Lecture Notes on 19 Sep 2011 Sum the following series to 10 terms 1 - 1/3 + 1/5 - 1/7 ... double sum = 0.0; // First solution for (int i = 1; i <= 10; i++) { if (i % 2 == 1) { sum = sum + 1.0 / (2 * i - 1); } else { sum = sum - 1.0 / (2 * i - 1); } } // Second more elegant solution double sign = 1.0; for (int i = 1; i <= 10; i++) { sum = sum + sign / (2 * i - 1); sign = (-1) * sign; } import java.util.Scanner; public class Test { public static void main (String[] args) { // Create Scanner object Scanner sc = new Scanner (System.in); // Read user input int n; do { System.out.print ("Enter positive number: "); n = sc.nextInt(); } while (n < 0); // Check if number if perfect int sumDivisors = 0; for (int i = 1; i <= n / 2; i++) { if (n % i == 0) { sumDivisors += i; } } if (n == sumDivisors) { System.out.println (n + " is perfect"); } else { System.out.println (n + " is not perfect"); } // Check if number is Prime int limit = (int) Math.sqrt (n); boolean isPrime = true; for (int i = 2; i <= limit; i++) { if (n % i == 0) { isPrime = false; break; } } if (isPrime) { System.out.println (n + " is prime"); } else { System.out.println (n + " is not prime"); } // Reverse the number int revNum = 0; while (n > 0) { System.out.println (revNum); revNum = revNum * 10 + (n % 10); n = n / 10; } System.out.println (revNum); } }