Weighted Graphs and Applications

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 1

Weighted Graph Animation

www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html

¥ Mozilla Firefox

File Edit View History Bookmarks Tools Help

| \ http://www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html

Shortest Path Animation by Y. Daniel Liang

Seattle

Boston

_ 8B4 /
~~—__ Allafta

Starting City: [Seattle | Ending City: [Miami || Ipisplay Shortest Path

| Done

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

http://www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html

Weighted Graph Animation

www.cs.armstrong.edu/liang/animation/WeightedGraphl_earningTool.html

Mozilla Firefox

File Edit View History Bookmarks Tools Help

@ v c) = http://www.cs.armstrong.edu/liang/animation/WeightedGraphLearningTool.html

http://www.cs.arm...LearningTool.html

Weighted Graph Learning Tool by Y. Daniel Liang

INSTRUCTIONS

Add: Left Click
Move: Ctrl Drag
Connect: Drag
Remaove: Right Click

Find a shortest path

Show MST | Sourcevertex: | || Show All SP From the Source Starting vertex: 'O \ Ending vertex: ’,3 ' ‘ Show Shortest Path

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

http://www.cs.armstrong.edu/liang/animation/WeightedGraphLearningTool.html

Objectives

+ To represent weighted edges using adjacency matrices and
priority queues (§23.2).

+ To model weighted graphs using the WeightedGraph class
that extends the AbstractGraph class (§23.3).

+ To design and implement the algorithm for finding a
minimum spanning tree (§23.4).

+ To define the MST class that extends the Tree class (§23.4).

+ To design and implement the algorithm for finding single-
source shortest paths (§23.5).

+ To define the ShortestPathTree class that extends the Tree
class (§23.5).

+ To solve the weighted nine tail problem using the shortest-
path algorithm (§23.6).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 4

Representing Weighted Graphs

Representing Weighted Edges: Edge List
Weighted Adjacency Matrices
Priority Adjacency Lists

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Representing Weighted Edges: Edge Array

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 6

Representing Weighted Edges: Edge Array

0 1 2
null 2 null

adjacencyMatrix = [

None,

73 2 null 7

None, null 7 null

None, 8 3 A

None, o, null null 5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 7

Priority Adjacency Lists

queues[0] | - [Wei 1,2) | [WeightedEdge(0. 3, 8)|

queues[1]| [WeightedEdge(1,0,2)| [WeightedEdge(1,3,3)]

queues[2] | WeightedEdge(2, 3, 4) | [WeightedEdge(2, 4, 5)]

aueues3] | [Weightedbage(s, 1,3
queues[4] | |WeightedEdge(4, 2, 5)

WeightedEdge

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 8

Graph
AN

WeightedGraph

queues[i] is a heap that contains all the weighted edges

ueues: list .)
q adjacent to vertex i.

WeightedGraph(vertices: list, edges: list) Constructs a weighted graph with the specified vertices and
edges.

getQueueF orWei ghtedEdges(edges): 1ist Creates apriority queue and returns it.
printWeightedEdges(): void Displays all edges and weights.

getWei ghtedEdges(): list Retums all weighted edges for each vertex in a priority
queue.

clear(): void Removes all vertices and edges from the graph.
addVertex(v: V): void Adds avertex to the graph.

addEdge (u: int, v: int, weight: double): void Adds aweighted edge to the graph.

getM inimumS panningTree(): MST Retums a minimum spanning tree starting from vertex 0.
getM inimumS panningTreeAt(index: int): MST | Retums a minimum spanning tree starting from vertex v.

getShortestPath(index: int): ShortestPathTree Retums all single-source shortest paths.

WeightedGraph TestWeightedGraph‘ TestWeightedGraph

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 9

Minimum Spanning Trees

A graph may have many spanning trees. Suppose that the edges are weighted. A
minimum spanmng tree 1s a spanning tree with the minimum total weights. For
example, the trees in Figures 23.3(b), 23.3(c), 23.3(d) are spanning trees for the

graph in Figure 23.3(a). The trees in Figures 23.3(¢) and 23.3(d) are minimum
spanning trees.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

10

Minimum Spanning Tree
Algorithm

def minimumSpanningTree():
Let V denote the set of vertices in the graph;
Let T be a set for the vertices 1n the spanning tree;
Initially, add the starting vertex to T;
while size of T <n:
find uin T and v in V — T with the smallest weight
on the edge (u, v), as shown in Figure 23.6;
add v to T;

Vertices not currently in
the spanning tree

Vertices already in
the spanning tree

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 11

Minimum Spanning Tree Algorithm

Vertices not currently in
the spanning tree

Vertices already in
the spanning tree

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 12

Minimum Spanning Tree Algorithm
Example

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. i

Implementing MST Algorithm

Total weight of the tree.

M ST(root: int, parent: list, searchOrder: list, Constructs an MST with the specified root, parent array,
total Weight: int, vertices: list) searchOrder, total weight for the tree, and vertices.

getTotalWeight(): int Retums the totalWeight of the tree.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 14

Time Complexity

For each vertex, the program constructs a priority
queue for 1ts adjacent edges. It takes O(log|V|) time
to insert an edge to a priority queue and the same
time to remove an edge from the priority queue. So
the overall time complexity for the program 1s
O(|E|log|V]) , where |E| denotes the number of
edges and |V| denotes the number of vertices.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 15

Test MST

Seattle

Chicago

Denver

San Frand{sco
Kansas City

Los Angeles Atlanta
Dallas

239

Houston

TestMinimumSpanning Tree TestMinimumSpanningTree

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 16

Shortest Path

§23.1 introduced the problem of finding the
shortest distance between two cities for the graph
in Figure 23.1. The answer to this problem 1s to
find a shortest path between two vertices 1n the

graph.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 17

Single Source Shortest Path Algorithm

def shortestPath(s):
Let V denote the set of vertices in the graph;
Let T be a set that contains the vertices whose
paths to s have been found

Initially T contains source vertex s with costs[s] =0

while size of T <n:
find v in V — T with the smallest costs[u] + w(u, v) value

among alluin T

add v to T and costs[v] = costs[u] + w(u, V)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 18

Single Source Shortest Path Algorithm

T contains vertices whose
shortest path to s have been
found

V- T contains vertices whose shortest
path to s have not been found

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 19

SP Algorithm Example

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 20

SP Algorithm Example

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 21

SP Algorithm Example

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 99

SP Algorithm Example

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 23

SP Algorithm Example

costs
6| 05|10 || 8

2 3 4 5 6

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 24

SP Algorithm Example

costs
6|1 0| 5(10] 15| 10] 8

1 2 3 4 5 6

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 25

SP Algorithm Implementation

ShortestPathTree

costs: list

ShortestPathTree(s ource: int, parent: list,
searchOrder: list, costs: list, vertices)

get Cost(vertexInd ex: int): int
printAllPaths (): void

costs[v] stores the cost for the path from the source to v.
Constructs a shortest path tree with the specified source,
parent array, and costs armray.

Retums the cost for the path from the source to the vertex.

Displays all paths from the source.

TestShortestPath ‘ TestShortestPath

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 26

SP Algorithm Example

Seattle

Chicago

Denver

Kansas City

Los Angeles Atlanta
Dallas

239

Houston

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Shortest Path Animation

www.cs.armstrong.edu/liane/animation/ShortestPath

Animation.html

&9 Moxilla Firefox
File Edit View History Bookmarks Tools Help

T Mjami

Starting City: :Seattle Ending City: |Miami ‘ Display Shortest Path

| Done

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 28

http://www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html

The Weighted Nine Tail Problem

The nine tail problem is to find the minimum number of the
moves that lead to all coins face down. Each move flips a
head coin and its neighbors. The weighted nine tail
problem assigns the number of the flips as a weight on each
move. For example, you can move from the coins in Figure
(a) to Figure (b) by flipping the three coins. So the weight
for this move 1s 3.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 29

WeightedNineTailModel

NineTailModel

ineTaiIModel () Constructs amodel for the nine tail problem and obtains the
tree.

getShortestPath(nodeIndex: int): list Retums a path from the specified node to the root. The path
returned consists of the node labels in a list.

oetEdges(): list Retums an ed ge list for the graph.
getNode(index: int): Retums a node consisting of nine characters of H’s and T’s.
Retums the index of the specified node.

getFlippedNode(n ode: list, position: Flips the node at the specified position and retums the index
int): int ofthe flipped node.

flip ACell(node: list, row: int, column: | Flips the node at the specified row and column.
int): void

Displays the node to the console.

WeightedNine TailModel

WeightedNineTailM od el() Constructs a model for the weighted nine tail problem
and obtains a ShortestPathTree rooted from the target
node.

get NumberOfF lipsFrom(u: int): int Retums the number of flips from node u to the target
node 511.

Retumss the number of different cells between the two
nodes.

oet NumberOfF lips(u: int, v: int): int

get WeightedEdges(): list Creates and retum all edges for the graph.

WeightedNineTailModel | NineTailModel RWATENaN i abi]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 30

