
Mastering Ajax, Part 1: Introduction to Ajax
Understanding Ajax, a productive approach to building Web
sites, and how it works

Skill Level: Introductory

Brett McLaughlin (brett@newInstance.com)
Author and Editor
O'Reilly Media Inc.

06 Dec 2005

Ajax, which consists of HTML, JavaScript™ technology, DHTML, and DOM, is an
outstanding approach that helps you transform clunky Web interfaces into interactive
Ajax applications. The author, an Ajax expert, demonstrates how these technologies
work together -- from an overview to a detailed look -- to make extremely efficient
Web development an easy reality. He also unveils the central concepts of Ajax,
including the XMLHttpRequest object.

Five years ago, if you didn't know XML, you were the ugly duckling whom nobody
talked to. Eighteen months ago, Ruby came into the limelight and programmers who
didn't know what was going on with Ruby weren't welcome at the water cooler.
Today, if you want to get into the latest technology rage, Ajax is where it's at.

However, Ajax is far more than just a fad; it's a powerful approach to building Web
sites and it's not nearly as hard to learn as an entire new language.

Before I dig into what Ajax is, though, let's spend just a few moments understanding
what Ajax does. When you write an application today, you have two basic choices:

• Desktop applications

• Web applications

These are both familiar; desktop applications usually come on a CD (or sometimes
are downloaded from a Web site) and install completely on your computer. They

Introduction to Ajax
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 14

mailto:brett@newInstance.com
http://www.ibm.com/legal/copytrade.shtml

might use the Internet to download updates, but the code that runs these
applications resides on your desktop. Web applications -- and there's no surprise
here -- run on a Web server somewhere and you access the application with your
Web browser.

More important than where the code for these applications runs, though, is how the
applications behave and how you interact with them. Desktop applications are
usually pretty fast (they're running on your computer; you're not waiting on an
Internet connection), have great user interfaces (usually interacting with your
operating system), and are incredibly dynamic. You can click, point, type, pull up
menus and sub-menus, and cruise around, with almost no waiting around.

On the other hand, Web applications are usually up-to-the-second current and they
provide services you could never get on your desktop (think about Amazon.com and
eBay). However, with the power of the Web comes waiting -- waiting for a server to
respond, waiting for a screen to refresh, waiting for a request to come back and
generate a new page.

Obviously this is a bit of an oversimplification, but you get the basic idea. As you
might already be suspecting, Ajax attempts to bridge the gap between the
functionality and interactivity of a desktop application and the always-updated Web
application. You can use dynamic user interfaces and fancier controls like you'd find
on a desktop application, but it's available to you on a Web application.

So what are you waiting for? Start looking at Ajax and how to turn your clunky Web
interfaces into responsive Ajax applications.

Old technology, new tricks

When it comes to Ajax, the reality is that it involves a lot of technologies -- to get
beyond the basics, you need to drill down into several different technologies (which
is why I'll spend the first several articles in this series breaking apart each one of
them). The good news is that you might already know a decent bit about many of
these technologies -- better yet, most of these individual technologies are easy to
learn -- certainly not as difficult as an entire programming language like Java or
Ruby.

Ajax defined
By the way, Ajax is shorthand for Asynchronous JavaScript and
XML (and DHTML, and so on). The phrase was coined by Jesse
James Garrett of Adaptive Path (see the Resources section) and is,
according to Jesse, not meant to be an acronym.

Here are the basic technologies involved in Ajax applications:

developerWorks® ibm.com/developerWorks

Introduction to Ajax
Page 2 of 14 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• HTML is used to build Web forms and identify fields for use in the rest of
your application.

• JavaScript code is the core code running Ajax applications and it helps
facilitate communication with server applications.

• DHTML, or Dynamic HTML, helps you update your forms dynamically.
You'll use div, span, and other dynamic HTML elements to mark up your
HTML.

• DOM, the Document Object Model, will be used (through JavaScript
code) to work with both the structure of your HTML and (in some cases)
XML returned from the server.

Let's break these down and get a better idea of what each does. I'll delve into each
of these more in future articles; for now focus on becoming familiar with these
components and technologies. The more familiar you are with this code, the easier it
will be to move from casual knowledge about these technologies to mastering each
(and really blowing the doors off of your Web application development).

The XMLHttpRequest object

The first object you want to understand is probably the one that's newest to you; it's
called XMLHttpRequest. This is a JavaScript object and is created as simply as
shown in Listing 1.

Listing 1. Create a new XMLHttpRequest object

<script language="javascript" type="text/javascript">
var xmlHttp = new XMLHttpRequest();
</script>

I'll talk more about this object in the next article, but for now realize that this is the
object that handles all your server communication. Before you go forward, stop and
think about that -- it's the JavaScript technology through the XMLHttpRequest
object that talks to the server. That's not the normal application flow and it's where
Ajax gets much of its magic.

In a normal Web application, users fill out form fields and click a Submit button.
Then, the entire form is sent to the server, the server passes on processing to a
script (usually PHP or Java or maybe a CGI process or something similar), and
when the script is done, it sends back a completely new page. That page might be
HTML with a new form with some data filled in or it might be a confirmation or
perhaps a page with certain options selected based on data entered in the original
form. Of course, while the script or program on the server is processing and
returning a new form, users have to wait. Their screen will go blank and then be
redrawn as data comes back from the server. This is where low interactivity comes

ibm.com/developerWorks developerWorks®

Introduction to Ajax
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 14

http://www.ibm.com/legal/copytrade.shtml

into play -- users don't get instant feedback and they certainly don't feel like they're
working on a desktop application.

Ajax essentially puts JavaScript technology and the XMLHttpRequest object
between your Web form and the server. When users fill out forms, that data is sent
to some JavaScript code and not directly to the server. Instead, the JavaScript code
grabs the form data and sends a request to the server. While this is happening, the
form on the users screen doesn't flash, blink, disappear, or stall. In other words, the
JavaScript code sends the request behind the scenes; the user doesn't even realize
that the request is being made. Even better, the request is sent asynchronously,
which means that your JavaScript code (and the user) doesn't wait around on the
server to respond. So users can continue entering data, scrolling around, and using
the application.

Then, the server sends data back to your JavaScript code (still standing in for the
Web form) which decides what to do with that data. It can update form fields on the
fly, giving that immediate feeling to your application -- users are getting new data
without their form being submitted or refreshed. The JavaScript code could even get
the data, perform some calculations, and send another request, all without user
intervention! This is the power of XMLHttpRequest. It can talk back and forth with a
server all it wants, without the user ever knowing about what's really going on. The
result is a dynamic, responsive, highly-interactive experience like a desktop
application, but with all the power of the Internet behind it.

Adding in some JavaScript

Once you get a handle on XMLHttpRequest, the rest of your JavaScript code turns
out to be pretty mundane. In fact, you'll use JavaScript code for just a few basic
tasks:

• Get form data: JavaScript code makes it simple to pull data out of your
HTML form and send it to the server.

• Change values on the form: It's also simple to update a form, from setting
field values to replacing images on the fly.

• Parse HTML and XML: You'll use JavaScript code to manipulate the DOM
(see the next section) and to work with the structure of your HTML form
and any XML data that the server returns.

For those first two items, you want to be very familiar with the getElementById()
method as shown in Listing 2.

Listing 2. Grab and set field values with JavaScript code

// Get the value of the "phone" field and stuff it in a variable called phone
var phone = document.getElementById("phone").value;

developerWorks® ibm.com/developerWorks

Introduction to Ajax
Page 4 of 14 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

// Set some values on a form using an array called response
document.getElementById("order").value = response[0];
document.getElementById("address").value = response[1];

There's nothing particularly remarkable here and that's good! You should start to
realize that there's nothing tremendously complicated about this. Once you master
XMLHttpRequest, much of the rest of your Ajax application will be simple
JavaScript code like that shown in Listing 2, mixed in with a bit of clever HTML.
Then, every once in a while, there's a little DOM work...so let's look at that.

Finishing off with the DOM

Last but not least, there's the DOM, the Document Object Model. For some of you,
hearing about the DOM is going to be a little intimidating -- it's not often used by
HTML designers and is even somewhat unusual for JavaScript coders unless you're
really into some high-end programming tasks. Where you will find the DOM in use a
lot is in heavy-duty Java and C/C++ programs; in fact, that's probably where the
DOM got a bit of its reputation for being difficult or hard to learn.

Fortunately, using the DOM in JavaScript technology is easy, and is mostly intuitive.
At this point, I'd normally show you how to use the DOM or at least give you a few
code examples, but even that would be misleading. You see, you can get pretty far
into Ajax without having to mess with the DOM and that's the path I'm going to show
you. I'll come back to the DOM in a future article, but for now, just know that it's out
there. When you start to send XML back and forth between your JavaScript code
and the server and really change the HTML form, you'll dig back into DOM. For now,
it's easy to get some effective Ajax going without it, so put this on the back-burner for
now.

Getting a Request object

With a basic overview under your belt, you're ready to look at a few specifics. Since
XMLHttpRequest is central to Ajax applications -- and probably new to many of
you -- I'll start there. As you saw in Listing 1, it should be pretty easy to create this
object and use it, right? Wait a minute.

Remember those pesky browser wars from a few years back and how nothing
worked the same across browsers? Well, believe it or not, those wars are still going
on albeit on a much smaller scale. And, surprise: XMLHttpRequest is one of the
victims of this war. So you'll need to do a few different things to get an
XMLHttpRequest object going. I'll take your through it step by step.

Working with Microsoft browsers

Microsoft's browser, Internet Explorer, uses the MSXML parser for handling XML

ibm.com/developerWorks developerWorks®

Introduction to Ajax
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 14

http://www.ibm.com/legal/copytrade.shtml

(you can find out more about MSXML in Resources). So when you write Ajax
applications that need to work on Internet Explorer, you need to create the object in
a particular way.

However, it's not that easy. MSXML actually has two different versions floating
around depending on the version of JavaScript technology installed in Internet
Explorer, so you've got to write code that handles both cases. Look at Listing 3 for
the code that you need to create an XMLHttpRequest on Microsoft browsers.

Listing 3. Create an XMLHttpRequest object on Microsoft browsers

var xmlHttp = false;
try {
xmlHttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {
try {

xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
} catch (e2) {

xmlHttp = false;
}

}

All of this won't make exact sense yet, but that's OK. You'll dig into JavaScript
programming, error handling, conditional compilation, and more before this series is
finished. For now, you want to get two core lines into your head:

xmlHttp = new ActiveXObject("Msxml2.XMLHTTP");

and

xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");.

In a nutshell, this code tries to create the object using one version of MSXML; if that
fails, it then creates the object using the other version. Nice, huh? If neither of these
work, the xmlHttp variable is set to false, to tell your code know that something
hasn't worked. If that's the case, you've probably got a non-Microsoft browser and
need to use different code to do the job.

Dealing with Mozilla and non-Microsoft browsers

If Internet Explorer isn't your browser of choice or you write code for non-Microsoft
browsers, then you need different code. In fact, this is the really simple line of code
you saw back in Listing 1:

var xmlHttp = new XMLHttpRequest object;.

This much simpler line creates an XMLHttpRequest object in Mozilla, Firefox,
Safari, Opera, and pretty much every other non-Microsoft browser that supports Ajax
in any form or fashion.

developerWorks® ibm.com/developerWorks

Introduction to Ajax
Page 6 of 14 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Putting it together

The key is to support all browsers. Who wants to write an application that works just
on Internet Explorer or an application that works just on non-Microsoft browsers?
Worse yet, do you want to write your application twice? Of course not! So your code
combines support for both Internet Explorerand non-Microsoft browsers. Listing 4
shows the code to do just that.

Listing 4. Create an XMLHttpRequest object the multi-browser way

/* Create a new XMLHttpRequest object to talk to the Web server */
var xmlHttp = false;
/*@cc_on @*/
/*@if (@_jscript_version >= 5)
try {
xmlHttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {
try {

xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
} catch (e2) {

xmlHttp = false;
}

}
@end @*/

if (!xmlHttp && typeof XMLHttpRequest != 'undefined') {
xmlHttp = new XMLHttpRequest();

}

For now, ignore the commenting and weird tags like @cc_on; those are special
JavaScript compiler commands that you'll explore in depth in my next article, which
will focus exclusively on XMLHttpRequest. The core of this code breaks down into
three steps:

1. Create a variable, xmlHttp, to reference the XMLHttpRequest object
that you will create.

2. Try and create the object in Microsoft browsers:

• Try and create the object using the Msxml2.XMLHTTP object.

• If that fails, try and create the object using the Microsoft.XMLHTTP
object.

3. If xmlHttp still isn't set up, create the object in a non-Microsoft way.

At the end of this process, xmlHttp should reference a valid XMLHttpRequest
object, no matter what browser your users run.

A word on security

ibm.com/developerWorks developerWorks®

Introduction to Ajax
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 14

http://www.ibm.com/legal/copytrade.shtml

What about security? Today's browsers offer users the ability to crank their security
levels up, to turn off JavaScript technology, and disable any number of options in
their browser. In these cases, your code probably won't work under any
circumstances. For these situations, you'll have to handle problems gracefully --
that's at least one article in itself, one I will tackle later (it's going to be a long series,
isn't it? Don't worry; you'll master all of this before you're through). For now, you're
writing robust, but not perfect, code, which is great for getting a handle on Ajax.
You'll come back to the finer details.

Request/Response in an Ajax world

So you now understand Ajax and have a basic idea about the XMLHttpRequest
object and how to create it. If you've read closely, you even realize that it's the
JavaScript technology that talks to any Web application on the server rather than
your HTML form being submitted to that application directly.

What's the missing piece? How to actually use XMLHttpRequest. Since this is
critical code that you'll use in some form in every Ajax application you write, take a
quick tour through what a basic request/response model with Ajax looks like.

Making a request

You have your shiny new XMLHttpRequest object; now take it for a spin. First, you
need a JavaScript method that your Web page can call (like when a user types in
text or selects an option from a menu). Then, you'll follow the same basic outline in
almost all of your Ajax applications:

1. Get whatever data you need from the Web form.

2. Build the URL to connect to.

3. Open a connection to the server.

4. Set up a function for the server to run when it's done.

5. Send the request.

Listing 5 is a sample of an Ajax method that does these very things, in this order:

Listing 5. Make a request with Ajax

function callServer() {
// Get the city and state from the web form
var city = document.getElementById("city").value;
var state = document.getElementById("state").value;
// Only go on if there are values for both fields

developerWorks® ibm.com/developerWorks

Introduction to Ajax
Page 8 of 14 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

if ((city == null) || (city == "")) return;
if ((state == null) || (state == "")) return;

// Build the URL to connect to
var url = "/scripts/getZipCode.php?city=" + escape(city) + "&state=" + escape(state);

// Open a connection to the server
xmlHttp.open("GET", url, true);

// Setup a function for the server to run when it's done
xmlHttp.onreadystatechange = updatePage;

// Send the request
xmlHttp.send(null);

}

A lot of this is self-explanatory. The first bit of the code uses basic JavaScript code
to grab the values of a few form fields. Then the code sets up a PHP script as the
destination to connect to. Notice how the URL of the script is specified and then the
city and state (from the form) are appended to this using simple GET parameters.

Next, a connection is opened; here's the first place you see XMLHttpRequest in
action again. The method of connection is indicated (GET), as well as the URL to
connect to. The final parameter, when set to true, requests an asynchronous
connection (thus making this Ajax). If you used false, the code would wait around
on the server when the request was made and not continue until a response was
received. By setting this to true, your users can still use the form (and even call
other JavaScript methods) while the server is processing this request in the
background.

The onreadystatechange property of xmlHttp (remember, that's your instance
of the XMLHttpRequest object) allows you to tell the server what to do when it
does finish running (which could be in five minutes or five hours). Since the code
isn't going to wait around for the server, you'll need to let the server know what to do
so you can respond to it. In this case, a specific method -- called updatePage() --
will be triggered when the server is finished processing your request.

Finally, send() is called with a value of null. Since you've added the data to send
to the server (the city and state) in the request URL, you don't need to send anything
in the request. So this fires off your request and the server can do what you asked it
to do.

If you don't get anything else out of this, notice how straightforward and simple this
is! Other than getting the asynchronous nature of Ajax into your head, this is
relatively simple stuff. You'll appreciate how it frees you up to concentrate on cool
applications and interfaces rather than complicated HTTP request/response code.

The code in Listing 5 is about as easy as it gets. The data is simple text and can be
included as part of the request URL. GET sends the request rather than the more
complicated POST. There's no XML or content headers to add, no data to send in
the body of the request -- this is Ajax Utopia, in other words.

ibm.com/developerWorks developerWorks®

Introduction to Ajax
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 14

http://www.ibm.com/legal/copytrade.shtml

Have no fear; things will become more complicated as this series progresses. You'll
learn how to send POST requests, how to set request headers and content types,
how to encode XML in your message, how to add security to your request -- the list
is pretty long! Don't worry about the hard stuff for now; get your head around the
basics, and you'll soon build up a whole arsenal of Ajax tools.

Handling the response

Now you need to actually deal with the server's response. You really only need to
know two things at this point:

• Don't do anything until the xmlHttp.readyState property is equal to 4.

• The server will stuff it's response into the xmlHttp.responseText
property.

The first of these -- ready states -- is going to take up the bulk of the next article;
you'll learn more about the stages of an HTTP request than you ever wanted to
know. For now, if you simply check for a certain value (4), things will work (and you'll
have something to look forward to in the next article). The second item -- using the
xmlHttp.responseText property to get the server's response -- is easy. Listing 6
shows an example of a method that the server can call based on the values sent in
Listing 5.

Listing 6. Handle the server's response

function updatePage() {
if (xmlHttp.readyState == 4) {

var response = xmlHttp.responseText;
document.getElementById("zipCode").value = response;

}
}

Again, this code isn't so difficult or complicated. It waits for the server to call it with
the right ready state and then uses the value that the server returns (in this case, the
ZIP code for the user-entered city and state) to set the value of another form field.
The result is that the zipCode field suddenly appears with the ZIP code -- but the
user never had to click a button!. That's the desktop application feel I talked about
earlier. Responsiveness, a dynamic feel, and more, all with a little Ajax code.

Observant readers might notice that the zipCode field is a normal text field. Once
the server returns the ZIP code and the updatePage() method sets the value of
that field with the city/state ZIP code, users can override the value. That's intentional
for two reasons: To keep things in the example simple and to show you that
sometimes you want users to be able to override what a server says. Keep both in
mind; they're important in good user-interface design.

developerWorks® ibm.com/developerWorks

Introduction to Ajax
Page 10 of 14 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Hooking in the Web form

So what's left? Actually, not much. You have a JavaScript method that grabs
information that the user put into a form, sends it to the server, provides another
JavaScript method to listen for and handle a response, and even sets the value of a
field when that response comes back. All that's really left is to call that first
JavaScript method and start the whole process. You could obviously add a button to
your HTML form, but that's pretty 2001, don't you think? Take advantage of
JavaScript technology like in Listing 7.

Listing 7. Kick off an Ajax process

<form>
<p>City: <input type="text" name="city" id="city" size="25"

onChange="callServer();" /></p>
<p>State: <input type="text" name="state" id="state" size="25"

onChange="callServer();" /></p>
<p>Zip Code: <input type="text" name="zipCode" id="zipCode" size="5" /></p>
</form>

If this feels like yet one more piece of fairly routine code, then you're right -- it is!
When a user puts in a new value for either the city or state field, the callServer()
method fires off and the Ajax fun begins. Starting to feel like you've got a handle on
things? Good; that's the idea!

In conclusion

At this point, you're probably not ready to go out and write your first Ajax application
-- at least, not unless you're willing to do some real digging in the Resources section.
However, you can start to get the basic idea of how these applications work and a
basic understanding of the XMLHttpRequest object. In the articles to come, you'll
learn to master this object, how to handle JavaScript-to-server communication, how
to work with HTML forms, and even get a handle on the DOM.

For now, though, spend some time thinking about just how powerful Ajax
applications can be. Imagine a Web form that responds to you not just when you
click a button, but when you type into a field, when you select an option from a
combo box...even when you drag your mouse around the screen. Think about
exactly what asynchronous means; think about JavaScript code running and not
waiting on the server to respond to its requests. What sorts of problems can you run
into? What areas do you watch out for? And how will the design of your forms
change to account for this new approach in programming?

If you spend some real time with these issues, you'll be better served than just
having some code you can cut-and-paste and throw into an application that you

ibm.com/developerWorks developerWorks®

Introduction to Ajax
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 14

http://www.ibm.com/legal/copytrade.shtml

really don't understand. In the next article, you'll put these ideas into practice and I'll
give you the details on the code you need to really make applications like this work.
So, until then, enjoy the possibilities of Ajax.

developerWorks® ibm.com/developerWorks

Introduction to Ajax
Page 12 of 14 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• "Use Ajax with WebSphere Portal" (developerWorks, June 2006) to improve
portal performance, create a cleaner portal application architecture, and -- most
important -- give your users a much more responsive portal.

• Adaptive Path is one of the companies on the leading edge of user interface
design; you can learn a ton about Ajax by perusing their pages.

• If you're curious about where the term Ajax came from, check out Jesse James
Garrett and his excellent articles (like this one) on Ajax.

• You can get a head start on the next article in this series, focusing on the
XMLHttpRequest object, by checking out this excellent article on the
XMLHttpRequest object.

• If you use Internet Explorer, you can get the scoop at the Microsoft Developer
Network's XML Developer Center.

• Ajax for Java developers: Build dynamic Java applications (developerWorks,
September 2005) introduces a groundbreaking approach to creating dynamic
Web application experiences that solve the page-reload dilemma.

• Ajax for Java developers: Java object serialization for Ajax (developerWorks,
October 2005) shows you five ways to serialize data in Ajax applications.

• Using Ajax with PHP and Sajax (developerWorks, October 2005) is a tutorial for
those interested in developing rich Web applications that dynamically update
content using Ajax and PHP.

• Call SOAP Web services with AJAX, Part 1: Build the Web services client
(developerWorks, October 2005) shows how to implement a Web
browser-based SOAP Web services client using the Ajax design pattern.

• XML Matters: Beyond the DOM (developerWorks, May 2005) details the
Document Object Model as a method to build dynamic Web applications.

• Build apps with Asynchronous JavaScript with XML, or AJAX (developerWorks,
November 2005) demonstrates how to construct real-time-validation-enabled
Web applications with AJAX.

• Ajax for Java developers: Ajax with Direct Web Remoting (developerWorks,
November 2005) demonstrates how to automate the heavy-lifting of AJAX.

• The OSA Foundation has a wiki that surveys AJAX/JavaScript libraries.

• XUL Planet's object reference section details XMLHttpRequest (not to mention
all kinds of other XML objects, as well as DOM, CSS, HTML, Web Service, and
Windows and Navigation objects.

ibm.com/developerWorks developerWorks®

Introduction to Ajax
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 14

http://www.ibm.com/developerworks/websphere/library/techarticles/0606_bishop/0606_bishop.html
http://www.adaptivepath.com
http://adaptivepath.com/team/jjg.php
http://adaptivepath.com/team/jjg.php
http://adaptivepath.com/publications/essays/archives/000385.php
http://www.jibbering.com/2002/4/httprequest.html
http://www.jibbering.com/2002/4/httprequest.html
http://msdn.microsoft.com/xml/
http://msdn.microsoft.com/xml/
http://www-128.ibm.com/developerworks/java/library/j-ajax1/
http://www-128.ibm.com/developerworks/java/library/j-ajax2/
http://www-128.ibm.com/developerworks/edu/os-dw-os-phpajax-i.html
http://www-128.ibm.com/developerworks/webservices/library/ws-wsajax/
http://www-128.ibm.com/developerworks/xml/library/x-matters41.html
http://www.ibm.com/developerworks/edu/wa-dw-wa-ajax-i.html
http://www-128.ibm.com/developerworks/web/library/j-ajax3/
http://wiki.osafoundation.org/bin/view/Projects/AjaxLibraries
http://www.xulplanet.com/references/objref/XMLHttpRequest.html
http://www.ibm.com/legal/copytrade.shtml

• See one of the outstanding Ajax applications online at Flickr.com.

• GMail, from Google, is another great example of Ajax revolutionizing Web
applications.

• Head Rush Ajax (O'Reilly Media, Inc., February 2006) takes the ideas outlined
in this article and series and brings them (and a lot more) to you in the
innovative and award-winning Head First format.

• JavaScript: The Definitive Guide , 4th Edition (O'Reilly Media, Inc., November
2001) is a great resource for the JavaScript language and working with dynamic
Web pages.

• The developerWorks Web Architecture zone specializes in articles covering
various Web-based solutions.

Discuss

• Participate in the discussion forum for this content.

• Ajax.NET Professional is a great blog for all things Ajax.

• Get involved in the developerWorks community by participating in
developerWorks blogs.

About the author

Brett McLaughlin
Brett McLaughlin has worked in computers since the Logo days.(Remember the little
triangle?) In recent years, he's become one of the most well-known authors and
programmers in the Java and XML communities. He's worked for Nextel
Communications, implementing complex enterprise systems; at Lutris Technologies,
actually writing application servers; and most recently at O'Reilly Media, Inc., where
he continues to write and edit books that matter. Brett's upcoming book, Head Rush
Ajax , brings the award-winning and innovative Head First approach to Ajax, along
with bestselling co-authors, Eric and Beth Freeman. His last book, Java 1.5 Tiger: A
Developer's Notebook , was the first book available on the newest version of Java
technology and his classic Java and XML remains one of the definitive works on
using XML technologies in the Java language.

developerWorks® ibm.com/developerWorks

Introduction to Ajax
Page 14 of 14 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.flickr.com
http://gmail.google.com
http://www.oreilly.com/catalog/headra/index.html
http://www.oreilly.com/catalog/jscript4/index.html
http://www.ibm.com/developerworks/web/
http://www.ibm.com/developerworks/community/
http://weblogs.asp.net/mschwarz/
http://www.ibm.com/developerworks/blogs/
http://www.amazon.com/gp/product/0596102259/103-1888163-4853425?v=glance&n=283155&n=507846&s=books&v=glance
http://www.amazon.com/gp/product/0596102259/103-1888163-4853425?v=glance&n=283155&n=507846&s=books&v=glance
http://www.headfirstlabs.com
http://www.amazon.com/exec/obidos/tg/detail/-/0596007388/qid=1096295392/sr=1-1/ref=sr_1_1/104-4479879-6183919?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/0596007388/qid=1096295392/sr=1-1/ref=sr_1_1/104-4479879-6183919?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/0596000162/104-4010009-7613561?v=glance
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Old technology, new tricks
	Getting a Request object
	Request/Response in an Ajax world
	Hooking in the Web form
	In conclusion
	Resources
	About the author

