
Mastering Ajax, Part 5: Manipulate the DOM
Use JavaScript to update your Web pages on the fly

Skill Level: Introductory

Brett McLaughlin
Author and Editor
O'Reilly Media Inc.

11 Apr 2006

Last month Brett introduced the Document Object Model, whose elements work
behind the scenes to define your Web pages. This month he dives even deeper into
the DOM. Learn how to create, remove, and change the parts of a DOM tree, and
take the next step toward updating your Web pages on the fly!

If you followed my discussion in this series last month, then you got a first-hand look
at what goes on when a Web browser displays one of your Web pages. As I
explained then, when the HTML and CSS you've defined for your page is sent to a
Web browser, it's translated from text to an object model. This is true whether the
code is simple or complex, housed all in one file or in separate files. The browser
then works directly with the object model, rather than the text files you supplied. The
model the browser uses is called the Document Object Model. It connects objects
representing the elements, attributes, and text in your documents. All the styles,
values, and even most of the spaces in your HTML and CSS are incorporated into
the object model. The specific model for a given Web page is called the page's DOM
tree.

Understanding what a DOM tree is, and even knowing how it represents your HTML
and CSS, is just the first step in taking control of your Web pages. Next, you need to
learn how to work with the DOM tree for a particular Web page. For instance, if you
add an element to the DOM tree, that element immediately appears in a user's Web
browser -- without the page reloading. Remove some text from the DOM tree, and
that text vanishes from the user's screen. You can change and interact with the user
interface through the DOM, which gives you tremendous programming power and
flexibility. Once you learn how to work with a DOM tree you've taken a huge leap

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 1 of 23

http://www.ibm.com/developerworks/library/wa-ajaxintro4/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

toward mastering rich, interactive, dynamic Web sites.

Note that the following discussion builds on last month's "Exploiting the DOM for
Web response;" if you haven't read that article, you might want to do so before you
proceed here.

Acronym pronunciation matters
In many ways, the Document Object Model could just as easily have
been called the Document Node Model. Of course, most people
don't know what the term node means, and "DNM" isn't nearly as
easy to pronounce as "DOM," so it's easy to understand why the
W3C went with DOM.

Cross browser, cross language

The Document Object Model is a W3C standard (see Resources for links to the
W3C). Because of that, all modern Web browsers support the DOM, at least to some
degree. While there is some variance among browsers, if you use core DOM
functionality -- and pay attention to a few special cases and exceptions -- your DOM
code will work on any browser in the same way. The code you write to modify a Web
page in Opera will work on Apple's Safari®, Firefox®, Microsoft® Internet Explorer®,
and Mozilla®.

The DOM is also a cross-language specification; in other words, you can use it from
most of the popular programming languages. The W3C defines several language
bindings for the DOM. A language binding is simply an API defined to let you use the
DOM for a specific language. For example, you can find well-defined DOM language
bindings for C, Java, and JavaScript. So you can use the DOM from any of these
languages. Language bindings are also available for several other languages,
although many of these are not defined by the W3C, but instead by third parties.

In this series I'll focus on the JavaScript bindings into the DOM. That makes sense
because most asynchronous application development is based on writing JavaScript
code to run in a Web browser. With JavaScript and the DOM, you can modify the
user interface on the fly, respond to user events and input, and more -- all using
fairly standardized JavaScript.

All that said, I do encourage you to check out the DOM language bindings in other
languages. For instance, you can use the Java language bindings to work not only
with HTML, but also XML, as I'll discuss in a later article. So the lessons you'll learn
here apply to far more than HTML, in many more environments than just client-side
JavaScript.

The conceptual node

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 2 of 23

http://www.ibm.com/developerworks/xml/library/wa-ajaxintro4/
http://www.ibm.com/developerworks/xml/library/wa-ajaxintro4/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

A node is the most basic object type in the DOM. In fact, as you'll see in this article,
almost every other object defined by the DOM extends the node object. But, before
you get too far into semantics, you need to understand the concept that is
represented by a node; then, to learn the actual properties and methods of a node is
a piece of cake.

In a DOM tree, almost everything you'll come across is a node. Every element is at
its most basic level a node in the DOM tree. Every attribute is a node. Every piece of
text is a node. Even comments, special characters (like ©, which represents a
copyright symbol), and a DOCTYPE declaration (if you have one in your HTML or
XHTML) all are nodes. So before I get into the specifics of each of these individual
types, you really need to grasp what a node is.

A node is...

In simplest terms, a node is just one single thing in a DOM tree. The vagueness of
"thing" is intentional, because that's about as specific as it gets. For example, it's
probably not obvious that an element in your HTML, like img, and a piece of text in
HTML, like "Scroll down for more details" have much in common. But that's because
you're probably thinking about the function of those individual types, and focusing on
how different they are.

Consider, instead, that each element and piece of text in a DOM tree has a parent;
that parent is either the child of another element (like when an img is nested inside a
p element), or is the top-most element in the DOM tree (which is a one-time special
case for each document, and is where you use the html element). Also consider
that both elements and text have a type. The type for an element is obviously an
element; the type for text is text. Each node also has some fairly well-defined
structure to it: does it have a node (or nodes) below it, such as child elements? Does
it have sibling nodes (nodes "next to" the element or text)? What document does
each node belong to?

Obviously, much of this sounds pretty abstract. In fact, it might even seem silly to
say that the type of an element is ... well ... an element. However, you need to think
a bit abstractly to realize the value of having the node as a common object type.

The common node type

The single task you'll perform more than any other in your DOM code is navigating
within the DOM tree for a page. For instance, you might locate a form by its "id"
attribute, and then begin to work with the elements and text nested within that form.
There will be textual instructions, labels for input fields, actual input elements, and
possibly other HTML elements like img elements and links (a elements). If elements
and text are completely different types, then you have to write completely different
pieces of code to move from one type to another.

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 3 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Things are different if you use a common node type. In that case you can simply
move from node to node, and worry about the type of the node only when you want
to do something specific with an element or text. When you just move around in the
DOM tree, you'll use the same operations to move to an element's parent -- or its
children -- as you would with any other type of node. You only have to work
specifically with a node type, like an element or text, when you require something
specific from a certain type of node, like an element's attributes. Thinking about each
object in the DOM tree simply as a node allows you to operate much more simply.
With that in mind, I'll look next at exactly what the DOM Node construct has to offer,
starting with properties and methods.

Properties of a node

You'll want to use several properties and methods when you work with DOM nodes,
so let's consider them first. The key properties of a DOM node are:

• nodeName reports the name of the node (see more below).

• nodeValue:gives the "value" of the node (see more below).

• parentNode returns the node's parent. Remember, every element,
attribute, and text has a parent node.

• childNodes is a list of a node's children. When working with HTML, this
list is only useful when you're dealing with an element; text nodes and
attribute nodes don't have any children.

• firstChild is just a shortcut to the first node in the childNodes list.

• lastChild is another shortcut, this time to the last node in the
childNodes list.

• previousSibling returns the node before the current node. In other
words, it returns the node that precedes the current one, in this node's
parent's childNodes list (if that was confusing, re-read that last
sentence).

• nextSibling is similar to the previousSibling property; it turns the
next node in the parent's childNodes list.

• attributes is only useful on an element node; it returns a list of an
element's attributes.

The few other properties really apply to more generic XML documents, and aren't of
much use when you work with HTML-based Web pages.

Unusual properties

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 4 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Most of the above-defined properties are pretty self-explanatory, with the exception
of the nodeName and nodeValue properties. Rather than simply explain these
properties, consider a couple of odd questions: What would the nodeName be for a
text node? And, similarly, What would the nodeValue be for an element?

If these questions stumped you, then you already understand the potential for
confusion inherent in these properties. nodeName and nodeValue really don't apply
to all node types (this is also true of a few of the other properties on a node). This
illustrates a key concept: any of these properties can return a null value (which
sometimes shows up in JavaScript as "undefined"). So, for example, the nodeName
property for a text node is null (or "undefined" in some browsers, as text nodes don't
have a name. nodeValue returns the text of the node, as you would probably
expect.

Similarly, elements have a nodeName -- the name of the element -- but the value of
an element's nodeValue property is always null. Attributes have values for both the
nodeName and nodeValue properties. I'll talk about these individual types a bit
more in the next section, but since these properties are part of every node, they're
worth mentioning here.

Now take a look at Listing 1, which shows several of the node properties in action.

Listing 1. Using node properties in the DOM

// These first two lines get the DOM tree for the current Web page,
// and then the <html> element for that DOM tree
var myDocument = document;
var htmlElement = myDocument.documentElement;

// What's the name of the <html> element? "html"
alert("The root element of the page is " + htmlElement.nodeName);

// Look for the <head> element
var headElement = htmlElement.getElementsByTagName("head")[0];
if (headElement != null) {
alert("We found the head element, named " + headElement.nodeName);
// Print out the title of the page
var titleElement = headElement.getElementsByTagName("title")[0];
if (titleElement != null) {

// The text will be the first child node of the <title> element
var titleText = titleElement.firstChild;
// We can get the text of the text node with nodeValue
alert("The page title is '" + titleText.nodeValue + "'");

}

// After <head> is <body>
var bodyElement = headElement.nextSibling;
while (bodyElement.nodeName.toLowerCase() != "body") {

bodyElement = bodyElement.nextSibling;
}

// We found the <body> element...

// We'll do more when we know some methods on the nodes.
}

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 5 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Methods of a node

Next up are the methods available to all nodes (as in the case of node properties,
I've omitted a few methods that don't really apply to most HTML DOM operations):

• insertBefore(newChild, referenceNode) inserts the newChild
node before the referenceNode. Keep in mind you would call this on
the intended parent of newChild.

• replaceChild(newChild, oldChild) replaces the oldChild node
with the newChild node.

• removeChild(oldChild) removes the oldChild node from the node
the function is run on.

• appendChild(newChild) adds the newChild node to the node this
function is run on. newChild is added at the end of the target node's
children.

• hasChildNodes() returns true if the node it's called on has children,
and false if it doesn't.

• hasAttributes() returns true if the node it's called on has attributes,
and false if there are no attributes.

You'll notice that, for the most part, all of these methods deal with the children of a
node. That's their primary purpose. If you're just trying to grab the value of a text
node or the name of an element, you probably won't find yourself calling methods
much, since you can simply use the properties of a node. Listing 2 builds on the
code from Listing 1 using several of the above methods.

Listing 2. Using node methods in the DOM

// These first two lines get the DOM tree for the current Web page,
// and then the <html> element for that DOM tree
var myDocument = document;
var htmlElement = myDocument.documentElement;

// What's the name of the <html> element? "html"
alert("The root element of the page is " + htmlElement.nodeName);

// Look for the <head> element
var headElement = htmlElement.getElementsByTagName("head")[0];
if (headElement != null) {
alert("We found the head element, named " + headElement.nodeName);
// Print out the title of the page
var titleElement = headElement.getElementsByTagName("title")[0];
if (titleElement != null) {

// The text will be the first child node of the <title> element
var titleText = titleElement.firstChild;

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 6 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

// We can get the text of the text node with nodeValue
alert("The page title is '" + titleText.nodeValue + "'");

}

// After <head> is <body>
var bodyElement = headElement.nextSibling;
while (bodyElement.nodeName.toLowerCase() != "body") {

bodyElement = bodyElement.nextSibling;
}

// We found the <body> element...

// Remove all the top-level elements in the body
if (bodyElement.hasChildNodes()) {

for (i=0; i<bodyElement.childNodes.length; i++) {
var currentNode = bodyElement.childNodes[i];
if (currentNode.nodeName.toLowerCase() == "img") {

bodyElement.removeChild(currentNode);
}

}
}

}

Test me!

So far, you've seen just two examples, in Listings 1 and 2, but they should give you
all sorts of ideas for what's possible when you start manipulating the DOM tree. If
you want to try out the code so far, just drop Listing 3 into an HTML file, save it, and
load it into your Web browser.

Listing 3. An HTML file with some JavaScript code using the DOM

<html>
<head>
<title>JavaScript and the DOM</title>
<script language="JavaScript">
function test() {
// These first two lines get the DOM tree for the current Web page,
// and then the <html> element for that DOM tree
var myDocument = document;
var htmlElement = myDocument.documentElement;

// What's the name of the <html> element? "html"
alert("The root element of the page is " + htmlElement.nodeName);

// Look for the <head> element
var headElement = htmlElement.getElementsByTagName("head")[0];
if (headElement != null) {
alert("We found the head element, named " + headElement.nodeName);
// Print out the title of the page
var titleElement = headElement.getElementsByTagName("title")[0];
if (titleElement != null) {

// The text will be the first child node of the <title> element
var titleText = titleElement.firstChild;
// We can get the text of the text node with nodeValue
alert("The page title is '" + titleText.nodeValue + "'");

}

// After <head> is <body>
var bodyElement = headElement.nextSibling;
while (bodyElement.nodeName.toLowerCase() != "body") {

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 7 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

bodyElement = bodyElement.nextSibling;
}

// We found the <body> element...

// Remove all the top-level elements in the body
if (bodyElement.hasChildNodes()) {

for (i=0; i<bodyElement.childNodes.length; i++) {
var currentNode = bodyElement.childNodes[i];
if (currentNode.nodeName.toLowerCase() == "img") {

bodyElement.removeChild(currentNode);
}

}
}

}
}
</script>

</head>
<body>
<p>JavaScript and DOM are a perfect match.

You can read more in <i>Head Rush Ajax</i>.</p>

<input type="button" value="Test me!" onClick="test();" />

</body>
</html>

Once you've loaded this page into your browser, you should see something like the
page in Figure 1.

Figure 1. A simple HTML page with a button to run the JavaScript

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 8 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Click Test me! and you'll start to see the alert boxes, as shown in Figure 2.

Figure 2. Alert boxes showing the name of an element, using nodeValue

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 9 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

When the code is finished running the images are removed from the page in
real-time, as shown in Figure 3.

Figure 3. Images removed in real-time using JavaScript

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 10 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

API design notes

Take a look again at the properties and methods available on each node. They
illustrate a key point of the DOM for those comfortable with object-oriented (OO)
programming: the DOM isn't a very object-oriented API. First, in many cases you'll
use an object's properties directly, rather than calling a method on a node object.
There's no getNodeName() method, for example; you just use the nodeName
property directly. So node objects (as well as the other DOM objects) expose a lot of
their data through properties, and not just functions.

Second, the naming of objects and methods in the DOM might seem a bit strange if
you're used to working with overloaded objects and object-oriented APIs, especially
in languages like Java or C++. The DOM has to work in C, Java, and JavaScript (to
name a few languages), so some concessions were made in the design of the API.
For instance, you'll see two different methods on the NamedNodeMap methods that
look like this:

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 11 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

• getNamedItem(String name)

• getNamedItemNS(Node node)

For OO programmers, this looks pretty odd. Two methods, with the same purpose,
but one takes a String and one takes a Node. In most OO APIs, you would use the
same method name for both versions. The virtual machine running your code would
figure out which method to run based on the type of object you passed into the
method.

The problem is that JavaScript doesn't support this technique, called method
overloading. In other words, JavaScript requires that you have a single method or
function for a given name. So if you have a method called getNamedItem() that
takes a string, then you can't have any other method or function named
getNamedItem(), even if the second version takes a different type of argument (or
even takes an entirely different set of arguments). JavaScript will report an error if
you do, and your code won't behave as you think it should.

In essence, the DOM consciously avoids method overloading and other OO
programming techniques. It does this to ensure that the API works across multiple
languages, including those that don't support OO programming techniques. The end
result is simply that you'll have to learn a few extra method names. The upside is
that you can learn the DOM in any language -- for example, Java -- and know that
the same method names and coding constructs will work in other languages that
have a DOM implementation -- like JavaScript.

Let the programmer beware

If you're into API design at all -- or perhaps just are paying close attention -- you
might wonder: "Why are properties on the node type that aren't common to all
nodes?" That's a good question, and the answer is more about politics and
decision-making than any technical reason. In short, the answer is, "Who knows! But
it's a bit annoying, isn't it?"

The property nodeName is meant to allow every type to have a name; but in many
cases, that name is either undefined or it's some strange, internal name that has no
value to programmers (for example, in Java, the nodeName of a text node is
reported as "#text" in a lot of cases). Essentially, you have to assume that error
handling is left up to you. It's not safe to simply access myNode.nodeName and then
use that value; in many cases, the value will be null. So, as is often the case when it
comes to programming, let the programmer beware.

Common node types

Now that you've seen some of the features and properties of a DOM node (and

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 12 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

some of its oddities as well), you're ready to learn about some of the specific types
of nodes that you'll work with. In most Web applications, you'll only work with four
types of nodes:

• The document node represents an entire HTML document.

• Element nodes represent HTML elements like a or img.

• Attribute nodes represent the attributes on HTML elements, like href
(on the a element) or src (on the img element).

• Text nodes represent text in the HTML document, like "Click on the link
below for a complete set list." This is the text that appears inside elements
like p, a, or h2.

When you deal with HTML, you'll work with these node types about 95% of the time.
So I'll spend the remainder of this month's article discussing them in-depth. (When I
discuss XML in a future article I'll introduce you to some other node types.)

The document node

The first node type is one you'll use in almost every piece of DOM-based code you
write: the document node. The document node is actually not an element in an
HTML (or XML) page, but the page itself. So in an HTML Web page, the document
node is the entire DOM tree. In JavaScript, you can access the document node by
using the document keyword:

// These first two lines get the DOM tree for the current Web page,
// and then the <html> element for that DOM tree
var myDocument = document;
var htmlElement = myDocument.documentElement;

The document keyword in JavaScript returns the DOM tree for the current Web
page. From there, you can work with all the nodes in the tree.

You can also use the document object to create new nodes, using methods like
these:

• createElement(elementName) creates an element with the supplied
name.

• createTextNode(text) creates a new text node with the supplied
text.

• createAttribute(attributeName) creates a new attribute with the

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 13 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

supplied name.

The key thing to note is that these methods create nodes, but do not attach them or
insert them into any particular document. For this, you have to use one of the
methods you've already seen, like insertBefore() or appendChild(). So you
might use code like the following to create and then add a new element to a
document:

var pElement = myDocument.createElement("p");
var text = myDocument.createTextNode("Here's some text in a p element.");
pElement.appendChild(text);
bodyElement.appendChild(pElement);

Once you've used the document element to get access to a Web page's DOM tree,
you're ready to start working with elements, attributes, and text directly.

Element nodes

Although you'll work with element nodes a lot, many of the operations you need to
perform on elements involve the methods and properties common to all nodes,
rather than methods and properties specific to just elements. Only two sets of
methods are specific to elements:

1. Methods that relate to working with attributes:

• getAttribute(name) returns the value of the attribute named
name.

• removeAttribute(name) removes the attribute named name.

• setAttribute(name, value) creates an attribute named name,
and sets its value to value.

• getAttributeNode(name) returns the attribute node named name
(attribute notes are covered below).

• removeAttributeNode(node) removes the attribute node that
matches the supplied node.

2. Methods that relate to finding nested elements:

• getElementsByTagName(elementName) returns a list of element
nodes with the supplied name.

These are all pretty self-explanatory, but check out some examples anyway.

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 14 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Working with attributes

Working with attributes is fairly simple; for example, you might create a new img
element with the document object, and element, and some of the methods from
above:

var imgElement = document.createElement("img");
imgElement.setAttribute("src", "http://www.headfirstlabs.com/Images/hraj_cover-150.jpg");
imgElement.setAttribute("width", "130");
imgElement.setAttribute("height", "150");
bodyElement.appendChild(imgElement);

This should look pretty routine by now. In fact, you should start to see that once you
understand the concept of a node and know the methods available, working with the
DOM in your Web pages and JavaScript code is simple. In the code above, the
JavaScript creates a new img element, sets up some attributes, and then adds it to
the body of the HTML page.

Finding nested elements

It's also easy to find nested elements. For example, here's the code I used to find
and remove all the img elements in the HTML page from Listing 3:

// Remove all the top-level elements in the body
if (bodyElement.hasChildNodes()) {

for (i=0; i<bodyElement.childNodes.length; i++) {
var currentNode = bodyElement.childNodes[i];
if (currentNode.nodeName.toLowerCase() == "img") {

bodyElement.removeChild(currentNode);
}

}
}

You could achieve a similar effect using getElementsByTagName():

// Remove all the top-level elements in the body
var imgElements = bodyElement.getElementsByTagName("img");

for (i=0; i<imgElements.length; i++) {
var imgElement = imgElements.item[i];
bodyElement.removeChild(imgElement);

}

Attribute nodes

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 15 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The DOM represents attributes as nodes, and you can always get an element's
attributes using the attributes property of an element, as shown here:

// Remove all the top-level elements in the body
var imgElements = bodyElement.getElementsByTagName("img");

for (i=0; i<imgElements.length; i++) {
var imgElement = imgElements.item[i];

// Print out some information about this element
var msg = "Found an img element!";
var atts = imgElement.attributes;
for (j=0; j<atts.length; j++) {
var att = atts.item(j);
msg = msg + "\n " + att.nodeName + ": '" + att.nodeValue + "'";

}
alert(msg);

bodyElement.removeChild(imgElement);
}

The strange case of attributes
Attributes are a bit of a special case when it comes to the DOM. On
the one hand, attributes really aren't children of elements like other
elements or text are; in other words, they don't appear "underneath"
an element. At the same time, they obviously have a relationship to
an element; an element "owns" its attributes. The DOM uses nodes
to represent attributes, and makes them available on an element
through a special list. So attributes are part of the DOM tree, but
they often don't appear on the tree. Suffice it to say that the
relationship of attributes to the rest of a DOM tree's structure is a
little fuzzy.

It's worth noting that the attributes property is actually on the node type, and not
specifically on the element type. A little odd, and it won't affect your coding, but it is
worth knowing.

While it's certainly possible to work with attribute nodes, it's often easier to use the
methods available on the element class to work with attributes. The methods are as
follows:

• getAttribute(name) returns the value of the attribute named name.

• removeAttribute(name) removes the attribute named name.

• setAttribute(name, value) creates an attribute named name and
sets its value to value.

These three methods don't require you to work directly with attribute nodes. Instead,
you can just set and remove attributes and their values with simple string properties.

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 16 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Text nodes

The last type of node you need to worry about -- at least in working with HTML DOM
trees -- is the text node. Almost all of the properties you'll commonly use to work with
text nodes are actually available on the node object. In fact, you'll generally use the
nodeValue property to get the text from a text node, as shown here:

var pElements = bodyElement.getElementsByTagName("p");
for (i=0; i<pElements.length; i++) {
var pElement = pElements.item(i);
var text = pElement.firstChild.nodeValue;
alert(text);

}

A few other methods are specific to text nodes. These deal with adding to or splitting
the data in a node:

• appendData(text) adds the text you supply to the end of the text
node's existing text.

• insertData(position, text) allows you to insert data in the middle
of the text node. It inserts the text you supply at the position indicated.

• replaceData(position, length, text) removes the characters
starting from the position indicated, of the length indicated, and puts the
text you supply to the method in the place of the removed text.

What type of node?

Most of what you've seen so far assumes you already know what type of node
you're working with, which isn't always the case. For example, if you're navigating
through a DOM tree, and working with the common node types, you might not know
whether you've moved to an element or text. You might get all the children of a p
element, and be unsure whether you're working with text, or a b element, or perhaps
an img element. In these cases, you'll need to figure out what type of node you have
before you can do much with it.

Fortunately, it's pretty simple to figure this out. The DOM node type defines several
constants, like this:

1. Node.ELEMENT_NODE is the constant for the element node type.

2. Node.ATTRIBUTE_NODE is the constant for the attribute node type.

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 17 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

3. Node.TEXT_NODE is the constant for the text node type.

4. Node.DOCUMENT_NODE is the constant for the document node type.

There are a number of other node types, but you'll rarely deal with any but these four
when processing HTML. I've also intentionally left out the value for each of these
constants, even though the values are defined in the DOM specification; you should
never deal directly with the value, since that's what the constants are for!

The nodeType property

You can also use the nodeType property -- which is defined on the DOM node type,
so is available to all nodes -- to compare a node to the above constants, as shown
here:

var someNode = document.documentElement.firstChild;
if (someNode.nodeType == Node.ELEMENT_NODE) {
alert("We've found an element node named " + someNode.nodeName);

} else if (someNode.nodeType == Node.TEXT_NODE) {
alert("It's a text node; the text is " + someNode.nodeValue);

} else if (someNode.nodeType == Node.ATTRIBUTE_NODE) {
alert("It's an attribute named " + someNode.nodeName

+ " with a value of '" + someNode.nodeValue + "'");
}

This is a pretty simple example, but that's largely the point: getting the type of a node
is simple. What's trickier is figuring out what to do with the node once you know what
type it is; but with a firm knowledge of what the node, text, attribute, and elements
types offer, you're ready to take on DOM programming yourself.

Well, almost.

A wrench in the works

It sounds like the nodeType property is just the ticket to working with nodes -- it
allows you to figure out what type of node you're working with, and then write the
code to deal with that node. The problem is that the above-defined Node constants
don't work properly on Internet Explorer. So, if you use Node.ELEMENT_NODE,
Node.TEXT_NODE, or any of the other constants in your code, Internet Explorer will
return an error like the one you see in Figure 4.

Figure 4. Internet Explorer reports an error

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 18 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Internet Explorer will report this error anytime you use the Node constants in your
JavaScript. Because most of the world still uses Internet Explorer, you'd do well to
avoid constructs like Node.ELEMENT_NODE or Node.TEXT_NODE in your code.
Even though Internet Explorer 7.0 -- the upcoming version of Internet Explorer -- is
supposed to rectify this problem, it will be a number of years before Internet Explorer
6.x falls out of heavy use. So avoid using Node; it's important that your DOM code
(and your Ajax apps) work on all the major browsers.

In conclusion

Are you ready for the top?
If you really work to understand and eventually master the DOM,
you'll be at the very top of the Web programming skill level. Most
Web programmers know how to use JavaScript to write image
rollovers or grab values from a form, and some even are
comfortable making requests and receiving responses from a server
(as you certainly should be after the first few articles in this series).
But actually changing the structure of a Web page on the fly is not
for the faint of heart or the inexperienced.

You've learned quite a bit in the last few articles in this series. At this point, you
should not sit back and wait for the next article, expecting that I'll go into all sorts of
clever uses for the DOM tree. Explore how you can create fancy effects or slick

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 19 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

interfaces using the DOM is your homework now. Take what you've learned in these
last two articles and start to experiment and play around. See if you can create a
Web site that feels a bit more like a desktop application, where objects move around
on the screen in response to a user's action.

Better yet, throw a border around every object on the screen, so you can see where
the objects in the DOM tree are, and start moving things around. Create nodes and
append them to existing child lists; remove nodes that have lots of nested nodes;
change the CSS style of a node, and see if those changes are inherited by child
nodes. The possibilities are limitless, and every time you try something new, you'll
learn something new. Enjoy playing around with your Web pages.

Then, in the upcoming final part of this DOM-specific trilogy, I will show you how to
incorporate some cool and interesting applications of the DOM into your
programming. I'll stop speaking conceptually and explaining the API, and show you
some code. Until then, come up with some clever ideas on your own, and see what
you can make happen all by yourself.

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 20 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Explore the earlier articles in this developerWorks series introducing Ajax:

• "Introduction to Ajax: Understanding Ajax, a productive approach to
building Web sites, and how it works:" Part 1 demonstrates how Ajax
component technologies work together and unveils the central concepts of
Ajax, including the XMLHttpRequest object (December 2005).

• "Make asynchronous requests with JavaScript and Ajax: Use
XMLHttpRequest for Web requests:" Part 2 shows you how to create
XMLHttpRequest instances in a cross-browser way, construct and send
requests, and respond to the server (January 2006).

• "Advanced requests and responses in Ajax:" Part 3 demonstrates how
standard Web forms perform with Ajax and shows you how to master your
understanding of HTTP status codes, ready states, and the
XMLHttpRequest object (February 2006).

• Exploiting DOM for Web response: Part 4 introduces the DOM and
explains how converting HTML into an object model makes Web pages
responsive and interactive (March 2006).

• Use Ajax with WebSphere Portal to improve portal performance, create a
cleaner portal application architecture, and -- most important -- give your users
a much more responsive portal (developerWorks, June 2006).

• Ajax for Java developers: Build dynamic Java applications by Philip McCarthy:
Look at Ajax from the server side using a Java perspective, with a
groundbreaking approach to creating dynamic Web application experiences
(developerWorks, September 2005).

• Ajax for Java developers: Java object serialization for Ajaxby Philip McCarthy:
Walk through five approaches to Java object serialization and examine how to
send objects over the network and interact with Ajax (developerWorks, October
2005).

• Call SOAP Web services with Ajax, Part 1: Build the Web services client by
James Snell: Dig into this fairly advanced article on integrating Ajax with
existing SOAP-based Web services; it shows you how to implement a Web
browser-based SOAP Web services client using the Ajax design pattern
(developerWorks, October 2005).

• Ajax: A New Approach to Web Applications: Read the article that coined the
Ajax moniker -- it's required reading for all Ajax developers.

• The DOM Home Page at the World Wide Web Consortium: Visit the starting

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 21 of 23

http://www.ibm.com/developerworks/web/library/wa-ajaxintro1.html
http://www.ibm.com/developerworks/web/library/wa-ajaxintro1.html
http://www.ibm.com/developerworks/web/library/wa-ajaxintro2/
http://www.ibm.com/developerworks/web/library/wa-ajaxintro2/
http://www.ibm.com/developerworks/web/library/wa-ajaxintro3/
http://www.ibm.com/developerworks/web/library/wa-ajaxintro4/
http://www.ibm.com/developerworks/websphere/library/techarticles/0606_bishop/0606_bishop.html
http://www.ibm.com/developerworks/library/j-ajax1/
http://www.ibm.com/developerworks/library/j-ajax2/
http://www.ibm.com/developerworks/webservices/library/ws-wsajax/
http://adaptivepath.com/publications/essays/archives/000385.php
http://www.w3.org/DOM/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

place for all things DOM-related.

• The DOM Level 3 Core Specification: Define the core Document Object Model,
from the available types and properties to the usage of the DOM from various
languages.

• The ECMAScript language bindings for DOM: If you're a JavaScript
programmer and want to use the DOM from your code, this appendix to the
Level 3 Document Object Model Core definitions will interest you.

• developerWorks Web architecture zone: Expand your Web-building skills with
articles, tutorials, forums, and more.

• developerWorks technical events and Webcasts: Stay current with these
software briefings for technical developers.

Get products and technologies

• Head Rush Ajax by Brett McLaughlin, O'Reilly Media, Inc., March 2006): Load
the ideas in this article into your brain, Head First style.

• Java and XML, Second Edition by Brett McLaughlin (August 2001, O'Reilly
Media, Inc.): Check out the author's discussion of XHTML and XML
transformations.

• JavaScript: The Definitive Guide by David Flanagan (November 2001, O'Reilly
Media, Inc.): Dig into extensive instruction on working with JavaScript and
dynamic Web pages. The upcoming edition adds two chapters on Ajax.

• Head First HTML with CSS & XHTML by Elizabeth and Eric Freeman
(December 2005, O'Reilly Media, Inc.): Learn more about standardized HTML
and XHTML, and how to apply CSS to HTML.

• IBM trial software: Build your next development project with software available
for download directly from developerWorks.

Discuss

• developerWorks blogs: Get involved in the developerWorks community.

About the author

Brett McLaughlin
Brett McLaughlin has worked in computers since the Logo days.
(Remember the little triangle?) In recent years, he's become one of the
most well-known authors and programmers in the Java and XML
communities. He's worked for Nextel Communications, implementing
complex enterprise systems; at Lutris Technologies, actually writing
application servers; and most recently at O'Reilly Media, Inc., where he

developerWorks® ibm.com/developerWorks

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 22 of 23

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/ecma-script-binding.html
http://www.ibm.com/developerworks/web/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=10AGX08&S_CMP=art
http://www.oreilly.com/catalog/headra/
http://www.oreilly.com/catalog/javaxml2/
http://www.oreilly.com/catalog/jscript4/
http://www.oreilly.com/catalog/hfhtmlcss/index.html
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX08&S_CMP=art
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

continues to write and edit books that matter. Brett's upcoming book,
Head Rush Ajax, brings the award-winning and innovative Head First
approach to Ajax. His last book, Java 1.5 Tiger: A Developer's
Notebook, was the first book available on the newest version of Java
technology. And his classic Java and XML remains one of the definitive
works on using XML technologies in the Java language.

ibm.com/developerWorks developerWorks®

Manipulate the DOM Trademarks
© Copyright IBM Corporation 2006 Page 23 of 23

http://www.oreilly.com/catalog/headra/index.html
http://www.headfirstlabs.com
http://www.oreilly.com/catalog/javaadn/index.html
http://www.oreilly.com/catalog/javaadn/index.html
http://www.oreilly.com/catalog/javaxml2/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Cross browser, cross language
	The conceptual node
	Properties of a node
	Methods of a node
	API design notes
	Common node types
	The document node
	Element nodes
	Attribute nodes
	Text nodes
	What type of node?
	In conclusion
	Resources
	About the author

