AVL Trees

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.



Objectives

+ To know what an AVL tree 1s (§20.1).

+ To understand how to rebalance a tree using the LL
rotation, LR rotation, RR rotation, and RL rotation (§20.2).

To know how to design the AVLTree class (§20.3).
To insert elements into an AVL tree (§20.4).

['o implement node rebalancing (§20.5).

To delete elements from an AVL tree (§20.6).

To implement the AVLTree class (§20.7).

To test the AVLTree class (§20.8).

To analyze the complexity of search, insert, and delete
operations in AVL trees (§20.9).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. )



Why AVL Tree?

The search, insertion, and deletion time for a binary
tree 1s dependent on the height of the tree. In the
worst case, the height 1s O(n). If a tree 1s perfectly
balanced, 1.e., a complete binary tree, i1ts height 1s .
Can we maintain a perfectly balanced tree? Yes.
But 1t will be costly to do so. The compromise 1s to
maintain a well-balanced tree, 1.e., the heights of
two subtrees for every node are about the same.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 3



What 1s an AVL Tree?

AVL trees are well-balanced. AVL trees were
invented by two Russian computer scientists
G. M. Adelson-Velsky and E. M. Landis in
1962. In an AVL tree, the difference between
the heights of two subtrees for every node 1s

0 or 1. It can be shown that the maximum
height of an AVL tree 1s O(logn).



Balance Factor/Left-Heavy/Right-Heavy

The process for inserting or deleting an element 1n
an AVL tree 1s the same as 1n a regular binary
search tree. The difference 1s that you may have to
rebalance the tree after an insertion or deletion
operation. The balance factor of a node 1s the
height of its right subtree minus the height of its
left subtree. A node is said to be balanced if 1ts
balance factor 1s -1, 0, or 1. A node 1s said to be
left-heavy 1f 1ts balance factor 1s -1. A node 1s said
to be right-heavy 1f 1ts balance factor 1s +1.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 5



Balancing Trees

If a node 1s not balanced after an insertion or deletion
operation, you need to rebalance it. The process of
rebalancing a node is called a rotation. There are four

possible rotations.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.



[.I. imbalance and LL rotation

LL Rotation: An LL imbalance occurs at a node A such that A has a
balance factor -2 and a left child B with a balance factor -1 or 0. This
type of imbalance can be fixed by performing a single right rotation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 7



RR imbalance and RR rotation

RR Rotation: An RR imbalance occurs at a node A such that A has a
balance factor +2 and a right child B with a balance factor +1 or 0.
This type of imbalance can be fixed by performing a single left
rotation at A.

T2’s height is
h or h+1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 8



[LR imbalance and LR rotation

LR Rotation: An LR imbalance occurs at a node A such that A has a
balance factor -2 and a left child B with a balance factor +1. Assume
B’s right child 1s C. This type of imbalance can be fixed by
performing a double rotation at A (first a single left rotation at B and
then a single right rotation at A).

T2 and T3 may have
% different height, but

at least one' must

have height of h.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 9



RL imbalance and RL rotation

RL Rotation: An RL imbalance occurs at a node A such that A has a
balance factor +2 and a right child B with a balance factor -1.
Assume B’s left child i1s C. This type of imbalance can be fixed by
performing a double rotation at A (first a single right rotation at B
and then a single left rotation at A).

7 N
. T2 and T3 may have
different height, but
at least one' must
have height of h.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 10



