solution of (DE), and we call (DE) the defining
equation for (ps L).
Notes

(1) The operator ⊕ is not necessarily commutative. Therefore, the rhs of (DE)
may not be the same as L⊕ z∗.

(2) The operator ⊕ is scalar; so, it commutes with ./ .
(3) The uniqueness of the solution of (DE) can be proved entirely within the pow-

erlist algebra, similar to the derivation of Ladner-Fischer scheme given later in
this section.

(4) Adams[1994] has specified the prefix-sum problem without postulating an ex-
plicit “0” element. For any ⊕, he introduces a binary operator ~⊕ over two

18 ·

similar powerlists such that p~⊕ q = p∗ ⊕ q. The operator ~⊕ can be defined
without introducing a “0”.

Computation of the Prefix Sum

The function sps (simple prefix sum) defines the scheme of Figure 4.

sps 〈x〉 = 〈x〉
sps L = (sps u) ./ (sps v)

where u ./ v = L∗ ⊕ L

In the first level in Figure 4, L∗ ⊕ L is computed. If L = 〈x0, x1, .., xi, . . .〉 then
this is 〈x0, x0 ⊕ x1, .., xi ⊕ xi+1..〉. This is the zip of the two sublists 〈x0, x1 ⊕
x2, .., x2i−1 ⊕ x2i, ..〉 and 〈x0 ⊕ x1, .., x2i ⊕ x2i+1, ..〉. Next, prefix sums of these two
lists are computed (independently) and then zipped.

The Ladner-Fischer scheme is defined by the function lf .

lf 〈x〉 = 〈x〉
lf (p ./ q) = (t∗ ⊕ p) ./ t

where t = lf (p⊕ q)

Correctness

We can prove the correctness of sps and lf by showing that the function ps satisfies
the equations defining each of these functions. It is more instructive to see that
both sps and lf can be derived easily from the specification (DE). We carry out this
derivation for the Fischer-Ladner scheme as an illustration of the power of algebraic
manipulations. First, we note, ps〈x〉 = 〈x〉.

ps〈x〉
= {from the defining equation DE for ps〈x〉}

(ps〈x〉)∗ ⊕ 〈x〉
= {definition of ∗}

〈0〉 ⊕ 〈x〉
= {⊕ is a scalar operation}

〈0⊕ x〉
= {0 is the identity of ⊕}

〈x〉

Derivation of Ladner-Fischer Scheme

Given a powerlist p ./ q, we derive an expression for ps(p ./ q). Let r ./ t, in
unknowns r, t, be ps(p ./ q). We solve for r, t.

r ./ t

= {r ./ t = ps (p ./ q). Using (DE)}
(r ./ t)∗ ⊕ (p ./ q)

= {(r ./ t)∗ = t∗ ./ r}
(t∗ ./ r)⊕ (p ./ q)

= {⊕, ./ commute}
(t∗ ⊕ p) ./ (r ⊕ q)

· 19

Applying law L2 (unique deconstruction) to the equation r ./ t = (t∗⊕p) ./ (r⊕q),
we conclude that

LF1. r = t∗ ⊕ p , and
LF2. t = r ⊕ q

Now, we eliminate r from (LF2) using (LF1) to get t = t∗ ⊕ p⊕ q. Using (DE)
and this equation we obtain

LF3. t = ps(p⊕ q)

We summarize the derivation of ps(p ./ q).

ps(p ./ q)

= {by definition}
r ./ t

= { Using (LF1) for r}
(t∗ ⊕ p) ./ t

where t is defined by LF3. This is exactly the definition of the function lf for a
non-singleton powerlist. We also note that

r

= {by eliminating t from (LF1) using (LF2) }
(r ⊕ q)∗ ⊕ p

= { definition of *}
r∗ ⊕ q∗ ⊕ p

Using (DE) and this equation we obtain LF4 that is used in proving the correctness
of sps, next.

LF4. r = ps(q∗ ⊕ p)

Correctness of sps

We show that for a non-singleton powerlist L,

ps L = (ps u) ./ (ps v), where u ./ v = L∗ ⊕ L.
Proof: Let L = p ./ q. Then

ps L

= {L = p ./ q}
ps(p ./ q)

= {ps(p ./ q) = r ./ t, where r, t are given by (LF4,LF3)}
ps(q∗ ⊕ p) ./ ps(p⊕ q)

= {Letting u = q∗ ⊕ p, v = p⊕ q}
(ps u) ./ (ps v)

20 ·

Now, we show that u ./ v = L∗ ⊕ L.

u ./ v

= {u = q∗ ⊕ p, v = p⊕ q}
(q∗ ⊕ p) ./ (p⊕ q)

= {⊕, ./ commute}
(q∗ ./ p)⊕ (p ./ q)

= {Apply the definition of ∗ to the first term}
(p ./ q)∗ ⊕ (p ./ q)

= {L = p ./ q}
L∗ ⊕ L

Remarks. A more traditional way of describing a prefix sum algorithm, such as
the simple scheme of Figure 4, is to explicitly name the quantities that are being
computed, and establish relationships among them. Let yij be computed by the ith

processor at the jth level. Then, for all i, j, 0 ≤ i < 2n, 0 ≤ j < n, where n is the
logarithmic length of the list,

yi0 = xi, and

yi,j+1 =
{

yi−2j ,j , i ≥ 2j

0 , i < 2j

}

⊕ yij

The correctness criterion is

yin = x0 ⊕ ..⊕ xi

This description is considerably more difficult to manipulate. The parallelism in it
is harder to see. The proof of correctness requires manipulations of indices: for this
example, we have to show that for all i, j

yij = xk ⊕ ..⊕ xi

where k = max(0, i− 2j + 1).

The Ladner-Fischer scheme is even more difficult to specify in this manner. Alge-
braic methods are to be preferred for describing uniform operations on aggregates
of data.

5. HIGHER DIMENSIONAL ARRAYS

A major part of parallel computing involves arrays of one or more dimensions. An
array of m dimensions (dimensions are numbered 0 through m− 1) is represented
by a powerlist of depth (m − 1). Conversely, since powerlist elements are similar,
a powerlist of depth (m − 1) may be regarded as an array of dimension m. For
instance, a matrix of r rows and c columns may be represented as a powerlist of c
elements, each element being a powerlist of length r storing the items of a column;
conversely, the same matrix may be represented by a powerlist of r elements, each
element being a powerlist of c elements.

In manipulating higher dimensional arrays we prefer to think in terms of array
operations rather than operations on nested powerlists. Therefore, we introduce
construction operators, analogous to | and ./ , for tie and zip along any specified
dimension. We use |′, ./′ for the corresponding operators in dimension 1, |′′, ./′′ for

· 21

A =

〈 ∧ ∧
2 4
3 5
∨ ∨

〉

B =

〈 ∧ ∧
0 1
6 7
∨ ∨

〉

A | B =

〈 ∧ ∧ ∧ ∧
2 4 0 1
3 5 6 7
∨ ∨ ∨ ∨

〉

A ./ B =

〈 ∧ ∧ ∧ ∧
2 0 4 1
3 6 5 7
∨ ∨ ∨ ∨

〉

A |′ B =

〈

∧ ∧
2 4
3 5
0 1
6 7
∨ ∨

〉

A ./′ B =

〈

∧ ∧
2 4
0 1
3 5
6 7
∨ ∨

〉

Fig. 5: Applying | , ./ , |′, ./′ over matrices. Matrices are stored by columns. Typical matrix
format is used for display, though each matrix is to be regarded as a powerlist of powerlists.

the dimension 2, etc. The definitions of these operators are in Section 5.2; for the
moment it is sufficient to regard |′ as the pointwise application of | to the argument
powerlists (and similarly, ./′). Thus, for similar (power) matrices A,B that are
stored columnwise (i.e., each element is a column), A | B is the concatenation
of A,B by rows and A |′ B is their concatenation by columns. Figure 5 shows
applications of these operators on specific matrices.

Given these constructors we may define a matrix to be either

a singleton matrix 〈〈x〉〉, or
p | q where p, q are (similar) matrices, or
u |′ v where u, v are (similar) matrices.

Analogous definitions can be given for n-dimensional arrays. Observe that the
length of each dimension is a power of 2. As we had in the case of a powerlist, the
same matrix can be constructed in several different ways, say, first by constructing
the rows and then the columns, or vice versa. We will show, in Section 5.2, that

(p | q) |′ (u | v) = (p |′ u) | (q |′ v)

i.e., | , |′ commute.
Note: We could have defined a matrix using ./ and ./′ instead of | and |′.
As | and ./ are duals in the sense that either can be used to construct (or
uniquely deconstruct) a powerlist, |′ and ./′ are also duals, as we show in Section 5.2.
Therefore, we will freely use all four construction operators for matrices. 2

Example: (Matrix Transposition)
Let τ be a function that transposes matrices. From the definition of a matrix,

we have to consider three cases in defining τ .

τ〈〈x〉〉 = 〈〈x〉〉
τ(p | q) = (τ p) |′ (τ q)
τ(u |′ v) = (τ u) | (τ v)

The description of function τ , though straightforward, has introduced the possibility
of an inconsistent definition. For a 2 × 2 matrix, for instance, either of the last
two deconstructions apply, and it is not obvious that the same result is obtained

22 ·

σ q σ v

σ uσ p
=σ

vu

qp

Fig. 6. Schematic of the transposition of a square powermatrix.

independent of the order in which the rules are applied. We show that τ is a
function.

We prove the result by structural induction. For a matrix of the form 〈〈x〉〉,
only the first deconstruction applies, and, hence, the claim holds. Next, consider a
matrix to which both of the last two deconstructions apply. Such a matrix is of the
form (p | q) |′ (u | v) which, as remarked above, is also (p |′ u) | (q |′ v). Applying
one step of each of the last two rules in different order, we get

τ((p | q) |′ (u | v))
= {applying the last rule}

(τ(p | q)) | (τ(u | v))
= {applying the middle rule}

((τ p) |′ (τ q)) | ((τ u) |′ (τ v))
And,

τ((p |′ u) | (q |′ v))
= {applying first the middle rule, then the last rule}

((τ p) | (τ u)) |′ ((τ q) | (τ v))
= { | , |′ commute}

((τ p) |′ (τ q)) | ((τ u) |′ (τ v))

From the induction hypothesis, (τ p), (τ q), etc., are well defined. Hence,

τ((p | q) |′ (u | v)) = τ((p |′ u) | (q |′ v))

Crucial to the above proof is the fact that | and |′ commute; this is reminis-
cent of the “Church-Rosser Property” [Church 1941] in term rewriting systems.
Commutativity is so important that we discuss it further in the next subsection.

It is easy to show that

τ (p ./ q) = (τ p) ./′ (τ q) and
τ (u ./′ v) = (τ u) ./ (τ v)

Transposition of a square (power) matrix can be defined by deconstructing the
matrix into quarters, transposing them individually and rearranging them, as shown
in Figure 6. From the transposition function τ for general matrices, we get a
function σ for transpositions of square matrices

σ〈〈x〉〉 = 〈〈x〉〉
σ((p | q) |′ (u | v)) = ((σ p) |′ (σ q)) | ((σ u) |′ (σ v))

Note the effectiveness of pattern matching in this definition.

5.1 Pointwise Application

Let g be a function mapping items of type α to type β. Then g′ maps a powerlist
of α-items to a powerlist of β-items.

g′〈x〉 = 〈g x〉
g′(r | s) = (g′ r) | (g′ s)

· 23

Similarly, for a binary operator op

〈x〉 op′ 〈y〉 = 〈x op y〉
(r | s) op′ (u | v) = (r op′ u) | (s op′ v)

We have defined these two forms explicitly because we use one or the other in all our
examples; f ′ for a function f of arbitrary arity is similarly defined. Observe that
f ′ applied to a powerlist of length N yields a powerlist of length N . The number
of primes over f determines the dimension at which f is applied (the outermost
dimension is numbered 0; therefore writing ./ , for instance, without primes, simply
zips two lists). The operator for pointwise application also appears in [Backus 1978]
and in [Steele Jr. and Hillis 1986].

Common special cases for the binary operator, op, are | and ./ and their

pointwise application operators. In particular, writing ./m to denote ./

m
︷ ︸︸ ︷

′′ . . .′ , we
define, ./ 0 = ./ and for m > 0,

〈x〉 ./m 〈y〉 = 〈x ./ m−1 y〉
(r | s) ./m (u | v) = (r ./m u) | (s ./m v)

From the definition of f ′, we conclude that f ′ and | commute. Below, we prove
that f ′ commutes with ./ .

Theorem 1. f ′, ./ commute.

Proof: We prove the result for unary f ; the general case is similar. Proof is by
structural induction.

Base: f ′(〈x〉 ./ 〈y〉)
= {〈x〉 ./ 〈y〉 = 〈x〉 | 〈y〉}

f ′(〈x〉 | 〈y〉)
= {definition of f ′}

f ′〈x〉 | f ′〈y〉
= {f ′〈x〉, f ′〈y〉 = 〈f x〉, 〈f y〉. These are singleton lists}

f ′〈x〉 ./ f ′〈y〉

Induction:
f ′((p | q) ./ (u | v))

= { | , ./ in the argument commute}
f ′((p ./ u) | (q ./ v))

= {f ′, | commute}
f ′(p ./ u) | f ′(q ./ v)

= {induction}
((f ′ p) ./ (f ′ u)) | ((f ′ q) ./ (f ′ v))

= { | , ./ commute}
((f ′ p) | (f ′ q)) ./ ((f ′ u) | (f ′ v))

= {f ′, | commute}
(f ′(p | q)) ./ (f ′(u | v)) 2

Theorem 2. For a scalar function f , f ′ = f .

Proof: Proof by structural induction is straightforward. 2

24 ·

Theorem 3. If f, g commute then so do f ′, g′.

Proof: By structural induction. 2
The following results about commutativity can be derived from Theorems 1,2,3.

In the following, m,n are natural numbers.

C1. For any f and m > n, fm, |n commute, and fm, ./n commute.
C2. For m 6= n, |m, |n commute, and ./m, ./n commute.
C3. For all m,n, |m, ./n commute.
C4. For any scalar function f, f, |m commute, and f, ./n commute.

C1 follows by applying induction on Theorems 1 and 3 (and the fact that f ′, |
commute). C2 follows from C1; C3 from C1, Law L3 and Theorem 3; C4 from C1
and Theorem 2.

5.2 Deconstruction

In this section we show that any powerlist that can be written as p |m q for some
p, q can also be written as u ./m v for some u, v and vice versa; this is analogous
to Law L1, for dual deconstruction. Analogous to Law L2, we show that such
deconstructions are unique.

Theorem 4. (dual deconstruction): For any p, q and m ≥ 0, if p |m q is defined
then there exist u, v such that

u ./m v = p |m q

Conversely, for any u, v and m ≥ 0, if u ./m v is defined then there exist some p, q
such that

p |m q = u ./m v 2

We do not prove this theorem; its proof is similar to the theorem given below.

Theorem 5. (unique deconstruction): Let ⊗ be | or ./ . For any natural
number m,

(p⊗m q = u⊗m v) ≡ (p = u ∧ q = v)

Proof: Proof is by induction on m.

m = 0 : The result follows from Law L2.
m = n + 1 : Assume that ⊗ = | . The proof is similar for ⊗ = ./ . We prove

the result by structural induction on p.

Base: p = 〈a〉 , q = 〈b〉 , u = 〈c〉 , v = 〈d〉
〈a〉 |n+1 〈b〉 = 〈c〉 |n+1 〈d〉

≡ {definition of |n+1}
〈a |n b〉 = 〈c |n d〉

≡ {unique deconstruction using Law L2}
a |n b = c |n d

≡ {induction on n}
(a = c) ∧ (b = d)

≡ {Law L2}
(〈a〉 = 〈c〉) ∧ (〈b〉 = 〈d〉)

· 25

Induction: p = p0 | p1 , q = q0 | q1 , u = u0 | u1 , v = v0 | v1

(p0 | p1) |n+1 (q0 | q1) = (u0 | u1) |n+1 (v0 | v1)
≡ {definition of |n+1}

(p0 |n+1 q0) | (p1 |n+1 q1) = (u0 |n+1 v0) | (u1 |n+1 v1)
≡ {unique deconstruction using Law L2}

(p0 |n+1 q0) = (u0 |n+1 v0) ∧ (p1 |n+1 q1) = (u1 |n+1 v1)
≡ {induction on the length of p0, q0, p1, q1}

(p0 = u0) ∧ (q0 = v0) ∧ (p1 = u1) ∧ (q1 = v1)
≡ {Law L2}

(p0 | p1) = (u0 | u1) ∧ (q0 | q1) = (v0 | v1)

Theorems 4 and 5 allow a richer variety of pattern matching in function defini-
tions, as we did for matrix transposition. We may employ |m, ./n for any natural
m,n to construct a pattern over which a function can be defined.

5.3 Embedding Arrays in Hypercubes

An n-dimensional hypercube is a graph of 2n nodes, n ≥ 0, where each node has
a unique n-bit label. Two nodes are neighbors, i.e., there is an edge between
them, exactly when their labels differ in a single bit. Therefore, every node has n
neighbors. We may represent a n-dimensional hypercube as a powerlist of depth n;
each level, except the innermost, consists of two powerlists. The operators |m, ./n

for natural m,n can be used to access the nodes in any one (or any combination
of) dimensions.

We conclude with an example that shows how higher dimensional structures, such
as hypercubes, are easily handled in our theory. Given an array of size 2m0 ×2m1 ×
. . . 2md , we claim that its elements can be placed at the nodes of a hypercube (of
dimension m0 +m1 + ..+md) such that two “adjacent” data items in the array are
placed at neighboring nodes in the hypercube. Here, two data items of the array
are adjacent if their indices differ in exactly one dimension, and by 1 modulo N ,
where N is the size of that dimension. (This is called “wrap around” adjacency.)

The following embedding algorithm is described in [Leighton 1992, Section 3.1.2];
it works as follows. If the array has only one dimension with 2m elements, then we
create a gray code sequence, G m (see Section 4.3). Abbreviate G m by g. We place
the ith item of the array at the node with label gi. Adjacent items, at positions i
and i + 1 (+ is taken modulo 2m − 1), are placed at nodes gi and gi+1 which differ
in exactly one bit, by the construction.

This idea can be generalized to higher dimensional arrays as follows. Construct
gray code sequences for each dimension independently; store the item with index
(i0, i1, . . . , id) at the node (gi0 ; gi1 ; . . . ; gid) where “;” denotes the concatenations of
the bit strings. By definition, adjacent items differ by 1 in exactly one dimension,
k. Then, their gray code indices are identical in all dimensions except k and they
differ in exactly one bit in dimension k.

We describe a function, em, that embeds an array in a hypercube. Given an array
of size 2m0×2m1× ..2md it permutes its elements to an array 2× 2× . . .× 2

︸ ︷︷ ︸

m

, where

m = m0 + .. + md, and the permutation preserves array adjacency as described.
The algorithm is inspired by the gray code function of Section 4.3. In the following,
S matches only with a scalar and P with a powerlist.

26 ·

em〈S〉 = 〈S〉
em〈P 〉 = em P
em(u | v) = 〈em u〉 | 〈em (rev v)〉

The first line is the rule for embedding a single item in 0-dimensional hypercube.
The next line, simply, says that an array having length 1 in a dimension can be
embedded by ignoring that dimension. The last line says that a non-singleton array
can be embedded by embedding the left half of dimension 0 and the reverse of the
right half in the two component hypercubes of a larger hypercube.

6. REMARKS

Related Work

Applying uniform operations on aggregates of data have proved to be extremely
powerful in APL [Iverson 1962]; see [Backus 1978] and [Bird 1989] for algebras
of such operators. One of the earliest attempts at representing data parallel al-
gorithms is in [Preparata and Vuillemin 1981]. In their words, “an algorithm...
performs a sequence of basic operations on pairs of data that are successively
2(k−1), 2(k−2), .., 20 = 1 locations apart”. An algorithm operating on 2N pieces
of data is described as a sequence of N parallel steps of the above form where the
kth step, 0 < k ≤ N , applies in parallel a binary operation, OPER, on pairs of
data that are 2(N−k) apart. They show that this paradigm can be used to describe
a large number of known parallel algorithms, and any such algorithm can be ef-
ficiently implemented on the Cube Connected Cycle connection structure. Their
style of programming was imperative. It is not easy to apply algebraic manip-
ulations to such programs. Their programming paradigm fits in well within our
notation. Mou and Hudak[1988] and Mou[1991] propose a functional notation to
describe divide and conquer-type parallel algorithms. Their notation is a vast im-
provement over Preparata and Vuillemin’s in that changing from an imperative
style to a functional style of programming allows more succinct expressions and the
possibility of algebraic manipulations; the effectiveness of this programming style
on a scientific problem may be seen in [Wang and Mou 1991]. They have constructs
similar to tie and zip, though they allow unbalanced decompositions of lists. An
effective method of programming with vectors has been proposed in [Blelloch 1990;
Blelloch 1993]. He proposes a small set of “vector-scan” instructions that may be
used as primitives in describing parallel algorithms. Unlike our method he is able
to control the division of the list and the number of iterations depending on the
values of the data items, a necessary ingredient in many scientific problems. Jones
and Sheeran[1990] have developed a relational algebra for describing circuit compo-
nents. A circuit component is viewed as a relation and the operators for combining
relations are given appropriate interpretations in the circuit domain. Kapur and
Subramaniam[1994] have implemented the powerlist notation for the purpose of au-
tomatic theorem proving. They have proved many of the algorithms in this paper
using an inductive theorem prover, called RRL (Rewrite Rule Laboratory), that
is based on equality reasoning and rewrite rules. They are now extending their
theorem prover so that the similarity constraints on the powerlist constructors do
not have to be stated explicitly.

One of the fundamental problems with the powerlist notation is to devise compila-
tion strategies for mapping programs (written in the powerlist notation) to specific

· 27

architectures. The architecture that is the closest conceptually is the hypercube.
Kornerup[1994] has developed certain strategies whereby each parallel step in a
program is mapped to a constant number of local operations and communications
at a hypercube node.

Combinational circuit verification is an area in which the powerlist notation may
be fruitfully employed. Adams[1994] has proved the correctness of adder circuits
using this notation. A ripple-carry adder is typically easy to describe and prove,
whereas a carry-lookahead adder is much more difficult. Adams has described both
circuits in our notation and proved their equivalence in a remarkably concise fashion.
He obtains a succinct description of the carry-lookahead circuit by employing the
prefix-sum function (See Section 4.7).

Powerlists of Arbitrary Length

The lengths of the powerlists have been restricted to be of the form 2n, n ≥ 0,
because we could then develop a simple theory. For handling arbitrary length lists,
Steele[1993] suggests padding enough “dummy” elements to a list to make its length
a power of 2. This scheme has the advantage that we still retain the simple algebraic
laws of powerlist. Another approach is based on the observation that any positive
integer is either 1 or 2 × m or 2 × m + 1, for some positive integer m; therefore,
we deconstruct a non-singleton list of odd length into two lists p, q and an element
e, where e is either the first or the middle or the last element. For instance, the
following function, rev, reverses a list.

rev 〈x〉 = 〈x〉
rev (p | q) = (rev q) | (rev p)
rev (p | e | q) = (rev q | e | rev p)

The last line of this definition applies to a non-singleton list of odd length; the list
is deconstructed into two lists p, q of equal length and e, the middle element. (We
have abused the notation, applying | to three arguments). Similarly, the function
lf for prefix sum may be defined by

lf 〈x〉 = 〈x〉
lf (p ./ q) = (t∗ ⊕ p) ./ t
lf (e ./ p ./ q) = e ./ (e⊕ (t∗ ⊕ p)) ./ (e⊕ t)

where t = lf (p⊕ q)

In this definition, the singleton list and lists of even length are treated as before.
A list of odd length is deconstructed into e, p, q, where e is the first element of
the argument list and p ./ q constitutes the remaining portion of the list. For this
case, the prefix sum is obtained by appending the element e to the list obtained by
applying e⊕ to each element of lf (p ./ q); we have used the convention that (e⊕L)
is the list obtained by applying e⊕ to each element of list L.

The Interplay between Sequential and Parallel Computations.

The notation proposed in this paper addresses only a small aspect of parallel com-
puting. Powerlists have proved to be highly successful in expressing computations
that are independent of the specific data values; such is the case, for instance, in
the Fast Fourier Transform, Batcher merge and prefix sum. Typically, however,

28 ·

parallel and sequential computations are interleaved. While Fast Fourier Trans-
form and Batcher merge represent highly parallel computations, binary search is
inherently sequential (there are other parallel search strategies). Gaussian elimina-
tion represents a mixture; the computation consists of a sequence of pivoting steps
where each step can be applied in parallel. Thus parallel computations may have
to be performed in a certain sequence and the sequence may depend on the data
values during a computation. More general methods, as in [Blelloch 1990], are then
required.

The powerlist notation can be integrated into a language that supports sequential
computation. In particular, this notation blends well with ML [Milner, Tofte, and
Harper 1990] and LISP[McCarthy, Abrahams, Edwards, Hart, and Levin 1962;
Steele Jr. and Hillis 1986]. A mixture of linear lists and powerlists can exploit the
various combinations of sequential and parallel computing. A powerlist consisting
of linear lists as components admits of parallel processing in which each component
is processed sequentially. A linear list whose elements are powerlists suggests a
sequential computation where each step can be applied in parallel. Powerlists of
powerlists allow multidimensional parallel computations, whereas a linear list of
linear lists may represent a hierarchy of sequential computations.

ACKNOWLEDGMENTS

This paper has been enriched by comments and suggestions from Will Adams,
Al Carruth (who suggested the term powerlist), Jorge Cobb, Edsger W. Dijkstra,
C.A.R. Hoare, Rajeev Joshi, Markus Kaltenbach, Deepak Kapur, Jacob Kornerup,
Scott Page, Vijaya Ramachandran, Guy Steele Jr., Alex Tomlinson, and Evelyn
Tumlin. Ernie Cohen was singularly helpful at an early stage of this research. I
am grateful to the Austin Tuesday Afternoon Club which read and commented
on a draft of this manuscript, and to Adams and Kornerup, especially, for their
comments on the second draft. Deepak Kapur and M. Subramaniam have increased
my faith in this work by implementing it. The current draft has benefitted from
the comments of Andrew Appel and two anonymous referees.

REFERENCES

Adams, W. 1994. Verifying adder circuits using powerlists. Technical Report TR 94-02 (Mar.),
Dept. of Computer Science, Univ. of Texas at Austin, Austin, Texas 78712.

Backus, J. 1978. Can programming be liberated from the von Neumann style? A functional
style and its algebra of programs. CACM 21, 8 (Aug.), 613–641. Turing Award Lecture
(1977).

Batcher, K. 1968. Sorting networks and their applications. In Proc. AFIPS Spring Joint
Computer Conference, Volume 32, pp. 307–314.

Bird, R. S. 1989. Lectures on constructive functional programming. In M. Broy (Ed.), Con-
structive Methods in Computing Science, NATO ASI Series F: Computer and Systems
Sciences, pp. 151–216. Springer-Verlag.

Blelloch, G. E. 1990. Vector Models for Data-Parallel Computing. MIT Press.
Blelloch, G. E. 1993. NESL: A nested data-parallel language. Technical Report CMU-CS-93-

129 (April), Carnegie-Mellon Univ., School of Computer Science.
Chandy, K. M. and Misra, J. 1988. Parallel Program Design: A Foundation. Addison Wesley.
Church, A. 1941. The Calculi of Lambda Conversion. Princeton University Press.
Cooley, J. M. and Tukey, J. W. 1965. An algorithm for the machine calculation of complex

Fourier series. Math. Comp. 19, 297–301.
Gray, F. 1953. Pulse code communication. U.S. Patent 2,632,058.

· 29

Iverson, K. 1962. A Programming Language. John Wiley and Sons.
Jones, G. and Sheeran, M. 1990. Circuit design in Ruby. In J. rgen Staunstrup (Ed.),

Formal Methods for VLSI Design. North-Holland.
Kapur, D. and Subramaniam, M. 1994. Automated reasoning about parallel algorithms using

powerlists. Manuscipt in preparation.
Karp, R. M. and Ramachandran, V. 1990. Parallel algorithms for shared memory machines.

In J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science. Elsevier and the
MIT Press.

Knuth, D. E. 1973. Sorting and Searching, Volume 3 of The Art of Computer Programming.
Addison-Wesley, Reading, Massachusetts.

Kornerup, J. 1994. Mapping powerlists onto hypercubes (in preparation). Ph. D. thesis, The
University of Texas at Austin.

Ladner, R. E. and Fischer, M. J. 1980. Parallel prefix computation. Journal of the Associa-
tion for Computing Machinery 27, 831–838.

Leighton, F. T. 1992. Introduction to Parallel Algorithms and Architectures. Morgan Kauf-
mann Publishers, San Mateo, California.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., and Levin, M. I. 1962.
LISP 1.5 Programmer’s Manual. MIT Press.

Milner, R., Tofte, M., and Harper, R. 1990. The Definition of Standard ML. MIT Press.
Misra, J. 1994. Powerlist: A structure for parallel recursion (preliminary version). In

A. Roscoe (Ed.), A Classical Mind : Essays in Honour of C.A.R. Hoare, pp. 295–316.
Prentice Hall International.

Mou, Z. 1991. Divacon: A parallel language for scientific computing based on divide-and-
conquer. In Proc. 3rd Symp. on the Frontiers of Massively Parallel Computation, pp. 451–
461.

Mou, Z. G. and Hudak, P. 1988. An algebraic model for divide-and-conquer algorithms and
its parallelism. The Journal of Supercomputing 2, 3 (November), 257–278.

Preparata, F. P. and Vuillemin, J. 1981. The cube-connected cycles: A versatile network
for parallel computation. CACM 24, 5 (May), 300–309.

Steele Jr., G. L. 1993. Personal communication.
Steele Jr., G. L. and Hillis, D. 1986. Connection Machine Lisp: Fine-grained parallel sym-

bolic processing. In Proc. 1986 ACM Conference on Lisp and Functional Programming,
Cambridge, Mass., pp. 279–297. ACM SIGPLAN/SIGACT/SIGART.

Turner, D. 1986. An overview of Miranda. ACM SIGPLAN Notices 21, 156–166.
Wang, X. and Mou, Z. 1991. A divide-and-conquer method of solving tridiagonal systems on

hypercube massively parallel computers. In proc. of the 3rd IEEE symposium on parallel
and distributed processing, Dallas, Tx., pp. 810–817.

