
Mastering Ajax, Part 7: Using XML in requests and
responses
Learn when it's a good idea -- and when it isn't

Skill Level: Intermediate

Brett McLaughlin
Author and Editor
O'Reilly Media Inc.

10 Oct 2006

Even casual Ajax developers will notice the x in Ajax, and realize that it stands for
XML. XML is one of the most popular data formats in any programming medium, and
offers real advantages for server responses in asynchronous applications. In this
article, you'll see how servers can send XML in response to a request.

You really can't do any significant programming today without running across XML.
Whether you're a Web page designer considering the move to XHTML, a Web
programmer working with JavaScript, a server-side programmer using deployment
descriptors and data binding, or a back-end developer investigating XML-based
databases, the extensible markup language is everywhere. It's no surprise, then,
that XML is considered one of the core technologies that underlies Ajax.

However, this opinion reflects the poor choice of names for the core object used in
Ajax applications -- XMLHttpRequest -- more than it does technical reality. In other
words, most people think XML is a core part of Ajax because they assume that the
XMLHttpRequest object actually uses XML all the time. But that's not the case, and
the reasons why are the subject of the first part of this article. In fact, you'll see that
in most Ajax applications, XML rarely makes an appearance at all.

XML does have real uses in Ajax, and XMLHttpRequest allows for these as well.
There's certainly nothing keeping you from sending XML to a server. In earlier
articles in this series, you used plain text and name/value parameters to send data,
but XML is also a viable format. In this article, you'll look at how to do that. More

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 1 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


importantly, though, I'll talk about why you might use XML for your request format,
and why, in many cases, you shouldn't use it.

XML: Is it really there at all?

It's easy to make assumptions about Ajax applications and their usage of XML; both
the technology name (Ajax) and the core object it uses (XMLHttpRequest) imply
the use of XML, and you'll hear XML linked with Ajax applications all the time.
However, this perception is simply wrong, and if you want to really know your stuff
when it comes to writing asynchronous applications, you need to know that the
perception is wrong -- and, better yet, know why it's wrong.

XMLHttpRequest: Poor names and HTTP

One of the worst things that can happen to a technology is for it to become so hot
that changing basic pieces of it becomes impossible. That's exactly what's happened
with XMLHttpRequest, the basic object used in Ajax apps. It sounds like it's
designed to either send XML over HTTP requests, or perhaps make HTTP requests
in some sort of XML format. Whatever the object's name sounds like, though, what it
actually does is simply provide a way for your client code (usually JavaScript in your
Web page) to send an HTTP request. That's it; there's really nothing more to it.

Thus, it would be nice to simply change XMLHttpRequest's name to something
more accurate, like HttpRequest, or perhaps simply Request. However, millions
of developers are now throwing Ajax into their applications, and because we all
know that it takes years -- if not decades -- for the majority of users to move to new
browser versions like Internet Explorer 7.0 or Firefox 1.5, such a move is simply not
feasible. The end result is that you're stuck with XMLHttpRequest, and it's up to
developers to realize that the thing is just poorly named.

It's somewhat telling that one of the best known fallback methods for dealing with a
browser (especially on Windows) that doesn't support XMLHttpRequest is to use
the Microsoft IFRAME object. Hardly sounds like XML, HTTP, or even a request,
does it? Obviously, all those things might be involved, but this should simply make
clear the fact that the XMLHttpRequest object is a lot more about making requests
without requiring a page reload than it is about XML, or even HTTP.

The requests are HTTP, not XML

Another common mistake is to suppose that XML is somehow used behind the
scenes -- a view I once held myself, to be honest! However, that view reflects a poor
understanding of the technology. When a user opens a browser and requests a Web
page from a server, they type in something like http://www.google.com or
http://www.headfirstlabs.com. Even if they don't include the http://, the
browser will fill in that part in the browser address bar. That first part -- http:// -- is

developerWorks® ibm.com/developerWorks

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 2 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


a not-so-subtle clue about how communication is occurring: through HTTP, the
Hypertext Transfer Protocol. When you write code in your Web page to
communicate with a server, whether it's using Ajax or a normal form POST or even a
hyperlink, you're just talking HTTP.

HTTPS: Still HTTP
Those of you newer to the Web might wonder about URLs like
https://intranet.nextel.com. The https is secure HTTP,
and just uses a more secure form of the HTTP protocol used by
ordinary Web requests. So even with HTTPS, you're still just talking
HTTP, albeit with some extra layers of security added to keep away
prying eyes.

Given that pretty much all Web communication between browsers and servers takes
place through HTTP, the idea that XML is somehow the transport or technology
used by XMLHttpRequest under the covers just doesn't make any sense. It's
certainly possible for XML to be sent in the HTTP request, but HTTP is a very
precisely defined standard that isn't going away any time soon. Unless you're
specifically using XML in your request, or the server is sending you a response in
XML, there's nothing but plain old HTTP used in the XMLHttpRequest object. So
the next time someone tells you, "Yeah, it's called XMLHttpRequest because it
uses XML behind the scenes," just smile and patiently explain to them what HTTP is,
and let them know that while XML can be sent over HTTP, XML is a data format, not
a transfer protocol. You'll both be the better for the explanation.

Using XML (for real)

So far, I've told you about all the places where XML isn't used in Ajax. But the x in
Ajax and the XML in XMLHttpRequest are still very real, and you've several options
for using XML in your Web applications. You'll look at the basic options in this
section, and then really dig into detail in the rest of this article.

Options for XML

In your asynchronous apps, you'll find two basic applications of XML:

• To send a request from a Web page to a server in XML format

• To receive a request from a server in your Web page in XML format

The first of these -- to send a request in XML -- requires you to format your request
as XML, either using an API to do so or just stringing together the text, and then
sending the result to a server. In this option, the main job at hand is to construct the
request in a way that complies with the rules of XML, and that can be understood by
the server. So the focus is really on the XML format; you have the data you want to

ibm.com/developerWorks developerWorks®

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 3 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


send, and just need to wrap it up in XML semantics. The rest of this article focuses
on this use of XML in your Ajax applications.

The second of these options -- to receive a request in XML -- requires you to take a
response from a server, and extract the data from XML (again, using either an API
or more of a brute force approach). In this case, your focus is on the data from the
server, and it just so happens that you've got to pull that data out of XML to use it in
any constructive way. This is the subject of the next article in this series, and you'll
really dig into that in detail then.

A preemptory warning

Before I get into the details of using XML, a short cautionary word is in order: XML is
not a small, fast, space-saving format. As you'll see in the next several sections and
in the next article in this series, there are some great reasons to use XML in this
context, and some advantages that XML has over plain text requests and responses
(especially for responses). However, XML is almost always going to take up more
space and be slower than plain text, because you add all the tags and semantics
required for XML to your messages.

If you want to write a blazing fast application that feels like a desktop app, XML
might not be the best place to start. If you begin with plain text, and find a specific
need for XML, then that's great; however, if you use XML from the beginning, you
almost certainly slow down your application's responsiveness. In most cases, it's
faster to send plain text -- using name/value pairs like name=jennifer -- than to
turn the text into XML like this:

<name>jennifer</name>

Think of all the places where using XML adds time: wrapping the text in XML;
sending across extra information (note that I didn't include any surrounding
elements, an XML header, or anything else that would probably be part of a more
realistic request); having the server parse the XML, generate a response, wrap the
response back in XML, and send it back to your Web page; and then having your
page parse the response and finally use it. So learn when to use XML, but don't start
out by thinking that it's going to make your application faster in many situations;
rather, it adds flexibility, as we'll begin to talk about now.

XML from the client to the server

Let's look at using XML as the format to send data from a client to a server. First,
you'll see how to do this technically, and then spend some time examining when this
is a good idea, and when it's not.

developerWorks® ibm.com/developerWorks

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 4 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


Sending name/value pairs

In about 90 percent of the Web apps you write, you'll end up with name/value pairs
to send to a server. For example, if a user types their name and address into a form
on your Web page, you might have data like this from the form:

firstName=Larry
lastName=Gullahorn
street=9018 Heatherhorn Drive
city=Rowlett
state=Texas
zipCode=75080

If you were just using plain text to send this data to a server, you might use code that
looks something like Listing 1. (This is similar to an example I used in the first article
in this series. See Resources.)

Listing 1. Sending name/value pairs in plain text

function callServer() {
// Get the city and state from the Web form
var firstName = document.getElementById("firstName").value;
var lastName = document.getElementById("lastName").value;
var street = document.getElementById("street").value;
var city = document.getElementById("city").value;
var state = document.getElementById("state").value;
var zipCode = document.getElementById("zipCode").value;

// Build the URL to connect to
var url = "/scripts/saveAddress.php?firstName=" + escape(firstName) +

"&lastName=" + escape(lastName) + "&street=" + escape(street) +
"&city=" + escape(city) + "&state=" + escape(state) +
"&zipCode=" + escape(zipCode);

// Open a connection to the server
xmlHttp.open("GET", url, true);

// Set up a function for the server to run when it's done
xmlHttp.onreadystatechange = confirmUpdate;

// Send the request
xmlHttp.send(null);

}

Converting name/value pairs to XML

The first thing you need to do if you want to use XML as a format for data like this is
to come up with some basic XML format in which to store the data. Obviously, your
name/value pairs can all turn into XML elements, where the element name is the
name of the pair, and the content of the element is the value:

<firstName>Larry</firstName>
<lastName>Gullahorn</lastName>
<street>9018 Heatherhorn Drive</street>

ibm.com/developerWorks developerWorks®

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 5 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


<city>Rowlett</city>
<state>Texas</state>
<zipCode>75080</zipCode>

Of course, XML requires that you have a root element, or, if you're just working with
a document fragment (a portion of an XML document), an enclosing element. So you
might convert the XML above to something like this:

<address>
<firstName>Larry</firstName>
<lastName>Gullahorn</lastName>
<street>9018 Heatherhorn Drive</street>
<city>Rowlett</city>
<state>Texas</state>
<zipCode>75080</zipCode>

</address>

Now you're ready to create this structure in your Web client, and send it to the server
... almost.

Communication, of the verbal kind

Before you're ready to start tossing XML over the network, you want to make sure
that the server -- and script -- to which you send data actually accepts XML. Now for
many of you, this might seem like a silly and obvious point to make, but plenty of
newer programmers just assume that if they send XML across the network, it is
received and interpreted correctly.

In fact, you need to take two steps to ensure that the data you send in XML will be
received correctly:

1. Ensure that the script to which you send the XML accepts XML as a data
format.

2. Ensure the script will accept the particular XML format and structure in
which you send data.

Both of these will probably require you to actually talk to a human being, so fair
warning! Seriously, if it's important that you be able to send data as XML, most script
writers will oblige you; so just finding a script that will accept XML shouldn't be that
hard. However, you'still need to make sure that the your format matches what the
script expects. For example, suppose the server accepts data like this:

<profile>
<firstName>Larry</firstName>
<lastName>Gullahorn</lastName>
<street>9018 Heatherhorn Drive</street>
<city>Rowlett</city>

developerWorks® ibm.com/developerWorks

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 6 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


<state>Texas</state>
<zip-code>75080</zip-code>

</profile>

This looks similar to the XML above, except for two things:

1. The XML from the client is wrapped within an address element, but the
server expects the data to be wrapped within a profile element.

2. The XML from the client uses a zipCode element, while the server
expects the zip code to be in a zip-code element.

In the grand scheme of things, these really small points are the difference between
the server accepting and processing your data, and the server crashing miserably
and supplying your Web page -- and probably its users -- with a cryptic error
message. So you've got to figure out what the server expects, and mesh the data
you send into that format. Then -- and only then -- are you ready to deal with the
actual technicalities of sending XML from a client to a server.

Sending XML to the server

When it comes to sending XML to the server, you'll spend more of your code taking
your data and wrapping it XML than you will actually transmitting the data. In fact,
once you have the XML string ready to send to the server, you send it exactly as you
would send any other plain text; check out Listing 2 to see this in action.

Listing 2. Sending name/value pairs in XML

function callServer() {
// Get the city and state from the Web form
var firstName = document.getElementById("firstName").value;
var lastName = document.getElementById("lastName").value;
var street = document.getElementById("street").value;
var city = document.getElementById("city").value;
var state = document.getElementById("state").value;
var zipCode = document.getElementById("zipCode").value;

var xmlString = "<profile>" +
" <firstName>" + escape(firstName) + "</firstName>" +
" <lastName>" + escape(lastName) + "</lastName>" +
" <street>" + escape(street) + "</street>" +
" <city>" + escape(city) + "</city>" +
" <state>" + escape(state) + "</state>" +
" <zip-code>" + escape(zipCode) + "</zip-code>" +
"</profile>";

// Build the URL to connect to
var url = "/scripts/saveAddress.php";

// Open a connection to the server
xmlHttp.open("POST", url, true);

// Tell the server you're sending it XML
xmlHttp.setRequestHeader("Content-Type", "text/xml");

ibm.com/developerWorks developerWorks®

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 7 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


// Set up a function for the server to run when it's done
xmlHttp.onreadystatechange = confirmUpdate;

// Send the request
xmlHttp.send(xmlString);

}

Much of this is self-explanatory with just a few points worth noting. First, the data in
your request must be manually formatted as XML. That's a bit of a letdown after
three articles on using the Document Object Model, isn't it? And while nothing
forbids you from using the DOM to create an XML document using JavaScript, you'd
then have to convert that DOM object to text before sending it over the network with
a GET or POST request. So it turns out to be easier to simply format the data using
normal string manipulation. Of course, this introduces room for error and
typographical mistakes, so you need to be extra careful when you write code that
deals with XML.

Once you construct your XML, you open a connection in largely the same way as
you would when you send text. I tend to prefer using POST requests for XML, since
some browsers impose a length limitation on GET query strings, and XML can get
pretty long; you'll see that Listing 2 switches from GET to POST accordingly.
Additionally, the XML is sent through the send() method, rather than as a
parameter tacked on to the end of the URL you're requesting. These are all fairly
trivial differences, though, and easy to adjust for.

You will have to write one entirely new line of code, though:

xmlHttp.setRequestHeader("Content-Type", "text/xml");

This isn't hard to understand: it just tells the server that you're sending it XML, rather
than plain old name/value pairs. In either case, you send data as text, but use
text/xml here, or XML sent as plain text. If you just used name/value pairs, this
line would read:

xmlHttp.setRequestHeader("Content-Type", "text/plain");

If you forget to tell the server that you're sending it XML, you'll have some trouble, so
don't forget this step.

Once you get all this put together, all you need to do is call send() and pass in the
XML string. The server will get your XML request, and (assuming you've done your
pre-work) accept the XML, parse it, and send you back a response. That's really all
there is to it -- XML requests with just a few changes of code.

developerWorks® ibm.com/developerWorks

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 8 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


Sending XML: Good or bad?

Before leaving XML requests (and this article) for XML responses, let's spend some
real time thinking about the sensibility of using XML in your requests. I've already
mentioned that XML is by no means the fastest data format in terms of transfer, but
there's a lot more to think about.

XML is not simple to construct

The first thing you need to realize is that XML is just not that easy to construct for
use in requests. As you saw in Listing 2, your data quickly becomes pretty
convoluted with the semantics of XML:

var xmlString = "<profile>" +
" <firstName>" + escape(firstName) + "</firstName>" +
" <lastName>" + escape(lastName) + "</lastName>" +
" <street>" + escape(street) + "</street>" +
" <city>" + escape(city) + "</city>" +
" <state>" + escape(state) + "</state>" +
" <zip-code>" + escape(zipCode) + "</zip-code>" +
"</profile>";

This might not seem so bad, but it's also an XML fragment that has only six fields.
Most of the Web forms you'll develop will have ten to fifteen; although you won't use
Ajax for all of your requests, it is a consideration. You're spending at least as much
time dealing with angle brackets and tag names as you are with actual data, and the
potential to make little typos is tremendous.

Another problem here is that -- as already mentioned -- you will have to construct
this XML by hand. Using the DOM isn't a good option, as there aren't good, simple
ways to turn a DOM object into a string that you can send as a request. So working
with strings like this is really the best option -- but it's also the option that's hardest to
maintain, and hardest to understand for new developers. In this case, you
constructed all the XML in one line; things only get more confusing when you do this
in several steps.

XML doesn't add anything to your requests

Beyond the issue of complexity, using XML for your requests really doesn't offer you
much of an advantage -- if any -- over plain text and name/value pairs. Consider that
everything in this article has been focused on taking the same data you could
already send using name/value pairs (refer back to Listing 1) and sending it using
XML. At no point was anything said about data that you can send with XML that you
could not send using plain text; that's because there almost never is anything that
you can send using XML that you can't send using plain text.

And that's really the bottom line with XML and requests: there's just rarely a

ibm.com/developerWorks developerWorks®

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 9 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


compelling reason to do it. You'll see in the next article in this series that a server
can use XML for some things that are much harder to do when using plain text; but
it's just not the case with requests. So unless you're talking to a script that only
accepts XML (and there are some out there), you're better off using plain text in
almost every request situation.

In conclusion

You should definitely feel like you're starting to get the XML in Ajax figured out. You
know that Ajax apps don't have to use XML, and that XML isn't some sort of magic
bullet for data transfer. You should also feel pretty comfortable in sending XML from
a Web page to a server. Even more importantly, you know what's involved in making
sure that a server will actually handle and respond to your requests: you've got to
ensure that the server script accepts XML, and that it accepts it in the format that
you're using to send the data over.

You also should have a good idea now of why XML isn't always that great a choice
for a data format for requests. In future articles, you'll see some cases where it
helps, but in most requests, it simply slows things down and adds complexity. So
while I'd normally suggest that you immediately start using the things you learned in
an article, I'll instead suggest that you be very careful about using what you've
learned here. XML requests have their place in Ajax apps, but that place isn't as
roomy as you might think.

In the next article in this series, you'll look at how servers can respond using XML,
and how your Web applications can handle those responses. Happily, there's a
much larger number of reasons for a server to send XML back to a Web app than
the other way around, so you'll get even more use out of that article's technical
detail; for now, be sure you understand why XML isn't always a great idea -- at least
for sending requests. You might even want to try and implement some Web apps
using XML as the data format for requests, and then convert back to plain text, and
see which seems both faster and easier to you. Until next article, I'll see you online.

developerWorks® ibm.com/developerWorks

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 10 of 12

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• Mastering Ajax: Read the previous articles in this series.

• XML: See developerWorks XML Zone for a wide range of technical articles and
tips, tutorials, standards, and IBM Redbooks.

• xml.com: Start with one of the easiest-to-understand online resources for
everything XML if you're not already an experienced XML programmer.

• "Build dynamic Java applications" (Philip McCarthy, developerWorks,
September 2005): Take a look at Ajax from the server side, using a Java™
perspective.

• "Java object serialization for Ajax" (Philip McCarthy, developerWorks, October
2005): Examine how to send objects over the network, and interact with Ajax,
from a Java perspective.

• "Call SOAP Web services with Ajax" (James Snell, developerWorks, October
2005): Dig into this fairly advanced article on integrating Ajax with existing
SOAP-based Web services; it shows you how to implement a Web
browser-based SOAP Web services client using the Ajax design pattern.

• The DOM Home Page at the World Wide Web Consortium: Visit the starting
place for all things DOM-related.

• The DOM Level 3 Core Specification: Define the core Document Object Model,
from the available types and properties to the usage of the DOM from various
languages.

• The ECMAScript language bindings for DOM: If you're a JavaScript
programmer and want to use the DOM from your code, this appendix to the
Level 3 Document Object Model Core definitions will interest you.

• "Ajax: A new approach to Web applications" (Jesse James Garrett , Adaptive
Path, February 2005): Read the article that coined the Ajax moniker -- it's
required reading for all Ajax developers.

• developerWorks technical events and webcasts: Stay current with these
software briefings for technical developers.

• developerWorks Web development zone: Expand your Web-building skills with
articles, tutorials, forums, and more.

Get products and technologies

• Head Rush Ajax, Brett McLaughlin (O'Reilly Media, 2006): Load the ideas in this
article into your brain, Head First style.

ibm.com/developerWorks developerWorks®

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 11 of 12

http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=Mastering+Ajax
http://www.ibm.com/developerworks/views/xml/library.jsp
http://www.xml.com
http://www.ibm.com/developerworks/library/j-ajax1/
http://www.ibm.com/developerworks/library/j-ajax2/
http://www.ibm.com/developerworks/webservices/library/ws-wsajax/
http://www.w3.org/DOM/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/ecma-script-binding.html
http://adaptivepath.com/publications/essays/archives/000385.php
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=10AGX08&S_CMP=art
http://www.ibm.com/developerworks/web/
http://www.amazon.com/gp/product/0596102259/103-1888163-4853425?v=glance&n=283155&n=507846&s=books&v=glance
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


• Java and XML, Second Edition (Brett McLaughlin, O'Reilly Media, Inc., 2001):
Check out the author's discussion of XHTML and XML transformations.

• JavaScript: The Definitive Guide (David Flanagan, O'Reilly Media, Inc., 2001):
Dig into extensive instruction on working with JavaScript and dynamic Web
pages. The upcoming edition adds two chapters on Ajax.

• Head First HTML with CSS & XHTML (Elizabeth and Eric Freeman, O'Reilly
Media, Inc., 2005): Learn more about standardized HTML and XHTML, and how
to apply CSS to HTML.

• IBM trial software: Build your next development project with software available
for download directly from developerWorks.

Discuss

• developerWorks blogs: Get involved in the developerWorks community.

• Ajax forum on developerWorks: Learn, discuss, share in this forum of Web
developers just learning or actively using AJAX.

About the author

Brett McLaughlin
Brett McLaughlin has worked in computers since the Logo days.
(Remember the little triangle?) In recent years, he's become one of the
most well-known authors and programmers in the Java and XML
communities. He's worked for Nextel Communications, implementing
complex enterprise systems; at Lutris Technologies, actually writing
application servers; and most recently at O'Reilly Media, Inc., where he
continues to write and edit books that matter. Brett's upcoming book,
Head Rush Ajax, brings the award-winning and innovative Head First
approach to Ajax. His last book, Java 1.5 Tiger: A Developer's
Notebook, was the first book available on the newest version of Java
technology. And his classic Java and XML remains one of the definitive
works on using XML technologies in the Java language.

developerWorks® ibm.com/developerWorks

Using XML in requests and responses Trademarks
© Copyright IBM Corporation 2006 Page 12 of 12

http://www.oreilly.com/catalog/javaxml2/
http://www.amazon.com/gp/product/0596000480/103-1888163-4853425?v=glance&n=283155&n=507846&s=books&v=glance
http://www.oreilly.com/catalog/hfhtmlcss/index.html
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX08&S_CMP=art
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=965&cat=11
http://www.oreilly.com/catalog/headra/index.html
http://www.headfirstlabs.com
http://www.oreilly.com/catalog/javaadn/index.html
http://www.oreilly.com/catalog/javaadn/index.html
http://www.oreilly.com/catalog/javaxml2/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	XML: Is it really there at all?
	Using XML (for real)
	XML from the client to the server
	Sending XML: Good or bad?
	In conclusion
	Resources
	About the author

