Graphs and Applications

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Objectives

+ To model real-world problems using graphs and explain the Seven
Bridges of Konigsberg problem (§22.1).

+ To describe the graph terminologies: vertices, edges, simple graphs,
weighted/unweighted graphs, and directed/undirected graphs (§22.2).

+ To represent vertices and edges using lists, adjacent matrices, and
adjacent lists (§22.3).

+ To model graphs using the Graph class (§22.4).

+ To display graphs visually (§22.5).

+ To represent the traversal of a graph using the Tree class (§22.6).
+ To design and implement depth-first search (§22.7).

+ To solve the connected-circle problem using depth-first search (§22.8).
+ To design and implement breadth-first search (§22.9).

+ To solve the nine-tail problem using breadth-first search (§22.10).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.)

Modeling Using Graphs

Seattle

Boston
Chicago -
New York

Los Angeles
Dallas

Houston

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Weighted Graph Animation

www.cs.armstrong.edu/liang/animation/Graphl.earningTool.html

) Mozilla Firefox_

File Edit View History Bookmarks Tools Help

@ v c =Y = http://www.cs.armstrong.edu/liang/animation/GraphLearningTool.html

http://www.cs.arm...LearningTool.html| -

Graph Learning Tool by Y. Daniel Liang

INSTRUCTIONS

Add: Left Click
Move: Ctrl Drag
Connect: Drag
Remaove: Right Click

Display DFS/BFS Find a shortest path

Starting vertex: | \ DFS Tree BFS Tree Starting vertex: O

I

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

| Ending vertex: }ﬁ

| | IshortestPath |

http://www.cs.armstrong.edu/liang/animation/GraphLearningTool.html

Seven Bridges of Konigsberg

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 5

Basic Graph Terminologies

What 1s a graph?

Define a graph

Directed vs. undirected graphs
Weighted vs. unweighted graphs
Adjacent vertices

Incident

Degree

Neighbor

loop

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Directed vs Undirected Graph

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Basic Graph Terminologies

Parallel edge
Simple graph
Complete graph

Spanning tree

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Representing Graphs

Representing Vertices

Representing Edges: Edge Array
Representing Edges: Edge Objects
Representing Edges: Adjacency Matrices
Representing Edges: Adjacency Lists

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Representing Vertices

V = ["Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago", "Boston", "New York",
"Atlanta", "Miami", "Dallas", "Houston"]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

10

Edge List

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

0 p)
O
ol))
o
[1]
ol))
=
~ =
-
D)
0p)
O
e
Q.
D
o'

Representing Edges: Edge Object

class Edge:
def 1nit (self, u, v):

self.u u
self.v =

edgelList = []

edgelilst.append (Edge (0,
edgelilst.append (Edge (0,
edgelilst.append (Edge (0,

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 12

e 0
n n 0 >
‘—H O g

= O~ -

S c O A
O © O O g -
—H 9 ¢ Y4 noogc O D n O
D O 6 © O M & -+ © D
T > n 0O P T £ — 0
T g n g 4 n 2+ ©@4d 3
O @ O O @ .2 O O Y A @ O
N ndAo N OMZ S AT
H H= H= H= H= FH= = H H H= H= S

rm s s — —/— /O 0D D oo

djacency

A
0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
1,

79
D)
ot}

o

1]

[
4
4
4
4
4
4
4
4
4
4
4
4

o]
o}
-
o}
o
Q

(e
0

@

{5

.2

o

<
3]

1=
=

.2

=
©
o
B

S

L
=
o}
®
—
©
o}

o
>

)

o~

i

o

N

X

{5

2
—_
s
Q
o}

o

®)

Ing

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

O 1 O v+ O ++H OO O O o O

_ e e — — - — — — — —

adjacencyMatrix =

Represent

Representing Edges: Adjacency List

neighbors = [[1, 3, 5], [0, 2, 31, [1, 3, 4, 10], [0, 1, 2, 4, 5],
2,3.4,5,7,8,10], [0, 3, 4, 6, 71, [5, 7],
4,5,6,8],[4,7,9, 10, 1], [8, 11],

2, 4,8, 111,18, 9, 10]]

5 5 5

Los Angeles

Denver

Atlanta
Miami

Dallas

Houston

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 14

Modeling Graphs

Graph

vertices: list
[neighbors: list of adjacency list

|Graph(vertexList: list, edgeList: list)
getAdjacencyList(edgelist: list): list
getSize(): int

getVertices(): list

getVertex(index): object
getIndex(v: object): int

getNei ghbors(index: int): list
getDegree(v: object): int

[print Edges(): None

clear(): None

addVertex(v: object): None
addEdge(u: object, v: object): None
+dfs(index: int). Tree

+bfs(index: int): Tree

Stores vertices.

Stores ed ges.

Constructs a graph with the specified vertices and edges.
Retums an adjacency list from ed geList.

R etums the number of vertices in the graph.

Retums the vertices in the graph.

Retums the vertex at the specified index.

Retums the index for the specified vertex.

Retums theneighbors of vertex with the specified index.
Retums the degree for a specified vertex.

Prints the edges.

Clears the graph.

Adds a vertex to the graph.

Adds an edge (from u to v) to the graph.

Obtains a depth -first search tree.

Obtains a bread th-first search tree.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Graph

TestGraph

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 16

Graph Visualization

76 US Map EETX=

Boston

New York

San Francisce

Displayable DisplayUSMap

GraphView ‘ Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 17

Graph Traversals
Depth-first search and breadth-first search

Both traversals result in a spanning tree, which can be

modeled using a class.

parent: list
searchOrders : list
ertices: list
Tree(root: int, parent: list,
searchOrders: list, vertices: list)

getRoot(): int

getSearchOrders(): list

getParent(index: int): int
getNumberOfVerticesFound(): int
getPath(index: int): list

printPath(index: int): None
print Tree(): None

The root of the tree.

The parents of the vertices in index.

The orders for traversing the vertices in index.

The verttices of the graph.

Constructs a tree with the specified root, parent, search
orders, and vertices for the graph.

Returns the root of the tree.

Returns the order of vertices searched.

Returns the parent for the specified vertex index.

Returns the number of vertices searched.

Returns alist of vertices from the specified vertex index
to the root.

Displays a path from the root tothe specified vertex.

Displays tree with the root and all edges.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 18

Depth-First Search

The depth-first search of a graph 1s like the depth-first search of a
tree discussed 1n §19.2.3, “Tree Traversal.” In the case of a tree, the
search starts from the root. In a graph, the search can start from any
vertex.

dfs(vertex v):
visit v
for each neighbor w of v:
if w has not been visited:

dfs(w)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 19

Depth-First Search Example

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 20

San Fran

381

Los Angeles

Depth-First Search Example

Boston

Denver

Miami

TestDFS ‘ TestDFS

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

21

Applications of the DFS

Detecting whether a graph 1s connected. Search the graph starting from any
vertex. If the number of vertices searched is the same as the number of
vertices in the graph, the graph i1s connected. Otherwise, the graph is not
connected (See Exercise 22.2.)

Detecting whether there is a path between two vertices. (See Exercise 22.3)
Finding a path between two vertices. (See Exercise 22.3)

Finding all connected components. A connected component 1s a maximal
connected subgraph in which every pair of vertices are connected by a path.
(See Exercise 22.2)

Detecting whether there is a cycle in the graph. (See Exercise 22.4)

Finding a cycle in the graph. (See Exercise 22.5)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 99

The Connected Circles Problem

74 ConnectedCircles - 74 ConnectedCircles

E=

ConnectedCircles ‘ Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

23

Breadth-First Search

The breadth-first traversal of a graph 1s like the breadth-
first traversal of a tree discussed 1n §22.2.3, “Tree
Traversal.” With breadth-first traversal of a tree, the
nodes are visited level by level. First the root 1s visited,
then all the children of the root, then the grandchildren of
the root from left to right, and so on.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 24

Breadth-First Search Algorithm

bfs(vertex v):

create an empty queue for storing vertices to be visited
add v into the queue
mark v visited
while the queue 1s not empty:

dequeue a vertex, say u, from the queue

add u 1nto a list of traversed vertices

for each neighbor w of u

if w has not been visited:
add w 1nto the queue

mark w visited

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

25

Breadth-First Search Example

Queue: 0

Queue: 123
Quecue: 234

1sVisited[0] = True

1sVisited[1] = True, 1sVisited[2] = True,
1sVisited[3] = True

1sVisited[4] = True

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

26

Breadth-First Search Example

Seattle

Boston

Chicago

Denver

San Fran

381

Los Angeles

Dallas
239

Houston

Miami

TestBFS TestBFS

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

27

Applications of the BFS

Detecting whether a graph is connected. A graph is connected if there 1s a path
between any two vertices in the graph.

Detecting whether there 1s a path between two vertices.

Finding a shortest path between two vertices. You can prove that the path between the
root and any node in the BFS tree is the shortest path between the root and the node
(see Review Question 22.10).

Finding all connected components. A connected component is a maximal connected
subgraph in which every pair of vertices are connected by a path.

Detecting whether there 1s a cycle in the graph. (See Exercise 22.4)
Finding a cycle in the graph. (See Exercise 22.5)

Testing whether a graph 1s bipartite. A graph is bipartite if the vertices of the graph
can be divided into two disjoint sets such that no edges exist between vertices in the
same set. (See Exercise 22.8)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 28

The Nine Tail Problem

The problem 1s stated as follows. Nine coins are placed in a
three by three matrix with some face up and some face
down. A legal move 1s to take any coin that is face up and
reverse 1t, together with the coins adjacent to 1t (this does
not include coins that are diagonally adjacent). Your task 1s
to find the minimum number of the moves that lead to all
coins face down.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 29

Model the Nine Tail Problem

0 1 2 3 211
olojo} |ofJojo] [oJoJo} [ofoJo} ...
0jofo] [ofofr] [oftjof [oft]1]

408 488 240 30 47 51

[1]1]0] 011 S O0[0]0 0100 [0/0]0
0111 101 |1/ 1]0 N of1]1 [1]0]1] [1]1]0
101010 [000 101010 [110

0111

T

00 [0 S

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 30

NineTailModel

NineTailModel

tree: Tree A treerooted at node 511.

Nine Tai IModel () Constructs a model for the nine tail problem and obtains the
tree.

getShortestPath(nodeIndex: int): list Retums a path from the specified node to the root. The path
retumed consists of the node labels in a list.

getEdges(): list Retums an edge list for the graph.
getNode(index: int): list Retums a node consisting of nine characters of H’s and T’s.

getIndex(node: list): int Retums the index of the specified node.

getF lippedNode(n ode: list, position: Flips the node at the specified position and retums the index
int): int of the flipped node.

flip ACell(node: list, row: int, column: | Flips the node at the specified row and column.
int): None

PUHMM&L&D..N&D@ Disp lays the node to the console.

NineTailModel ‘ NineTail

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 31

