
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 1

Graphs and Applications



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 2

Objectives
! To model real-world problems using graphs and explain the Seven 

Bridges of Königsberg problem (§22.1).
! To describe the graph terminologies: vertices, edges, simple graphs, 

weighted/unweighted graphs, and directed/undirected graphs (§22.2). 
! To represent vertices and edges using lists, adjacent matrices, and 

adjacent lists (§22.3).
! To model graphs using the Graph class (§22.4).
! To display graphs visually (§22.5).
! To represent the traversal of a graph using the Tree class (§22.6).
! To design and implement depth-first search (§22.7).
! To solve the connected-circle problem using depth-first search (§22.8).
! To design and implement breadth-first search (§22.9).
! To solve the nine-tail problem using breadth-first search (§22.10).



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 3

Modeling Using Graphs
 

Seatt le 

San  Francisco 

Los Angeles 

Denver 

Chicago 

Kansas City 

Houston 

Boston 

New York 

Atlanta 

Miami 

Dallas 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 4

Weighted Graph Animation
www.cs.armstrong.edu/liang/animation/GraphLearningTool.html

http://www.cs.armstrong.edu/liang/animation/GraphLearningTool.html


© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 5

Seven Bridges of Königsberg 
 

Island 1 
Island 2 

B 

A 

C 
D 

 
A 

C 

B 

D 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 6

Basic Graph Terminologies 
What is a graph?
Define a graph
Directed vs. undirected graphs
Weighted vs. unweighted graphs
Adjacent vertices
Incident 
Degree
Neighbor
loop



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 7

Directed vs Undirected Graph 
 

Peter 

Cindy 

Wendy 

Mark 

Jane 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 8

Basic Graph Terminologies 
Parallel edge
Simple graph
Complete graph
Spanning tree



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 9

Representing Graphs 
Representing Vertices 

Representing Edges: Edge Array 

Representing Edges: Edge Objects 

Representing Edges: Adjacency Matrices 

Representing Edges: Adjacency Lists 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 10

Representing Vertices 
V = ["Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago", "Boston", "New York", 
"Atlanta", "Miami", "Dallas", "Houston"]



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 11

Representing Edges: Edge List 
edges = [

[0, 1], [0, 3], [0, 5],
[1, 0], [1, 2], [1, 3],
[2, 1], [2, 3], [2, 4], [2, 10],
[3, 0], [3, 1], [3, 2], [3, 4], [3, 5],
[4, 2], [4, 3], [4, 5], [4, 7], [4, 8], [4, 10],
[5, 0], [5, 3], [5, 4], [5, 6], [5, 7],
[6, 5], [6, 7],
[7, 4], [7, 5], [7, 6], [7, 8],
[8, 4], [8, 7], [8, 9], [8, 10], [8, 11],
[9, 8], [9, 11],
[10, 2], [10, 4], [10, 8], [10, 11],
[11, 8], [11, 9], [11, 10]

]



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 12

Representing Edges: Edge Object 
class Edge:

def __init__(self, u, v):
self.u = u
self.v = v

edgeList = []
edgeList.append(Edge(0, 1))
edgeList.append(Edge(0, 3))
edgeList.append(Edge(0, 5))  
...



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 13

Representing Edges: Adjacency Matrix 

adjacencyMatrix = [
[0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0], # Seattle
[1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], # San Francisco
[0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0], # Los Angeles
[1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # Denver
[0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0], # Kansas City
[1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0], # Chicago
[0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0], # Boston
[0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0], # New York
[0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1], # Atlanta
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1], # Miami
[0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1], # Dallas
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0]  # Houston

]



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 14

Representing Edges: Adjacency List 
neighbors = [[1, 3, 5], [0, 2, 3], [1, 3, 4, 10], [0, 1, 2, 4, 5], 

[2, 3, 4, 5, 7, 8, 10], [0, 3, 4, 6, 7], [5, 7],
[4, 5, 6, 8], [4, 7, 9, 10, 11], [8, 11], 
[2, 4, 8, 11], [8, 9, 10]]  

 neighbors[0] 

 neighbors[1] 

 neighbors[2] 

 neighbors[3] 

 neighbors[4] 

 neighbors[5] 

 neighbors[6] 

 neighbors[7] 

 neighbors[8] 

 neighbors[9] 

neighbors[10] 

neighbors[11] 

 

Seattle 
San Francisco 

Los Angeles 
Denver 
Kansas City 
Chicago 
Boston 

New York 

Atlanta 
Miami 

Dallas 

 Houston 

[1, 3, 5] 

[1, 3, 4, 10] 

[0, 2, 3] 

[0, 1, 2, 4, 5] 

[0, 3, 4, 6, 7] 

[2, 3, 4, 5, 7, 8, 10] 

[5, 7] 

[8, 9, 10] 

[4, 5, 6, 8] 

[4, 7, 9, 10, 11] 

[8, 11] 

[2, 4, 8, 11] 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 15

Modeling Graphs 
 Graph 

vert ices: l ist 
neighbors: lis t of adjacency l ist 
 
Graph(vertexList: list, edgeLis t: lis t) 
getAdjacencyList(edgeLis t: lis t):  list 
getSize(): int 
getVertices(): list 
getVertex(index): object   
getIndex(v: object ): int 
getNeighbors(index: int): list 
getDegree(v: object ): int 
printEdges(): None 
clear(): None 
addVertex(v: object): None 
addEdge(u: object, v: object): None 

+dfs(index: in t): Tree 
+bfs(index: in t):  Tree 
 

Constructs a graph with  the specified vertices and edges. 
Returns an adjacency list from edgeList. 
Returns the number of vertices in the graph. 
Returns the vertices in the graph. 
Returns the vertex at  the specified index. 
Returns the index for the specified vertex. 
Returns the neighbors  of vertex with the specified index.  
Returns the degree for a specified vertex.  
Prints the edges. 
Clears the graph. 
Adds a vertex to the graph. 
Adds an edge (from u to v) to the graph. 
Obtains a depth -first search tree. 
Obtains a bread th-first search tree.  
 

Stores vertices. 
Stores edges. 
 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 16

Graph

TestGraph

TestGraph



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 17

Graph Visualization

GraphView Run

Displayable DisplayUSMap



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 18

Graph Traversals 
Depth-first search and breadth-first search

Both traversals result in a spanning tree, which can be 
modeled using a class.

 Tree 
 
root: int 
parent:  list  
searchOrders : list  
vert ices: l ist 

Tree(root:  int, parent: l ist, 
searchOrders:  list , vertices:  list)  

getRoot(): int  
getSearchOrders(): lis t 
getParent(index: int): int 
getNumberOfVerticesFound(): in t 
getPath(index: int): list 

printPath(index: int):  None 
printTree(): None 
 

The root of the tree. 
The parents of the vertices in index. 
The orders for traversing the vert ices in index. 
The vert ices of the graph. 

Constructs a tree with the specified root, parent, search 
orders, and vertices  for the graph. 

Returns the root of the tree. 
Returns the order of vertices searched. 
Returns the parent for the specified vertex index.  
Returns the number of vertices searched.  
Returns a list of vertices from the specified vertex index 

to the root .  
Displays a path from the root to the specified vertex. 
Displays tree with the root  and all edges. 
 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 19

Depth-First Search 
The depth-first search of a graph is like the depth-first search of a 
tree discussed in §19.2.3, “Tree Traversal.” In the case of a tree, the 
search starts from the root. In a graph, the search can start from any 
vertex. 

dfs(vertex v):
visit v
for each neighbor w of v:
if w has not been visited:

dfs(w)



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 20

Depth-First Search Example
 

0 1 

2 

3 4 

 
0 1 

2 

3 4 

 
0 1 

2 

3 4 

 
0 1 

2 

3 4 

 
0 1 

2 

3 4 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 21

Depth-First Search Example
 

Seattle 

San Francisco 

Los Angeles 

Denver 

Chicago 

Kansas City 

Houston 

Boston 

New York 

Atlanta 

Miami 

661 

888 

1187 

810 
Dallas 

1331 

2097 

1003 
807 

381 

1015 

1267 

1663 

1435 

239 

496 

781 

864 

1260 

983 

787 

214 

533 

599 

TestDFSTestDFS



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 22

Applications of the DFS 
Detecting whether a graph is connected. Search the graph starting from any 
vertex. If the number of vertices searched is the same as the number of 
vertices in the graph, the graph is connected. Otherwise, the graph is not 
connected (See Exercise 22.2.)

Detecting whether there is a path between two vertices. (See Exercise 22.3)

Finding a path between two vertices. (See Exercise 22.3)

Finding all connected components. A connected component is a maximal 
connected subgraph in which every pair of vertices are connected by a path. 
(See Exercise 22.2) 

Detecting whether there is a cycle in the graph. (See Exercise 22.4)

Finding a cycle in the graph. (See Exercise 22.5)



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 23

The Connected Circles Problem

RunConnectedCircles



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 24

Breadth-First Search 
The breadth-first traversal of a graph is like the breadth-
first traversal of a tree discussed in §22.2.3, “Tree 
Traversal.” With breadth-first traversal of a tree, the 
nodes are visited level by level. First the root is visited, 
then all the children of the root, then the grandchildren of 
the root from left to right, and so on.



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 25

Breadth-First Search Algorithm
bfs(vertex v):

create an empty queue for storing vertices to be visited
add v into the queue
mark v visited
while the queue is not empty:

dequeue a vertex, say u, from the queue
add u into a list of traversed vertices
for each neighbor w of u
if w has not been visited:

add w into the queue
mark w visited



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 26

Breadth-First Search Example
 

0 1 

2 

3 4 

 
0 1 

2 

3 4 

 
0 1 

2 

3 4 

Queue: 0

Queue: 1 2 3

Queue: 2 3 4

isVisited[0] = True

isVisited[1] = True, isVisited[2] = True, 
isVisited[3] = True

isVisited[4] = True



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 27

Breadth-First Search Example

TestBFSTestBFS

 
Seattle 

San Francisco 

Los Angeles 

Denver 

Chicago 

Kansas City 

Houston 

Boston 

New York 

Atlanta 

Miami 

661 

888 

1187 

810 
Dallas 

1331 

2097 

1003 
807 

381 

1015 

1267 

1663 

1435 

239 

496 

781 

864 

1260 

983 

787 

214 

533 

599 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 28

Applications of the BFS 
Detecting whether a graph is connected. A graph is connected if there is a path 
between any two vertices in the graph. 

Detecting whether there is a path between two vertices. 

Finding a shortest path between two vertices. You can prove that the path between the 
root and any node in the BFS tree is the shortest path between the root and the node 
(see Review Question 22.10).

Finding all connected components. A connected component is a maximal connected 
subgraph in which every pair of vertices are connected by a path. 

Detecting whether there is a cycle in the graph. (See Exercise 22.4)
Finding a cycle in the graph. (See Exercise 22.5)

Testing whether a graph is bipartite. A graph is bipartite if the vertices of the graph 
can be divided into two disjoint sets such that no edges exist between vertices in the 
same set. (See Exercise 22.8)



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 29

The Nine Tail Problem 
The problem is stated as follows. Nine coins are placed in a 
three by three matrix with some face up and some face 
down. A legal move is to take any coin that is face up and 
reverse it, together with the coins adjacent to it (this does 
not include coins that are diagonally adjacent). Your task is 
to find the minimum number of the moves that lead to all 
coins face down. 

 
  
 
H   
 T   
 

T   
 

T   
 

H   
 

H   
 

H   
 

H   
 

H   
 

 
  
 
H   
 T   
 

H   
 

T   
 

H   
 

H   
 

T   
 

T   
 

T   
 

 
  
 
T   
 T   
 

T   
 

T   
 

T   
 

T   
 

T   
 

T   
 

T   
 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 30

Model the Nine Tail Problem 
 

  0    0    0 
  0    0    0 
  0    0    0 
 

 
  0    0    0 
  0    0    0 
  0    0    1 
 

 
  0    0    0 
  0    0    0 
  0    1    0 
 

 
  0    0    0 
  0    0    0 
  0    1    1 
 

 
 
….. 
 

 
  1    1    1 
  1    1    1 
  1    1    1 
 

0 1 2 3 511

 
  1    1    0 
  0    1    1 
  0    0    0 
 

 
  1    1    1 
  1    0    1 
  0    0    0 
 

 
  0    1    1 
  1    1    0 
  0    0    0 
 

 
  0    0    0 
  0    1    1 
  1    1    0 
 

 
  0    0    0 
  1    0    1 
  1    1    1 
 

 
  0    0    0 
  1    1    0 
  0    1    1 
 

 
  0    0    0 
  1    1    1 
  0    0    0 
 

408 488 240 30 47 51

56



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 31

NineTailModel 

NineTailNineTailModel NineTail

 NineTailModel 
tree: Tree 

NineTailModel() 
 
getShortestPath(nodeIndex: int): l ist 
 
getEdges(): list  
getNode(index: int): l ist 
getIndex(node:  list): int 
getFlippedNode(node: list, posit ion: 

int): int 
flipACell(node: list , row: in t, column: 

int): None 
printNode(node: list): None 
 

A tree rooted at node 511. 

Constructs  a model for the nine tail problem and obtains the 
tree. 

Retu rns a path  from the specified node to the root. The path 
returned consists of the node labels in a list. 

Retu rns an edge list  for the graph. 
Retu rns a node consisting of nine characters of H’s and T’s . 
Retu rns the index of the specified node. 
Flips the node at the specified position and returns the index 

of the flipped node. 
Flips the node at the specified row and column.  
 
Disp lays the node to the console. 


