
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 1

Weighted Graphs and Applications

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 2

Weighted Graph Animation
www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html

http://www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 3

Weighted Graph Animation
www.cs.armstrong.edu/liang/animation/WeightedGraphLearningTool.html

http://www.cs.armstrong.edu/liang/animation/WeightedGraphLearningTool.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 4

Objectives
! To represent weighted edges using adjacency matrices and

priority queues (§23.2).
! To model weighted graphs using the WeightedGraph class

that extends the AbstractGraph class (§23.3).
! To design and implement the algorithm for finding a

minimum spanning tree (§23.4).
! To define the MST class that extends the Tree class (§23.4).
! To design and implement the algorithm for finding single-

source shortest paths (§23.5).
! To define the ShortestPathTree class that extends the Tree

class (§23.5).
! To solve the weighted nine tail problem using the shortest-

path algorithm (§23.6).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 5

Representing Weighted Graphs
Representing Weighted Edges: Edge List

Weighted Adjacency Matrices

Priority Adjacency Lists

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 6

Representing Weighted Edges: Edge Array

edges = [[0, 1, 2], [0, 3, 8],
[1, 0, 2], [1, 2, 7], [1, 3, 3],
[2, 1, 7], [2, 3, 4], [2, 4, 5],
[3, 0, 8], [3, 1, 3], [3, 2, 4], [3, 4, 6],
[4, 2, 5], [4, 3, 6]

]

4 2

7

8
3

6

5

0

1 2

3 4

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 7

Representing Weighted Edges: Edge Array

4 2

7

8
3

6

5

0

1 2

3 4

0

1

2

3
4

0 1 2 3 4

2

3

4

null 2 null 8 null

2 null 7 3 null

null 7 null 4 5

8 3 4 null 6

null null 5 6 null

adjacencyMatrix = [

 [None, 2, None, 8, None],

 [2, None, 7, 3, None],

 [None, 7, None, 4, 5],

 [8, 3, 4, None, 6],

 [None, None, 5, 6, None]

]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 8

Priority Adjacency Lists

4 2

7

8
3

6

5

0

1 2

3 4

 queues[0]

 queues[1]

 queues[2]

 queues[3]

 queues[4]

WeightedEdge(0, 1, 2) WeightedEdge(0, 3, 8)

 WeightedEdge(1, 0, 2) WeightedEdge(1, 3, 3) WeightedEdge(1, 2, 7)

WeightedEdge(2, 3, 4) WeightedEdge(2, 4, 5) WeightedEdge(2, 1, 7)

WeightedEdge(3, 1, 3) WeightedEdge(3, 2, 4) WeightedEdge(3, 0, 8) WeightedEdge(3, 4, 6)

WeightedEdge(4, 2, 5) WeightedEdge(4, 3, 6)

WeightedEdge

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 9

TestWeightedGraphWeightedGraph TestWeightedGraph

 Graph

 WeightedGraph

queues: list

WeightedGraph(vert ices: l ist, edges: l ist)

getQueueForWeightedEdges(edges): l ist
printWeightedEdges(): void
getWeightedEdges(): l ist

clear(): void
addVertex(v : V): void
addEdge(u: int, v: int , weight: doub le): void
getMinimumSpanningTree(): MST
getMinimumSpanningTreeAt(index: int): MST
getShortestPath(index: int): ShortestPathTree

queues[i] is a heap that contains all the weighted edges
adjacent to vertex i .

Constructs a weighted graph with the specified vertices and
edges.

Creates a priority queue and returns it.
Displays all edges and weights.
Returns all weighted edges for each vertex in a p riority

queue.

Removes all vert ices and edges from the graph.
Adds a vertex to the graph.
Adds a weighted edge to the graph.
Returns a min imum spanning tree start ing from vertex 0.
Returns a min imum spanning tree start ing from vertex v.
Returns all single-source shortes t paths.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 10

Minimum Spanning Trees
A graph may have many spanning trees. Suppose that the edges are weighted. A
minimum spanning tree is a spanning tree with the minimum total weights. For
example, the trees in Figures 23.3(b), 23.3(c), 23.3(d) are spanning trees for the
graph in Figure 23.3(a). The trees in Figures 23.3(c) and 23.3(d) are minimum
spanning trees.

5 6

10

5

8

7

7

12

7

10

8

8

5

5

10

7 7 8

5

5

6
7

7 8

5

5

6

7 7 8

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 11

Minimum Spanning Tree
Algorithm

def minimumSpanningTree():
Let V denote the set of vertices in the graph;
Let T be a set for the vertices in the spanning tree;
Initially, add the starting vertex to T;
while size of T < n:

find u in T and v in V – T with the smallest weight
on the edge (u, v), as shown in Figure 23.6;

add v to T;

u

v

T

V - T Vertices already in
the spanning tree

Vertices not currently in
the spanning tree

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 12

Minimum Spanning Tree Algorithm

u

v

T

V - T Vertices already in
the spanning tree

Vertices not currently in
the spanning tree

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 13

Minimum Spanning Tree Algorithm
Example

6

5 4

3

2

0

5 6

10

5

8

7

7

12

7

10

8

8

1

6

5 4

3

2

0

5 6

10

5

8

7

7

12

7

10

8

8

1

6

5 4

3

2

0

5 6

10

5

8

7

7

12

7

10

8

8

1

6

5 4

3

2

0

5 6

10

5

8

7

7

12

7

10

8

8

1

6

5 4

3

2

0

5 6

10

5

8

7

7

12

7

10

8

8

1

6

5 4

3

2

0

5 6

10

5

8

7

7

12

7

10

8

8

1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 14

Implementing MST Algorithm

 Tree

MST

totalWeight: int

MST(root: int, parent: list, searchOrder: lis t,
totalWeight: int, vertices : list)

getTotalWeight (): int

Total weight of the tree.

Constructs an MST with the specified root, parent array,
searchOrder, total weight for the tree, and vertices.

Returns the totalWeight of the tree.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 15

Time Complexity
For each vertex, the program constructs a priority
queue for its adjacent edges. It takes O(log|V|) time
to insert an edge to a priority queue and the same
time to remove an edge from the priority queue. So
the overall time complexity for the program is
O(|E|log|V|) , where |E| denotes the number of
edges and |V| denotes the number of vertices.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 16

Test MST

TestMinimumSpanningTreeTestMinimumSpanningTree

Seattle

San Francisco

Los Angeles

Denver

Chicago

Kansas City

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810
Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599

1

2

3
4

6

7

8
9

10

11

5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 17

Shortest Path
§23.1 introduced the problem of finding the
shortest distance between two cities for the graph
in Figure 23.1. The answer to this problem is to
find a shortest path between two vertices in the
graph.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 18

Single Source Shortest Path Algorithm
def shortestPath(s):

Let V denote the set of vertices in the graph;
Let T be a set that contains the vertices whose
paths to s have been found

Initially T contains source vertex s with costs[s] = 0
while size of T < n:

find v in V – T with the smallest costs[u] + w(u, v) value
among all u in T

add v to T and costs[v] = costs[u] + w(u, v)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 19

Single Source Shortest Path Algorithm

u

v

T

V - T

s

T contains vertices whose
shortest path to s have been
found

V- T contains vertices whose shortest
path to s have not been found

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 20

SP Algorithm Example

5 5

10

1

8

9

2

4

7

8

8

5

1

 2

3

4

5

6

0

 0 1 2 3 4 5 6

costs
 0

 0 1 2 3 4 5 6

parent
 -1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 21

SP Algorithm Example

5 5

10

1

8

9

2

4

7

8

8

5

1

 2

3

4

5

6

0

 0 1 2 3 4 5 6

costs
 0 5

 0 1 2 3 4 5 6

parent
 -1 1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 22

SP Algorithm Example

5 5

10

1

8

9

2

4

7

8

8

5

1

 2

3

4

5

6

0

 0 1 2 3 4 5 6

costs
 6 0 5

 0 1 2 3 4 5 6

parent
 2 -1 1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 23

SP Algorithm Example

5 5

10

1

8

9

2

4

7

8

8

5

1

 2

3

4

5

6

0

 0 1 2 3 4 5 6

costs
 6 0 5 8

 0 1 2 3 4 5 6

parent
 2 -1 1 0

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 24

SP Algorithm Example

5 5

10

1

8

9

2

4

7

8

8

5

1

 2

3

4

5

6

0

 0 1 2 3 4 5 6

costs
 6 0 5 10 8

 0 1 2 3 4 5 6

parent
 2 -1 1 1 0

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 25

SP Algorithm Example

5 5

10

1

8

9

2

4

7

8

8

5

1

 2

3

4

5

6

0

 0 1 2 3 4 5 6

costs
 6 0 5 10 15 10 8

 0 1 2 3 4 5 6

parent
 2 -1 1 1 5 0 0

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 26

SP Algorithm Implementation

TestShortestPathTestShortestPath

 Tree

ShortestPathTree

costs: list

ShortestPathTree(source: int, parent: list,
searchOrder: list, cos ts: list, vertices)

getCost(vertexIndex: int): int
printAllPaths (): void

costs[v] stores the cost for the path from the source to v.

Constructs a shortest path tree with the specified source,
parent array, and costs array.

Returns the cost for the path from the source to the vertex.
Displays all paths from the source.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 27

SP Algorithm Example

Seattle

San Francisco

Los Angeles

Denver

Chicago

Kansas City

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810
Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599
1

2

3

4

5

6

7

8

9

10

11

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 28

Shortest Path Animation

www.cs.armstrong.edu/liang/animation/ShortestPath
Animation.html

http://www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 29

The Weighted Nine Tail Problem
The nine tail problem is to find the minimum number of the
moves that lead to all coins face down. Each move flips a
head coin and its neighbors. The weighted nine tail
problem assigns the number of the flips as a weight on each
move. For example, you can move from the coins in Figure
(a) to Figure (b) by flipping the three coins. So the weight
for this move is 3.

H
 T

T

T

H

H

H

H

H

T
 H

T

T

T

H

H

H

H

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 30

WeightedNineTailModel

WeightedNineTailWeightedNineTailModel NineTailModel

 NineTailModel
tree: Tree

NineTailModel()

getShortestPath(nodeIndex: int): l ist

getEdges(): list
getNode(index: int): l ist
getIndex(node: list): int
getFlippedNode(node: list, posit ion:

int): int
flipACell(node: list , row: in t, column:

int): void
printNode(node: list): void

A tree rooted at node 511.

Constructs a model for the nine tail problem and obtains the
tree.

Returns a path from the specified node to the root. The path
returned consists of the node labels in a list.

Returns an edge lis t for the graph.
Returns a node consist ing of nine characters of H’s and T’s.
Returns the index of the specified node.
Flips the node at the specified posit ion and returns the index

of the flipped node.
Flips the node at the specified row and column.

Displays the node to the console.

WeightedNineTailModel
WeightedNineTailModel()

getNumberOfFlipsFrom(u: int): int

getNumberOfFlips(u: int , v: int): int

getWeightedEdges(): list

Constructs a model for the weighted nine tail problem
and obtains a ShortestPathTree rooted from the target
node.

Returns the number of flips from node u to the target
node 511.

Returns the number of different cells between the two
nodes.

Creates and return all edges for the graph.

