Boolean Algebra
Operations with 0 and 1
- X + 0 = X
- X + 1 = 1
- X . 0 = 0
- X . 1 = X
Idempotent Laws
Involution Law
Complementarity Law
Commutative Laws
- X + Y = Y + X
- X . Y = Y . X
Associative Laws
- ( X + Y ) + Z = X + ( Y + Z ) = X + Y + Z
- ( X . Y ) . Z = X . ( Y . Z ) = X . Y . Z
Distributive Laws
- X . ( Y + Z ) = ( X . Y ) + ( X . Z )
- X + ( Y . Z ) = ( X + Y ) . ( X + Z )
Simplification Theorems
- ( X . Y ) + ( X . Y' ) = X
- ( X + Y ) . ( X + Y' ) = X
- X + ( X . Y ) = X
- X . ( X + Y ) = X
- ( X + Y' ) . Y = X . Y
- ( X . Y' ) + Y = X + Y
DeMorgan's Laws
- ( X + Y )' = X' . Y'
- ( X . Y )' = X' + Y'
Theorem for Multiplying and Factoring
- ( X + Y ) . ( X' + Z ) = ( X . Z ) + ( X' . Y )
- ( X . Y ) + ( X' . Z ) = ( X + Z ) . ( X' + Y )
Consensus Theorem
- ( X . Y ) + ( Y . Z ) + ( X' . Z ) = ( X . Y ) + ( X' . Z )
- ( X + Y ) . ( Y + Z ) . ( X' + Z ) = ( X + Y ) . ( X' + Z )