
Mastering Ajax, Part 2: Make asynchronous
requests with JavaScript and Ajax
Use XMLHttpRequest for Web requests

Skill Level: Intermediate

Brett McLaughlin (brett@newInstance.com)
Author and Editor
O'Reilly Media Inc.

17 Jan 2006

Most Web applications use a request/response model that gets an entire HTML page
from the server. The result is a back-and-forth that usually involves clicking a button,
waiting for the server, clicking another button, and then waiting some more. With Ajax
and the XMLHttpRequest object, you can use a request/response model that never
leaves users waiting for a server to respond. In this article, Brett McLaughlin shows
you how to create XMLHttpRequest instances in a cross-browser way, construct and
send requests, and respond to the server.

In the last article of this series (see Resources for links), you were introduced to the
Ajax applications and looked at some of the basic concepts that drive Ajax
applications. At the center of this was a lot of technology that you probably already
know about: JavaScript, HTML and XHTML, a bit of dynamic HTML, and even some
DOM (the Document Object Model). In this article, I will zoom in from that
10,000-foot view and focus on specific Ajax details.

In this article, you'll begin with the most fundamental and basic of all Ajax-related
objects and programming approaches: The XMLHttpRequest object. This object is
really the only common thread across all Ajax applications and -- as you might
expect -- you will want to understand it thoroughly to take your programming to the
limits of what's possible. In fact, you'll find out that sometimes, to use
XMLHttpRequest properly, you explicitly won't use XMLHttpRequest. What in the
world is that all about?

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 1 of 23

mailto:brett@newInstance.com
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Web 2.0 at a glance

First, take this last bit of overview before you dive into code -- make sure you're
crystal clear on this idea of the Web 2.0. When you hear the term Web 2.0, you
should first ask, "What's Web 1.0?" Although you'll rarely hear Web 1.0, it is meant
to refer to the traditional Web where you have a very distinct request and response
model. For example, go to Amazon.com and click a button or enter a search term. A
request is made to a server and then a response comes back to your browser. That
request has a lot more than just a list of books and titles, though; it's actually another
complete HTML page. As a result, you probably get some flashing or flickering as
your Web browser's screen is redrawn with this new HTML page. In fact, you can
clearly see the request and response, delineated by each new page you see.

The Web 2.0 dispenses with this very visible back-and-forth (to a large degree). As
an example, visit a site like Google Maps or Flickr (links to both of these Web 2.0,
Ajax-powered sites are in Resources). On Google Maps, for example, you can drag
the map around and zoom in and zoom out with very little redrawing. Of course,
requests and responses do go on here, but all behind the scenes. As a user, the
experience is much more pleasant and feels a lot like a desktop application. This
new feel and paradigm is what you see when someone refers to Web 2.0.

What you should care about then is how to make these new interactions possible.
Obviously, you've still got to make requests and field responses, but it's the
redrawing of the HTML for every request/response interaction that gives the
perception of a slow, clunky Web interface. So clearly you need an approach that
allows you to make requests and receive responses that include only the data you
need, rather than an entire HTML page as well. The only time you want to get a
whole new HTML page is when ... well ... when you want the user to see a new
page.

But most interactions add details or change body text or overlay data on the existing
pages. In all of these cases, Ajax and a Web 2.0 approach make it possible to send
and receive data without updating an entire HTML page. And to any frequent Web
surfer, this ability will make your application feel faster, more responsive, and bring
them back over and over again.

Introducing XMLHttpRequest

To make all this flash and wonder actually happen, you need to become intimately
familiar with a JavaScript object called XMLHttpRequest. This little object -- which
has actually been around in several browsers for quite a while -- is the key to Web
2.0, Ajax, and pretty much everything else you learn about in this column for the next
several months. To give you a really quick overview, these are just a few of the
methods and properties you'll use on this object:

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 2 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

• open(): Sets up a new request to a server.

• send(): Sends a request to a server.

• abort(): Bails out of the current request.

• readyState: Provides the current HTML ready state.

• responseText: The text that the server sends back to respond to a
request.

Don't worry if you don't understand all of this (or any of this for that matter) -- you'll
learn about each method and property in the next several articles. What you should
get out of this, though, is a good idea of what to do with XMLHttpRequest. Notice
that each of these methods and properties relate to sending a request and dealing
with a response. In fact, if you saw every method and property of
XMLHttpRequest, they would all relate to that very simple request/response model.
So clearly, you won't learn about an amazing new GUI object or some sort of
super-secret approach to creating user interaction; you will work with simple
requests and simple responses. It might not sound exciting, but careful use of this
one object can totally change your applications.

The simplicity of new

First, you need to create a new variable and assign it to an instance of the
XMLHttpRequest object. That's pretty simple in JavaScript; you just use the new
keyword with the object name, like you see in Listing 1.

Listing 1. Create a new XMLHttpRequest object

<script language="javascript" type="text/javascript">
var request = new XMLHttpRequest();
</script>

That's not too hard, is it? Remember, JavaScript doesn't require typing on its
variable, so you don't need anything like you see in Listing 2 (which might be how
you'd create this object in Java).

Listing 2. Java pseudo-code for creating XMLHttpRequest

XMLHttpRequest request = new XMLHttpRequest();

So you create a variable in JavaScript with var, give it a name (like "request"), and
then assign it to a new instance of XMLHttpRequest. At that point, you're ready to
use the object in your functions.

Error handling

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 3 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

In real life, things can go wrong and this code doesn't provide any error-handling. A
slightly better approach is to create this object and have it gracefully fail if something
goes wrong. For example, many older browsers (believe it or not, people are still
using old versions of Netscape Navigator) don't support XMLHttpRequest and you
need to let those users know that something has gone wrong. Listing 3 shows how
you might create this object so if something fails, it throws out a JavaScript alert.

Listing 3. Create XMLHttpRequest with some error-handling abilities

<script language="javascript" type="text/javascript">
var request = false;
try {
request = new XMLHttpRequest();

} catch (failed) {
request = false;

}

if (!request)
alert("Error initializing XMLHttpRequest!");

</script>

Make sure you understand each of these steps:

1. Create a new variable called request and assign it a false value. You'll
use false as a condition that means the XMLHttpRequest object hasn't
been created yet.

2. Add in a try/catch block:

1. Try and create the XMLHttpRequest object.

2. If that fails (catch (failed)), ensure that request is still set to
false.

3. Check and see if request is still false (if things are going okay, it won't
be).

4. If there was a problem (and request is false), use a JavaScript alert to
tell users there was a problem.

This is pretty simple; it takes longer to read and write about than it does to actually
understand for most JavaScript and Web developers. Now you've got an error-proof
piece of code that creates an XMLHttpRequest object and even lets you know if
something went wrong.

Dealing with Microsoft

This all looks pretty good ... at least until you try this code in Internet Explorer. If you

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 4 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

do, you're going to get something that looks an awful lot like Figure 1.

Figure 1. Internet Explorer reporting an error

Microsoft playing nice?
Much has been written about Ajax and Microsoft's increasing
interest and presence in that space. In fact, Microsoft's newest
version of Internet Explorer -- version 7.0, set to come out late in
2006 -- is supposed to move to supporting XMLHttpRequest
directly, allowing you to use the new keyword instead of all the
Msxml2.XMLHTTP creation code. Don't get too excited, though;
you'll still need to support old browsers, so that cross-browser code
isn't going away anytime soon.

Clearly, something isn't working; Internet Explorer is hardly an out-of-date browser
and about 70 percent of the world uses Internet Explorer. In other words, you won't
do well in the Web world if you don't support Microsoft and Internet Explorer! So, you
need a different approach to deal with Microsoft's browsers.

It turns out that Microsoft supports Ajax, but calls its version of XMLHttpRequest
something different. In fact, it calls it several different things. If you're using a newer

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 5 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

version of Internet Explorer, you need to use an object called Msxml2.XMLHTTP;
some older versions of Internet Explorer use Microsoft.XMLHTTP. You need to
support these two object types (without losing the support you already have for
non-Microsoft browsers). Check out Listing 4 which adds Microsoft support to the
code you've already seen.

Listing 4. Add support for Microsoft browsers

<script language="javascript" type="text/javascript">
var request = false;
try {
request = new XMLHttpRequest();

} catch (trymicrosoft) {
try {

request = new ActiveXObject("Msxml2.XMLHTTP");
} catch (othermicrosoft) {

try {
request = new ActiveXObject("Microsoft.XMLHTTP");

} catch (failed) {
request = false;

}
}

}

if (!request)
alert("Error initializing XMLHttpRequest!");

</script>

It's easy to get lost in the curly braces, so I'll walk you through this one step at a
time:

1. Create a new variable called request and assign it a false value. Use
false as a condition that means the XMLHttpRequest object isn't created
yet.

2. Add in a try/catch block:

1. Try and create the XMLHttpRequest object.

2. If that fails (catch (trymicrosoft)):

1. Try and create a Microsoft-compatible object using the
newer versions of Microsoft (Msxml2.XMLHTTP).

2. If that fails (catch (othermicrosoft)), try and create a
Microsoft-compatible object using the older versions of
Microsoft (Microsoft.XMLHTTP).

3. If that fails (catch (failed)), ensure that request is still set to
false.

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 6 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

3. Check and see if request is still false (if things are okay, it won't be).

4. If there was a problem (and request is false), use a JavaScript alert to
tell users there was a problem.

Make these changes to your code and try things out in Internet Explorer again; you
should see the form you created (without an error message). In my case, that results
in something like Figure 2.

Figure 2. Internet Explorer working normally

Static versus dynamic

Take a look back at Listings 1, 3, and 4 and notice that all of this code is nested
directly within script tags. When JavaScript is coded like that and not put within a
method or function body, it's called static JavaScript. This means that the code is run
sometime before the page is displayed to the user. (It's not 100 percent clear from
the specification precisely when this code runs and browsers do things differently;
still, you're guaranteed that the code is run before users can interact with your page.)

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 7 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

That's usually how most Ajax programmers create the XMLHttpRequest object.

That said, you certainly can put this code into a method as shown in Listing 5.

Listing 5. Move XMLHttpRequest creation code into a method

<script language="javascript" type="text/javascript">

var request;

function createRequest() {
try {

request = new XMLHttpRequest();
} catch (trymicrosoft) {

try {
request = new ActiveXObject("Msxml2.XMLHTTP");

} catch (othermicrosoft) {
try {

request = new ActiveXObject("Microsoft.XMLHTTP");
} catch (failed) {

request = false;
}

}
}

if (!request)
alert("Error initializing XMLHttpRequest!");

}
</script>

With code setup like this, you'll need to call this method before you do any Ajax
work. So you might have something like Listing 6.

Listing 6. Use an XMLHttpRequest creation method

<script language="javascript" type="text/javascript">

var request;

function createRequest() {
try {

request = new XMLHttpRequest();
} catch (trymicrosoft) {

try {
request = new ActiveXObject("Msxml2.XMLHTTP");

} catch (othermicrosoft) {
try {

request = new ActiveXObject("Microsoft.XMLHTTP");
} catch (failed) {

request = false;
}

}
}

if (!request)
alert("Error initializing XMLHttpRequest!");

}

function getCustomerInfo() {
createRequest();
// Do something with the request variable

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 8 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

}
</script>

The only concern with this code -- and the reason most Ajax programmers don't use
this approach -- is that it delays error notification. Suppose you have a complex form
with 10 or 15 fields, selection boxes, and the like, and you fire off some Ajax code
when the user enters text in field 14 (way down the form). At that point,
getCustomerInfo() runs, tries to create an XMLHttpRequest object, and (for
this example) fails. Then an alert is spit out to the user, telling them (in so many
words) that they can't use this application. But the user has already spent time
entering data in the form! That's pretty annoying and annoyance is not something
that typically entices users back to your site.

In the case where you use static JavaScript, the user is going to get an error as soon
as they hit your page. Is that also annoying? Perhaps; it could make users mad that
your Web application won't run on their browser. However, it's certainly better than
spitting out that same error after they've spent 10 minutes entering information. For
that reason alone, I encourage you to set up your code statically and let users know
early on about possible problems.

Sending requests with XMLHttpRequest

Once you have your request object, you can begin the request/response cycle.
Remember, XMLHttpRequest's only purpose is to allow you to make requests and
receive responses. Everything else -- changing the user interface, swapping out
images, even interpreting the data that the server sends back -- is the job of
JavaScript, CSS, or other code in your pages. With XMLHttpRequest ready for
use, now you can make a request to a server.

Welcome to the sandbox

Ajax has a sandbox security model. As a result, your Ajax code (and specifically, the
XMLHttpRequest object) can only make requests to the same domain on which it's
running. You'll learn lots more about security and Ajax in an upcoming article, but for
now realize that code running on your local machine can only make requests to
server-side scripts on your local machine. If you have Ajax code running on
www.breakneckpizza.com, it must make requests to scripts that run on
www.breakneckpizza.com.

Setting the server URL

The first thing you need to determine is the URL of the server to connect to. This
isn't specific to Ajax -- obviously you should know how to construct a URL by now --
but is still essential to making a connection. In most applications, you'll construct this
URL from some set of static data combined with data from the form your users work

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 9 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

with. For example, Listing 7 shows some JavaScript that grabs the value of the
phone number field and then constructs a URL using that data.

Listing 7. Build a request URL

<script language="javascript" type="text/javascript">
var request = false;
try {

request = new XMLHttpRequest();
} catch (trymicrosoft) {

try {
request = new ActiveXObject("Msxml2.XMLHTTP");

} catch (othermicrosoft) {
try {

request = new ActiveXObject("Microsoft.XMLHTTP");
} catch (failed) {

request = false;
}

}
}

if (!request)
alert("Error initializing XMLHttpRequest!");

function getCustomerInfo() {
var phone = document.getElementById("phone").value;
var url = "/cgi-local/lookupCustomer.php?phone=" + escape(phone);

}
</script>

Nothing here should trip you up. First, the code creates a new variable named
phone and assigns the value of the form field with an ID of "phone." Listing 8 shows
the XHTML for this particular form in which you can see the phone field and its id
attribute.

Listing 8. The Break Neck Pizza form

<body>
<p></p>
<form action="POST">
<p>Enter your phone number:
<input type="text" size="14" name="phone" id="phone"

onChange="getCustomerInfo();" />
</p>
<p>Your order will be delivered to:</p>
<div id="address"></div>
<p>Type your order in here:</p>
<p><textarea name="order" rows="6" cols="50" id="order"></textarea></p>
<p><input type="submit" value="Order Pizza" id="submit" /></p>

</form>
</body>

Also notice that when users enter their phone number or change the number, it fires
off the getCustomerInfo() method shown in Listing 8. That method then grabs
the number and uses it to construct a URL string stored in the url variable.
Remember: Since Ajax code is sandboxed and can only connect to the same
domain, you really shouldn't need a domain name in your URL. In this example, the

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 10 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

script name is /cgi-local/lookupCustomer.php. Finally, the phone number is
appended to this script as a GET parameter: "phone=" + escape(phone).

If you've never seen the escape() method before, it's used to escape any
characters that can't be sent as clear text correctly. For example, any spaces in the
phone number are converted to %20 characters, making it possible to pass the
characters along in the URL.

You can add as many parameters as you need. For example, if you wanted to add
another parameter, just append it onto the URL and separate parameters with the
ampersand (&) character [the first parameter is separated from the script name with
a question mark (?)].

Opening the request

Does open() open?
Internet developers disagree about what exactly the open()
method does. What it does not do is actually open a request. If you
were to monitor the network and data transfer between your
XHTML/Ajax page and the script that it connects to, you wouldn't
see any traffic when the open() method is called. It's unclear why
the name was chosen, but it clearly wasn't a great choice.

With a URL to connect to, you can configure the request. You'll accomplish this
using the open() method on your XMLHttpRequest object. This method takes as
many as five parameters:

• request-type: The type of request to send. Typical values are GET or
POST, but you can also send HEAD requests.

• url: The URL to connect to.

• asynch: True if you want the request to be asynchronous and false if it
should be a synchronous request. This parameter is optional and defaults
to true.

• username: If authentication is required, you can specify the username
here. This is an optional parameter and has no default value.

• password: If authentication is required, you can specify the password
here. This is an optional parameter and has no default value.

Typically, you'll use the first three of these. In fact, even when you want an
asynchronous request, you should specify "true" as the third parameter. That's the
default setting, but it's a nice bit of self-documentation to always indicate if the
request is asynchronous or not.

Put it all together and you usually end up with a line that looks a lot like Listing 9.

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 11 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Listing 9. Open the request

function getCustomerInfo() {
var phone = document.getElementById("phone").value;
var url = "/cgi-local/lookupCustomer.php?phone=" + escape(phone);
request.open("GET", url, true);

}

Once you have the URL figured out, then this is pretty trivial. For most requests,
using GET is sufficient (you'll see the situations in which you might want to use POST
in future articles); that, along with the URL, is all you need to use open().

A teaser on asynchronicity

In a later article in this series, I'll spend significant time on writing and using
asynchronous code, but you should get an idea of why that last parameter in
open() is so important. In a normal request/response model -- think Web 1.0 here
-- the client (your browser or the code running on your local machine) makes a
request to the server. That request is synchronous; in other words, the client waits
for a response from the server. While the client is waiting, you usually get at least
one of several forms of notification that you're waiting:

• An hourglass (especially on Windows).

• A spinning beachball (usually on Mac machines).

• The application essentially freezes and sometimes the cursor changes.

This is what makes Web applications in particular feel clunky or slow -- the lack of
real interactivity. When you push a button, your application essentially becomes
unusable until the request you just triggered is responded to. If you've made a
request that requires extensive server processing, that wait might be significant (at
least for today's multi-processor, DSL, no-waiting world).

An asynchronous request though, does not wait for the server to respond. You send
a request and then your application continues on. Users can still enter data in a Web
form, click other buttons, even leave the form. There's no spinning beachball or
whirling hourglass and no big application freeze. The server quietly responds to the
request and when it's finished, it let's the original requestor know that it's done (in
ways you'll see in just a moment). The end result is an application that doesn't feel
clunky or slow, but instead is responsive, interactive, and feels faster. This is just
one component of Web 2.0, but it's a very important one. All the slick GUI
components and Web design paradigms can't overcome a slow, synchronous
request/response model.

Sending the request

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 12 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Once you configure the request with open(), you're ready to send the request.
Fortunately, the method for sending a request is named more properly than open();
it's simply called send().

send() takes only a single parameter, the content to send. But before you think too
much on that, recall that you are already sending data through the URL itself:

var url = "/cgi-local/lookupCustomer.php?phone=" + escape(phone);

Although you can send data using send(), you can also send data through the URL
itself. In fact, in GET requests (which will constitute as much as 80 percent of your
typical Ajax usage), it's much easier to send data in the URL. When you start to send
secure information or XML, then you want to look at sending content through
send() (I'll discuss both secure data and XML messaging in a later article in this
series). When you don't need to pass data along through send(), then just pass
null as the argument to this method. So, to send a request in the example you've
seen throughout this article, that's exactly what is needed (see Listing 10).

Listing 10. Send the request

function getCustomerInfo() {
var phone = document.getElementById("phone").value;
var url = "/cgi-local/lookupCustomer.php?phone=" + escape(phone);
request.open("GET", url, true);
request.send(null);

}

Specifying a callback method

At this point, you've done very little that feels new, revolutionary, or asynchronous.
Granted, that little keyword "true" in the open() method sets up an asynchronous
request. But other than that, this code resembles programming with Java servlets
and JSPs, PHP, or Perl. So what's the big secret to Ajax and Web 2.0? The secret
revolves around a simple property of XMLHttpRequest called
onreadystatechange.

First, be sure you understand the process that you created in this code (review
Listing 10 if you need to). A request is set up and then made. Additionally, because
this is an asynchronous request, the JavaScript method (getCustomerInfo() in
the example) will not wait for the server. So the code will continue; in this case, that
means that the method will exit and control will return to the form. Users can keep
entering information and the application isn't going to wait on the server.

This creates an interesting question, though: What happens when the server has
finished processing the request? The answer, at least as the code stands right now,
is nothing! Obviously, that's not good, so the server needs to have some type of

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 13 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

instruction on what to do when it's finished processing the request sent to it by
XMLHttpRequest.

Referencing a function in JavaScript
JavaScript is a loosely typed language and you can reference just
about anything as a variable. So if you declare a function called
updatePage(), JavaScript also treats that function name as a
variable. In other words, you can reference the function in your code
as a variable named updatePage.

This is where that onreadystatechange property comes into play. This property
allows you to specify a callback method. A callback allows the server to (can you
guess?) call back into your Web page's code. It gives a degree of control to the
server, as well; when the server finishes a request, it looks in the XMLHttpRequest
object and specifically at the onreadystatechange property. Whatever method is
specified by that property is then invoked. It's a callback because the server initiates
calling back into the Web page -- regardless of what is going in the Web page itself.
For example, it might call this method while the user is sitting in her chair, not
touching the keyboard; however, it might also call the method while the user is
typing, moving the mouse, scrolling, clicking a button ... it doesn't matter what the
user is doing.

This is actually where the asynchronicity comes into play: The user operates the
form on one level while on another level, the server answers a request and then fires
off the callback method indicated by the onreadystatechange property. So you
need to specify that method in your code as shown in Listing 11.

Listing 11. Set a callback method

function getCustomerInfo() {
var phone = document.getElementById("phone").value;
var url = "/cgi-local/lookupCustomer.php?phone=" + escape(phone);
request.open("GET", url, true);
request.onreadystatechange = updatePage;
request.send(null);

}

Pay close attention to where in the code this property is set -- it's before send() is
called. You must set this property before the request is sent, so the server can look
up the property when it finishes answering a request. All that's left now is to code the
updatePage() which is the focus of the last section in this article.

Handling server responses

You made your request, your user is happily working in the Web form (while the
server handles the request), and now the server finishes up handling the request.
The server looks at the onreadystatechange property and figures out what

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 14 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

method to call. Once that occurs, you can think of your application as any other app,
asynchronous or not. In other words, you don't have to take any special action
writing methods that respond to the server; just change the form, take the user to
another URL, or do whatever else you need to in response to the server. In this
section, we'll focus on responding to the server and then taking a typical action --
changing on the fly part of the form the user sees.

Callbacks and Ajax

You've already seen how to let the server know what to do when it's finished: Set the
onreadystatechange property of the XMLHttpRequest object to the name of the
function to run. Then, when the server has processed the request, it will
automatically call that function. You also don't need to worry about any parameters
to that method. You'll start with a simple method like in Listing 12.

Listing 12. Code the callback method

<script language="javascript" type="text/javascript">
var request = false;
try {

request = new XMLHttpRequest();
} catch (trymicrosoft) {

try {
request = new ActiveXObject("Msxml2.XMLHTTP");

} catch (othermicrosoft) {
try {

request = new ActiveXObject("Microsoft.XMLHTTP");
} catch (failed) {

request = false;
}

}
}

if (!request)
alert("Error initializing XMLHttpRequest!");

function getCustomerInfo() {
var phone = document.getElementById("phone").value;
var url = "/cgi-local/lookupCustomer.php?phone=" + escape(phone);
request.open("GET", url, true);
request.onreadystatechange = updatePage;
request.send(null);

}

function updatePage() {
alert("Server is done!");

}
</script>

This just spits out a handy alert, to tell you when the server is done. Try this code in
your own page, save the page, and then pull it up in a browser (if you want the
XHTML from this example, refer back to Listing 8). When you enter in a phone
number and leave the field, you should see the alert pop up (see Figure 3); but click
OK and it pops up again ... and again.

Figure 3. Ajax code popping up an alert

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 15 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Depending on your browser, you'll get two, three, or even four alerts before the form
stops popping up alerts. So what's going on? It turns out that you haven't taken into
account the HTTP ready state, an important component of the request/response
cycle.

HTTP ready states

Earlier, I said that the server, once finished with a request, looks up what method to
call in the onreadystatechange property of XMLHttpRequest. That's true, but
it's not the whole truth. In fact, it calls that method every time the HTTP ready state
changes. So what does that mean? Well, you've got to understand HTTP ready
states first.

An HTTP ready state indicates the state or status of a request. It's used to figure out
if a request has been started, if it's being answered, or if the request/response model

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 16 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

has completed. It's also helpful in determining whether it's safe to read whatever
response text or data that a server might have supplied. You need to know about
five ready states in your Ajax applications:

• 0: The request is uninitialized (before you've called open()).

• 1: The request is set up, but hasn't been sent (before you've called
send()).

• 2: The request was sent and is being processed (you can usually get
content headers from the response at this point).

• 3: The request is being processed; often some partial data is available
from the response, but the server hasn't finished with its response.

• 4: The response is complete; you can get the server's response and use
it.

As with almost all cross-browser issues, these ready states are used somewhat
inconsistently. You might expect to always see the ready state move from 0 to 1 to 2
to 3 to 4, but in practice, that's rarely the case. Some browsers never report 0 or 1
and jump straight to 2, then 3, and then 4. Other browsers report all states. Still
others will report ready state 1 multiple times. As you saw in the last section, the
server called updatePage() several times and each invocation resulted in an alert
box popping up -- probably not what you intended!

For Ajax programming, the only state you need to deal with directly is ready state 4,
indicating that a server's response is complete and it's safe to check the response
data and use it. To account for this, the first line in your callback method should be
as shown in Listing 13.

Listing 13. Check the ready state

function updatePage() {
if (request.readyState == 4)
alert("Server is done!");

}

This change checks to ensure that the server really is finished with the process. Try
running this version of the Ajax code and you should only get the alert message one
time, which is as it should be.

HTTP status codes

Despite the apparent success of the code in Listing 13, there's still a problem -- what
if the server responds to your request and finishes processing, but reports an error?
Remember, your server-side code should care if it's being called by Ajax, a JSP, a
regular HTML form, or any other type of code; it only has the traditional Web-specific

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 17 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

methods of reporting information. And in the Web world, HTTP codes can deal with
the various things that might happen in a request.

For example, you've certainly entered a request for a URL, typed the URL
incorrectly, and received a 404 error code to indicate a page is missing. This is just
one of many status codes that HTTP requests can receive as a status (see
Resources for a link to the complete list of status codes). 403 and 401, both
indicating secure or forbidden data being accessed, are also common. In each of
these cases, these are codes that result from a completed response. In other words,
the server fulfilled the request (meaning the HTTP ready state is 4), but is probably
not returning the data expected by the client.

In addition to the ready state then, you also need to check the HTTP status. You're
looking for a status code of 200 which simply means okay. With a ready state of 4
and a status code of 200, you're ready to process the server's data and that data
should be what you asked for (and not an error or other problematic piece of
information). Add another status check to your callback method as shown in Listing
14.

Listing 14. Check the HTTP status code

function updatePage() {
if (request.readyState == 4)
if (request.status == 200)

alert("Server is done!");
}

To add more robust error handling -- with minimal complication -- you might add a
check or two for other status codes; check out the modified version of
updatePage() in Listing 15.

Listing 15. Add some light error checking

function updatePage() {
if (request.readyState == 4)
if (request.status == 200)

alert("Server is done!");
else if (request.status == 404)

alert("Request URL does not exist");
else

alert("Error: status code is " + request.status);
}

Now change the URL in your getCustomerInfo() to a non-existent URL and see
what happens. You should see an alert that tells you the URL you asked for doesn't
exist -- perfect! This is hardly going to handle every error condition, but it's a simple
change that covers 80 percent of the problems that can occur in a typical Web
application.

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 18 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Reading the response text

Now that you made sure the request was completely processed (through the ready
state) and the server gave you a normal, okay response (through the status code),
you can finally deal with the data sent back by the server. This is conveniently stored
in the responseText property of the XMLHttpRequest object.

Details about what the text in responseText looks like, in terms of format or length,
is left intentionally vague. This allows the server to set this text to virtually anything.
For instance, one script might return comma-separated values, another
pipe-separated values (the pipe is the | character), and another may return one long
string of text. It's all up to the server.

In the case of the example used in this article, the server returns a customer's last
order and then their address, separated by the pipe symbol. The order and address
are both then used to set values of elements on the form; Listing 16 shows the code
that updates the display.

Listing 16. Deal with the server's response

function updatePage() {
if (request.readyState == 4) {
if (request.status == 200) {

var response = request.responseText.split("|");
document.getElementById("order").value = response[0];
document.getElementById("address").innerHTML =

response[1].replace(/\n/g, "
");

} else
alert("status is " + request.status);

}
}

First, the responseText is pulled and split on the pipe symbol using the JavaScript
split() method. The resulting array of values is dropped into response. The first
value -- the customer's last order -- is accessed in the array as response[0] and is
set as the value of the field with an ID of "order." The second value in the array, at
response[1], is the customer's address and it takes a little more processing. Since
the lines in the address are separated by normal line separators (the "\n" character),
the code needs to replace these with XHTML-style line separators,
s. That's
accomplished through the use of the replace() function along with a regular
expression. Finally, the modified text is set as the inner HTML of a div in the HTML
form. The result is that the form suddenly is updated with the customer's information,
as you can see in Figure 4.

Figure 4. The Break Neck form after it retrieves customer data

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 19 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Before I wrap up, another important property of XMLHttpRequest is called
responseXML. That property contains (can you guess?) an XML response in the
event that the server chooses to respond with XML. Dealing with an XML response
is quite different than dealing with plain text and involves parsing, the Document
Object Model (DOM), and several other considerations. You'll learn more about XML
in a future article. Still, because responseXML commonly comes up in discussions
surrounding responseText, it's worth mentioning here. For many simple Ajax
applications, responseText is all you need, but you'll soon learn about dealing with
XML through Ajax applications as well.

In conclusion

You might be a little tired of XMLHttpRequest -- I rarely read an entire article about

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 20 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

a single object, especially one that is this simple. However, you will use this object
over and over again in each page and application that you write that uses Ajax.
Truth be told, there's quite a bit still to be said about XMLHttpRequest. In coming
articles, you'll learn to use POST in addition to GET in your requests, set and read
content headers in your request as well as the response from the server; you'll
understand how to encode your requests and even handle XML in your
request/response model.

Quite a bit further down the line, you'll also see some of the popular Ajax toolkits that
are available. These toolkits actually abstract away most of the details discussed in
this article and make Ajax programming easier. You might even wonder why you
have to code all this low-level detail when toolkits are so readily available. The
answer is, it's awfully hard to figure out what goes wrong in your application if you
don't understand what is going on in your application.

So don't ignore these details or speed through them; when your handy-dandy toolkit
creates an error, you won't be stuck scratching your head and sending an email to
support. With an understanding of how to use XMLHttpRequest directly, you'll find
it easy to debug and fix even the strangest problems. Toolkits are fine unless you
count on them to take care of all your problems.

So get comfortable with XMLHttpRequest. In fact, if you have Ajax code running
that uses a toolkit, try to rewrite it using just the XMLHttpRequest object and its
properties and methods. It will be a great exercise and probably help you understand
what's going on a lot better.

In the next article, you'll dig even deeper into this object, exploring some of its tricker
properties (like responseXML), as well as how to use POST requests and send data
in several different formats. So start coding and check back here in about a month.

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 21 of 23

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Mastering Ajax: Introduction to Ajax (developerWorks, December 2005) helps
you understanding Ajax, a productive approach to building Web sites. (The
resource list in this article is alone is worth a visit!)

• "Use Ajax with WebSphere Portal" (developerWorks, June 2006) to improve
portal performance, create a cleaner portal application architecture, and -- most
important -- give your users a much more responsive portal.

• Building Dynamic Java Applications (developerWorks, September 2005) is a
look at Ajax from the server side, using a Java perspective.

• Java object serialization for Ajax (developerWorks, October 2005) examines
how to send objects over the network, and interact with Ajax, from a Java
perspective.

• Call SOAP Web services with Ajax (developerWorks, October 2005) is a fairly
advanced article on integrating Ajax with existing SOAP-based web services.

• Google GMail is a great example of an Ajax-based application changing the
way the Web works.

• Google Maps is yet another Google-based Web 2.0 application.

• Flickr is a great example of using Ajax to create a desktop feel for a Web-based
application.

• Ajax: A New Approach to Web Applications is the article that coined the Ajax
moniker and is required reading for all Ajax developers.

• Why Ajax Matters Now will help you understand, well, why Ajax matters (now).

• If you're using Microsoft's browser, Internet Explorer, you can get the scoop at
the Microsoft Developer Network's XML Developer Center.

• Learn more about MSXML, the Microsoft XML parser, in the online
documentation.

• Check out this entire list of HTTP status codes that a response can contain.

• The developerWorks Web Architecture zone specializes in articles covering
various Web-based solutions.

Get products and technologies

• Head Rush Ajax by Elisabeth Freeman, Eric Freeman, and Brett McLaughlin
(February 2006, O'Reilly Media, Inc.) takes the ideas in this article and loads
them into your brain, Head First style.

developerWorks® ibm.com/developerWorks

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 22 of 23

http://www.ibm.com/developerworks/web/library/wa-ajaxintro1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0606_bishop/0606_bishop.html
http://www-128.ibm.com/developerworks/library/j-ajax1/
http://www-128.ibm.com/developerworks/library/j-ajax2/
http://www-128.ibm.com/developerworks/webservices/library/ws-wsajax/
http://gmail.google.com
http://maps.google.com
http://www.flickr.com
http://adaptivepath.com/publications/essays/archives/000385.php
http://www.ok-cancel.com/archives/article/2005/09/why-ajax-matters-now.html
http://msdn.microsoft.com/xml/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/b24aafc2-bf1b-4702-bf1c-b7ae3597eb0c.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/b24aafc2-bf1b-4702-bf1c-b7ae3597eb0c.asp
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.ibm.com/developerworks/web/
http://www.oreilly.com/catalog/headra/index.html
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

• Java and XML , Second Edition by Brett McLaughlin (August 2001, O'Reilly
Media, Inc.) includes the author's discussion of XHTML and XML
transformations.

• JavaScript: The Definitive Guide by David Flanagan (November 2001, O'Reilly
Media, Inc.) includes extensive instruction on working with JavaScript, dynamic
Web pages, and the upcoming edition adds two chapters on Ajax.

• Head First HTML with CSS & XHTML by Elizabeth and Eric Freeman
(December 2005, O'Reilly Media, Inc.) is a complete source for learning
XHTML, CSS, and how to pair the two.

Discuss

• Participate in the discussion forum for this content.

• developerWorks blogs: Get involved in the developerWorks community.

About the author

Brett McLaughlin
Brett McLaughlin has worked in computers since the Logo
days.(Remember the little triangle?) In recent years, he's become one
of the most well-known authors and programmers in the Java and XML
communities. He's worked for Nextel Communications, implementing
complex enterprise systems; at Lutris Technologies, actually writing
application servers; and most recently at O'Reilly Media, Inc., where he
continues to write and edit books that matter. Brett's upcoming book,
Head Rush Ajax , brings the award-winning and innovative Head First
approach to Ajax, along with bestselling co-authors, Eric and Beth
Freeman. His last book, Java 1.5 Tiger: A Developer's Notebook , was
the first book available on the newest version of Java technology and
his classic Java and XML remains one of the definitive works on using
XML technologies in the Java language.

ibm.com/developerWorks developerWorks®

Make asynchronous requests with JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2006. All rights reserved. Page 23 of 23

http://www.oreilly.com/catalog/javaxml2/
http://www.oreilly.com/catalog/jscript4/index.html
http://www.oreilly.com/catalog/hfhtmlcss/index.html
http://www.ibm.com/developerworks/community/
http://www.ibm.com/developerworks/blogs/
http://www.amazon.com/gp/product/0596102259/103-1888163-4853425?v=glance&n=283155&n=507846&s=books&v=glance
http://www.headfirstlabs.com
http://www.amazon.com/exec/obidos/tg/detail/-/0596007388/qid=1096295392/sr=1-1/ref=sr_1_1/104-4479879-6183919?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/0596000162/104-4010009-7613561?v=glance
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Web 2.0 at a glance
	Introducing XMLHttpRequest
	Sending requests with XMLHttpRequest
	Handling server responses
	In conclusion
	Resources
	About the author

