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Abstract

Data sets with a large number of nominal variables, some with high
cardinality, are becoming increasingly common and need to be ex-
plored. Unfortunately, most existing visual exploration displays are
designed to handle numeric variables only. When importing data
sets with nominal values into such visualization tools, most so-
lutions to date are rather simplistic. Often, techniques that map
nominal values to numbers do not assign order or spacing among
the values in a manner that conveys semantic relationships. More-
over, displays designed for nominal variables usually cannot handle
high cardinality variables well. This paper addresses the problem
of how to display nominal variables in general-purpose visual ex-
ploration tools designed for numeric variables. Specifically, we in-
vestigate (1) how to assign order and spacing among the nominal
values, and (2) how to reduce the number of distinct values to dis-
play. We propose that nominal variables be pre-processed using
a Distance-Quantification-Classing (DQC) approach before being
imported into a visual exploration tool. In the Distance Step, we
identify a set of independent dimensions that can be used to cal-
culate the distance between nominal values. In the Quantification
Step, we use the independent dimensions and the distance informa-
tion to assign order and spacing among the nominal values. In the
Classing Step, we use results from the previous steps to determine
which values within a variable are similar to each other and thus
can be grouped together. Each step in the DQC approach can be ac-
complished by a variety of techniques. We extended the XmdvTool
package to incorporate this approach. We evaluated our approach
on several data sets using a variety of evaluation measures.
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1 Introduction

Nominal (or categorical) variables are variables whose values do
not have a natural ordering or distance. High cardinality nomi-
nal variables (i.e., those with a large number of distinct values) are
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common in real-world data sets. Examples of high cardinality nom-
inal variables include product codes and species names.

Visualization provides an efficient and interactive way of explor-
ing high dimensional data [Ward 1994]. Unfortunately, nominal
variables, especially high cardinality nominal variables, pose a se-
rious challenge for data visualization tool developers. Difficulties
arise due to several reasons.

First, visualization methods specifically designed for nominal
data are not as commonly used as those designed for numeric data
[Friendly 1999]. Possible reasons include: (1) They tend to be
more special-purpose (e.g., Mosaic Displays [Friendly 1999] are
designed for discovering associations whereas Parallel Coordinates
[Inselberg and Dimsdale 1990], which are for numeric variables,
can be used for exploring outliers, clusters, and associations). (2)
Methods such as the Fourfold Display [Friendly 1999] cannot han-
dle multiple nominal variables. (3) Methods such as the Mosaic
Display cannot handle high cardinality variables well. (4) Most
methods are not readily available in common visualization software
[Friendly 1999].

Second, most visualization software packages only provide dis-
plays that are designed for numeric variables. Reasons for this in-
clude: (1) Data sets have traditionally contained only numeric data.
(2) Numeric displays are more general-purpose. (3) The inherent
order and spacing among numeric values makes it natural to con-
vey notions such as magnitude and similarity.

One way to display nominal variables using numeric displays is
to map the nominal values to numbers, i.e., assigning order and
spacing to the nominal values. Display methods such as Paral-
lel Coordinates (Figure 1) require both order and spacing among
values. But care must be taken. Blindly casting nominal values
into numeric displays may introduce artificial patterns and cause
errors in the interpretation of the visualization. Existing nominal-
to-numeric mapping techniques do not always assign both order and
spacing to the values. For example, [Ma and Hellerstein 1999]’s
technique only assigns order to the nominal values, but not spacing.
As a motivating example of the need for order and spacing, refer to
Figures 1 and 2 which both display the quality, color and size infor-
mation of 6550 objects (from a synthetic data set). Figure 1 gives
an example of a display where nominal values were assigned or-
der and spacing using our DQC approach, whereas Figure 2 shows
alphabetical ordering and uniform spacing of the nominal values.
Figure 1 reveals that blue and purple objects have similar underly-
ing distributions for quality and size. Such information is difficult
to extract from Figure 2.

This paper addresses the problem of how to display data sets
with a large number of nominal variables, some with high cardi-
nality, in visual exploration tools designed for numeric variables.
Specifically, we address two sub-problems:

e How do we map nominal values to numbers such that we ef-
fectively assign order and distance among the values? Order
is used to position values along an axis, where the adjacency
of values suggests similarity. Distance is used to space the
values along that axis. The amount of spacing suggests the
degree of similarity among values, making it easier to spot
clusters as well as outliers.

e When a variable has many values, how do we group similar
values together to reduce the number of distinct values to dis-
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Figure 1: Parallel Coordinates
with FCA Quantification.

Figure 2: Parallel Coordinates
with Arbitrary Quantification.

play? Reducing the cardinality is needed for displays such as
Dimensional Stacking [LeBlanc et al. 1990] and Trellis Dis-
plays [Becker et al. 1997] which are limited by the number of
values they can display.

We also want our solution to have the following features: data-
driven (not relying on domain knowledge), multivariate (using the
relationship of a nominal variable with several other variables to de-
cide the ordering, spacing and classing of the values), scalable (can
work with a large number of variables with high cardinality using
limited memory), distance-preserving (the distance between two
nominal values in nominal space is preserved in numeric space),
association-preserving (nominal variables that are highly associ-
ated in nominal space are also highly correlated in numeric space),
and accessible (readily available to data analysts). To our knowl-
edge, no solution exists that has all these features (this is further
discussed in Section 2).

To solve this problem, we propose that nominal variables be
pre-processed using a Distance-Quantification-Classing (DQC) ap-
proach before being imported into visual exploration tools designed
for numeric variables. In the Distance Step, we transform the data
and search for a set of independent dimensions that can be used
to calculate the distance between nominal values. This distance
is based on each value’s distribution across several other nominal
variables. In the Quantification Step, we assign order and spacing
among the nominal values based on the distance information. In
the Classing Step, we determine which values within a variable are
similar to each other and thus can be grouped together. Each of
these three steps can be accomplished by more than one technique
as we will show in Sections 4 to 6.

We implemented the DQC approach in XmdvTool, a public-
domain visualization package developed at WPI [XmdvTool Home
Page 2003]. For the Distance Step, we implemented and evalu-
ated two alternatives — the well-established technique of Multiple
Correspondence Analysis (MCA) [Greenacre 1993] from Statistics
and our own Focused Correspondence Analysis (FCA) which we
describe in this paper. FCA is our proposed alternative to MCA
when memory is limited. For the Quantification Step, we used a
modification of the Optimal Scaling technique [Greenacre 1993] to
also make it work for data sets with perfectly associated variables.
For the Classing Step, we used a Hierarchical Clustering algorithm
[Johnson and Wichern 1988] so we can perform multivariate class-
ing (using information from several variables to guide the classing).

To test our ideas, we pre-processed several data sets using the
DQC approach and used numeric displays such as Parallel Coor-
dinates to evaluate the usefulness of the quantified versions of the
nominal variables. We compared MCA, FCA and arbitrary quan-
tification using a wide range of evaluation measures such as time,
memory, quality of quantification, quality of classing, and quality
of visual display.

2 Related Work

Visualizing Nominal Variables: Several approaches to visual-
izing nominal variables exist. One can use displays that are specif-
ically designed for nominal variables: sieve diagrams [Friendly
1999], mosaic displays [Friendly 1999], Correspondence Anal-
ysis maps [Greenacre 1993], fourfold displays [Friendly 1999],
treemaps [Kolatch and Weinstein 2001], dimensional stacking
[LeBlanc et al. 1990] and CatTrees [Kolatch and Weinstein 2001].
Unfortunately, these approaches are either special-purpose, not
readily available in common data analysis software [Friendly 1999],
or cannot handle high cardinality nominal variables well.

Others have mapped nominal values to numbers using some or-
dering technique and equal spacing between values, and then dis-
played them using numeric displays. Ordering techniques range
from arbitrary ordering (e.g., alphabetical order), ordering based
on the value of another variable [Ward 1994] (e.g., time), order-
ing based on domain expertise [Ma and Hellerstein 1999], to more
intelligent ordering techniques (e.g., via natural clusters [Ma and
Hellerstein 1999], using the spectral method [Beygelzimer et al.
2001]). Unfortunately, arbitrary ordering often creates artificial
patterns which can lead to wrong conclusions. Furthermore, equal
spacing does not convey the degree of similarity between nominal
values.

Correspondence Analysis: Several research efforts on Corre-
spondence Analysis (CA) have provided ideas for our research.
[Friendly 1992] suggested using the coordinates from the first CA
principal axis to order the values of nominal variables in mosaic
displays to reveal the pattern of association. [Greenacre 1993] pro-
posed using the coordinates from the first CA principal axis as input
to create a classing tree. In this tree, the nominal values are grouped
together using reduction in inertia to represent loss of information.
[Greenacre 1993] also suggested the use of quantified versions of
nominal variables as input to statistical techniques that require nu-
meric variables such as regression. The SPSS Categories package
uses CA to pre-process data for their Categorical Regression mod-
ule and uses CA maps for visualizing nominal variables [Meulman
and Heiser 2000]. These uses of the coordinates of the first CA
principal axis seem to be due to the theory of Optimal Scaling, that
states that these coordinates provide an optimal numeric representa-
tion of the nominal values [Greenacre 1993]. Unfortunately, when
the nominal variable is perfectly associated with another nominal
variable, such coordinates are not optimal, as we will show later.

[Milanese et al. 1996] used CA and clustering to group similar
images and created a hierarchical tree for use in fast indexing into
classes of images. This is similar to our approach in that we also
use CA as a data reduction technique and use clustering to group
similar nominal values together.

Classing: There are several approaches to grouping similar nom-
inal values together. One could use expert knowledge but this can
be tedious for high cardinality nominal variables. One could use
information about the nominal variable itself (e.g., based on the fre-
quency of occurrence of the values, the values can be grouped into
popular, common or rare values). Or, one could use the relation-
ship of the nominal variable with a target classification or regression
variable [Micci-Barreca 2001] (e.g., group cities based on income
level). But using only one specific variable to guide the classing
(bivariate classing) may result in a classing that is believable only
within the context of that specific variable (e.g., if we group cities
based on income level alone, we may have to regroup cities if we
want to visualize their relationship with land area). A better class-
ing approach is to use several variables to guide the classing of a
target variable (multivariate classing). One multivariate classing
approach applies Clustering [Johnson and Wichern 1988] on a data
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set where the records represent the nominal values and the vari-
ables contain summary information about each nominal value. We
use this clustering approach for our Classing Step (Section 6).

3 Overview of Proposed Approach

Our proposed approach, the Distance-Quantification-Classing ap-
proach, consists of three steps (Figure 3). Each step can be accom-
plished by more than one technique. In this section, we describe the
input, output and purpose of each step. In the succeeding sections,
we discuss possible techniques for each step.

Target variable &
data set with nominal variables

DISTANCE STEP

(Target variable * independent dimensions)
table for distance calculation

QUANTIFTCATION STEP | <=+ | CLASSING STEP |

Nominal-to-numeric
mapping

Classing tree

Figure 3: DQC Approach

Step 1: Distance Step - Given a data set with nominal vari-
ables, one of which is the nominal variable to be quantified and
classed. The purpose of this step is to create a table where the rows
represent the values of the nominal variable and the columns rep-
resent information about the other variables in the data set. For
this table to be useful for the Quantification and Classing steps, we
should be able to calculate the distance between two nominal values
from this table.

To explain this better, consider a data set that contains quality,
color and size information for 6550 objects. Quality has three pos-
sible values — good, ok, bad; color has six values — blue, green, or-
ange, purple, red, white; and size has ten values —’a’ to ’j’. Suppose
we want to analyze color (which we shall call our target variable)
using quality and size (which we shall call our analysis variables).
To analyze color, we look at the distribution of its values with re-
spect to the analysis variables using a contingency or counts table
(Figure 4). From the counts table, we can calculate row percent-
ages (Figure 5) and get a glimpse of which colors are similar to
each other based on row profiles; Figure 5 shows that blue and pur-
ple have similar row profiles. From the row percentage table, we
may be tempted to calculate the distance between two rows using
Euclidean Distance formula; however, there are two row percentage
tables for color (color by quality and color by size). The technique
to be used for this step must have a way to combine all the columns
of all tables for color, extract new dimensions that are independent
of each other, and transform the counts table into a table that uses
the independent dimensions (Figure 6). These independent dimen-
sions would then be the basis of distance calculations needed in
the succeeding steps. Using independent dimensions ensures that
the distance calculation is not biased by groups of highly associ-
ated columns. This argument is similar to performing Principal
Component Analysis prior to Cluster Analysis to ensure that the
dimensions are independent of each other as required by the Eu-
clidean Distance calculations [Johnson and Wichern 1988]. Each
row in the output table (Figure 6) can be thought of as a point in
p-dimensional space defined by the p independent dimensions.

Often, the number of analysis variables is large although several
may be highly associated with each other. This suggests that the

number of independent dimensions to keep in the output table (Fig-
ure 6) can be reduced while still maintaining a high accuracy for the
distance calculation. This Distance Step must also determine how
many of the independent dimensions to keep.

This step is the most important step as it dictates the accuracy
of the distance calculation needed in the Quantification and Class-
ing Steps. It is also the most memory hungry and computationally
intensive step as it involves transformations of the original (large)
data sets and data reduction.

: Percentaoces
COLOR by QUALITY Counts Row Percentages

‘ _(}ood Ok Bad _‘Iulul | Gioo k ad |
Blue 187 727 546 1460 Blue 1"0

Green 267 538 356 1161 Green | 23 5 31 100
Orange 276 411 191 878 Orange| 3 22 100
Purple 155 436 361 952 Purple 100
Red 283 307 357 047 Red 30 T 38 100
White | 459 366 327 1152 White 10 32 28 1100

Total 1627 2785 2138 6550

Figure 5: Row Percentage Ta-

Figure 4: Counts Table ble Showing Row Profiles

Step 2: Quantification Step - Given a table with rows repre-
senting the values of the target variable and columns representing
independent dimensions extracted from the analysis variables (Fig-
ure 6), this step uses the distance information to assign order and
spacing to the values of the target variable. The output is a nominal-
to-numeric mapping (Figure 7). The goal of this step is to create
that mapping in a way that is distance-preserving and association-
preserving.

Coordinates for
Independent Dimensions .
Nommal | Numeric
| Dim1__ Dim2 e e
Bluc = Green s
Orange O8N
Green -0.54 0.14 l‘urpic O
Orange 0.55 0.10 Red S0
Purple White (S
Red -0.50 0.20 :
White 0.57 0.19

Figure 7: Nominal-to-Numeric

Figure 6: Transformed Table Mapping

with Independent Dimensions

Step 3: Classing Step - This step uses the distance informa-
tion derived in the Distance Step to determine which values of the
target variable are similar to each other and thus can be grouped
together with minimal loss of information. Ideally, the output is
a hierarchical classing tree showing which values can be grouped
together successively and the information lost with each grouping
(Figure 8).

Note that the Quantification and Classing steps may or may not
be dependent of each other, as suggested by the dashed line between
them in Figure 3.

The DQC approach has several advantages. First, it is general-
purpose. It provides a pre-processing approach that is useful not
only for visualization purposes but also for other techniques that
cannot handle high-cardinality nominal variables (e.g., clustering
algorithms, association rules) or can only handle numeric variables.
Second, it provides a hierarchical classing tree which gives users
the flexibility to decide how many value-groups to use in visual
displays, depending on their specific analysis goals. Third, it en-
ables multivariate quantification and classing (i.e., determining the
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Figure 8: Classing Tree with Information Loss Measure

distance between the values based on their profiles across several
other variables) which we believe provides more robust results.

4 Distance Step

A well-known family of techniques from Statistics suitable for
the Distance Step is the Correspondence Analysis (CA) family
[Greenacre 1993; SAS Institute Inc 2000; StatSoft Inc 2002]. CA
has been reinvented under different names such as Dual Scaling,
Optimal Scaling and Reciprocal Averaging. Its simplest version,
called Simple Correspondence Analysis (SCA), is designed to ana-
lyze the relationship of two nominal variables. SCA takes as input
a 2-way counts table (Figure 4). The rows of the counts table can
be thought of as data points in a p-dimensional coordinate space
defined by the p columns. As such, there is a distance between two
data points. CA eliminates the dependencies among the columns
by extracting a reduced set of new columns that are independent
of each other, while still preserving all or most of the information
about the differences between the rows. Figure 6 shows an example
output from CA. CA is similar to Principal Component Analysis
(PCA) except that CA is for nominal variables while PCA is for
numeric variables. Just like PCA, each successive independent di-
mension (called a principal axis) explains less and less of the overall
information.

In its general form, CA can analyze n-way tables that contain
some measure of correspondence between the rows and columns
(not just counts). In this Distance Step, one can use any version of
Correspondence Analysis, as long as it can analyze the relationship
of more than two variables and it can provide as output the coordi-
nates of the top independent dimensions for each value of the target
nominal variable (as in Figure 6). In the following subsections, we
describe two versions of CA suitable for the Distance Step.

4.1 Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) extends SCA to analyze
more than two nominal variables [Greenacre 1993; SAS Institute
Inc 2000; StatSoft Inc 2002]. To perform MCA, simply create a
Burt Table (Figure 9) and use that as input to SCA. If a counts table
is a cross between two nominal variables, a Burt Table is a cross
of all variables by all variables. If V is the total number of unique
values across all variables, then the size of the Burt Table is V*V.

The Burt Table structure allows MCA to simultaneously analyze
all variables. That is, for every target variable, it can build row
profiles using information from all other variables. This simultane-
ous analysis is efficient in terms of processing time because certain
calculations can be reused, though wasteful in memory. When the
number of nominal variables to analyze is large and some have high
cardinality, MCA could run out of memory, depending on how it is
implemented.

The coordinates of the first principal axis from MCA follow an
optimal scaling property [Greenacre 1993]. This means that such
coordinates represent a quantification of all nominal values in all

variables. Note, however, that this quantification is sub-optimal
when the target variable has a perfect 1-to-many or many-to-many
association with another variable, as we show in Section 7.

QUALITY
Quality by Quality] Quality by Color
Counts Table Counts Table

COLOR SIZE
Quality by Size
Counts Table

QUALITY

Color by Size
Counts Table

Color by Quality
Counts Table

Color by Color
Counts Table

COLOR

Size by Size
Counts Table

SIZE Size by Quality
Counts Table

Size by Color
Counts Table

Figure 9: Example MCA Input Table (Burt Table)

QUATLITY SIZE

Color by Qualit: Color by Size
COLOR > u Counts Table

Counts Table

Figure 10: Example FCA Input Table (Compressed Burt Table)

4.2 Focused Correspondence Analysis

Due to the memory-intensive nature of MCA, we have designed an
alternative solution, which we call Focused Correspondence Analy-
sis (FCA), aimed at processing a large number of nominal variables,
some possibly having high cardinality.

Unlike MCA which analyzes all variables simultaneously, FCA
analyzes one variable at a time, making FCA less computationally
efficient than MCA. The memory savings in FCA come from this
key idea: instead of comparing value profiles across all other nom-
inal variables, just compare value profiles across the set of nominal
variables most associated (i.e., correlated) with the target variable.
For example, to analyze one nominal variable color against its most
associated variables, say quality and size, we use a compressed Burt
table such as Figure 10 as input to SCA. This table is a concatena-
tion of counts tables of color*quality and color*size.

We now discuss why such a table would be a valid input for
SCA. In Section 4, we mentioned that the basic version of SCA
uses a counts table as input. In Section 4.1, we indicated that we can
perform MCA by using a Burt Table as input to SCA. In general,
SCA can use as input any table that has the following properties
[Greenacre 1984]: (1) the table must use the same physical units or
measurements, and (2) the values in the table must be non-negative.
If the input table does not meet these assumptions, the table must be
transformed before performing SCA. The table in Figure 10 follows
these properties.

Two pre-processing steps are needed for FCA: (1) Measure the
pairwise association between nominal variables, and (2) Determine
the top k associated variables for each nominal variable.

4.2.1 Measure the pairwise association between nominal
variables

Given the counts table of two nominal variables, we can state how
closely related the variables are with each other using measures
of nominal association [Agresti 1990]. These measures are anal-
ogous to measures of correlation between numeric variables. Sev-
eral measures of nominal association exist. The choice depends on
factors such as the size and shape of the counts table and the pres-
ence of low counts [Agresti 1990]. For our purpose, we want a
measure of association that is valid for counts tables that may be
large, non-square and may contain low cell counts — all properties
of counts tables from high cardinality variables. We also want a
measure of association that has a bounded range of values, so it is
easy to compare two values. One such measure is the Uncertainty
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Coefficient Asymmetric measure UR|C) [SAS Institute Inc 2000].
U(R|C) gives the proportion of uncertainty in the row variable R
that can be explained by the column variable C. If UR|C) = 1, the
value of the row variable can be known precisely given the value of
the column variable.

4.2.2 Determine top k associated variables for each nom-
inal variable

For now, we select some k greater than 2, depending on the memory
space available. Since there may be variables that are only weakly
associated with other variables, we cannot use a threshold on the
measure of association chosen in Section 4.2.1. By selecting k to be
greater than 2, we ensure that we use at least one analysis variable
for each target variable.

In summary, FCA has its own strengths and weaknesses. With
FCA, memory usage is reduced and, in fact, controllable. Also,
we empirically show in Section 7 that FCA provides better classing
trees compared to MCA for some data sets. FCA however needs a
longer run time compared to MCA. This is due to the one-at-a-time
analysis as well as the need for pre-processing. In the context of
visualization tools, intelligently mapping nominal values to num-
bers is a pre-processing step that can be run in batch mode. Hence,
the run time may not be as important compared to memory space in
some situations.

4.3 Reduce Number of Dimensions to Keep

The CA family of techniques uses forms of decomposition (e.g.,
Singular Value Decomposition, Eigenvalue Analysis) to extract
the set of independent dimensions. By default, all forms of CA
will keep all independent dimensions calculated [Greenacre 1993]
which, for high dimensional high cardinality data sets, require a
lot of space. These independent dimensions are ordered by dimin-
ishing importance. Part of the CA output is the set of eigenvalues
(principal inertia) that indicate the importance of each independent
dimension. The first dimension, which is the most important di-
mension, will have the highest eigenvalue. We plot the eigenvalue
by dimension number (called a Scree Plot) and find the ’elbow’,
the point at which the change in consecutive eigenvalues is small.
We keep only the dimensions up to the *elbow’. This is a common
technique used in Factor Analysis [SAS Institute Inc 2000]. This
technique is independent of the particular version of CA we use for
the Distance Step.

In summary, the MCA-based Distance Step algorithm is as fol-
lows:

1. BurtTable(rawdataMatrix) -> burtMatrix
2. SCA(burtMatrix) -> coordMatrix, evaluesVector
3. ReduceNumberDim(coordMatrix, evaluesVector) -> coordMatrixSubset

while the FCA-based Distance Step algorithm is as follows:

. PairwiseAssociation(rawdataMatrix) -> assocMatrix

. Set k

. FCATable(rawdataMatrix, k, assocMatrix) -> fcalnputMatrix

. SCA(fcaInputMatrix) -> coordMatrix, evaluesVector

. ReduceNumberDim(coordMatrix, evaluesVector) -> coordMatrixSubset

g WwN -

5 Quantification Step

Quantification is the process of assigning order and spacing to the
nominal values. For this step, we want a technique that can take
as input the independent dimensions from the Distance Step and
produce a nominal-to-numeric mapping for each nominal variable.

As mentioned in Section 2, a popular technique used for quantifi-
cation is based on the theory of Optimal Scaling [Greenacre 1993].

Based on Optimal Scaling, we can use the coordinates from the first
CA independent dimension as the quantified version of the nomi-
nal values. Unfortunately, when a nominal variable is perfectly as-
sociated with another variable (e.g., one-to-many association: one
state has many zip codes, or many-to-many association: specific
products are only sold in specific regions), we have found in our
experiments that this technique fails (see Section 7).

Since we want our technique to work without the need for do-
main knowledge, we want it to automatically handle cases of per-
fect associations. Hence, we propose an adjustment to the Optimal
Scaling approach: If the first n CA eigenvalues are 1.0, let scale; =

” _ coordinate; . where coordinate; i is the coordinate of the jth
1ndependent dlmenswn for row i. Else set scale; = Coordznatel |
(coordinate of the first independent dimension). Scale is the term
used in Optimal Scaling for the quantified version of a nominal vari-
able. In Section 7, we show that this proposed adjustment gives
more effective results for cases with perfect association.

By using independent dimensions extracted via CA to create the
quantified versions of nominal values, we have essentially defined
the order and spacing of two nominal values to be a function of
the chi-squared distance between them. Chi-squared distance is the
distance function used in CA [Greenacre 1993]. Chi-squared dis-
tance is the weighted Euclidean Distance between a row profile and
the average (or expected) row profile. Put differently, the quanti-
fied version of a nominal value depends on how different its profile
is from the average profile. This implies that even if the nominal
variable has an underlying order (i.e., even if it is actually a dis-
cretized numeric variable), that order is not likely to be recreated in
the quantified version.

An alternative to our modified optimal scaling is to use an algo-
rithm similar to [Ankerst et al. 1998]’s algorithm for rearranging
dimensions for a visualization. We search for an ordering of the
rows of Figure 6 that minimizes the sum of the distances between
all pairs of adjacent rows. This defines the order of the nominal
values. The spacing between values can be defined using the dis-
tance between the row values. Our Optimal Scaling quantification
is faster than this algorithm because Optimal Scaling directly uses
output from CA at no extra cost.

6 Classing Step

Classing (or intra-dimension clustering) is the process of finding
which values within a nominal variable are similar to each other and
thus can be grouped together. For this step, we want a technique that
can take as input a table with rows representing the values of the
target variable and columns representing independent dimensions
extracted from the analysis variables, and produce a hierarchical
classing tree showing value groupings and the amount of informa-
tion lost with each grouping (shown in Figure 8). One method for
solving this is to apply a hierarchical clustering algorithm on the CA
output table (Figure 6), where each value (row point) is weighted
by its counts.

Classing is a data reduction technique, thus it results in loss of
information. In this step, we also want to show the amount of in-
formation lost whenever two values are grouped together, and dis-
play this alongside the classing tree. To approximate the loss of
information incurred in classing the nominal variable X, we fol-
low four steps (inspired by [Greenacre 1993]): (1) Determine the
variable V with the highest association with X. (2) Create a con-
tingency table between variables X and V. (3) Calculate the total
table measure of association (e.g., Uncertainty Coefficient). (4)
Starting from the bottom of the classing tree and going all the
way to the top, for every pair of nodes merged together, calcu-
late the loss of information incurred, defined by the cumulative
percentage loss of information InfoLoss = 100 * (A(fullTable) —
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Data NOTPERF | PERF Mushroom | Auto- Census
Characteristics Synthetic Synthetic mobile

# nominal 3 3 15 10 9
variables

# records 6350 3643 8124 205 3969
Max # values/var | 10 15 12 22 41
Total # values 19 35 102 61 101
Min strength of 0.003 0.6 0.02 0.01 0.01
association (U)

Max strength of 0.13 1.0 0.53 1.0 0.57
association (U)

Figure 11: Evaluation Data Sets

AlafterMerging))/A(fullTable), where A(t) is the association
measure for table t. An alternative measure of information loss is
the R-squared measure that can be calculated with Cluster Analysis
[SAS Institute Inc 2000].

7 Experimental Evaluation

In this section, we compare the MCA-based implementation, FCA-
based implementation and the common approach of arbitrary quan-
tification (arbitrary ordering and uniform spacing) using a wide
range of evaluation measures. We focus our evaluations on the Dis-
tance Step (MCA vs. FCA) because it is the most important step
in the DQC approach. All implementations and evaluations were
done within XmdvTool [XmdvTool Home Page 2003].

7.1 Setup

We used real as well as synthetic data sets, as listed in Figure 11.
The real data sets used are popular benchmark data sets taken from
[Blake and Merz 1998]. We have used only the nominal variables
for most of these data sets. The NOTPERF synthetic data set has
three variables (quality, color, size) and is intended to simulate vary-
ing degrees of association. This is the data set used in all examples
given in earlier sections. The PERF synthetic data set has three
variables (region, country and product code) and is intended to
simulate perfect associations (1-to-many: region-country, many-to-
many: specific set of products are only sold in specific countries).

7.2 Quality of Visual Display

Intuitively, quantification A is better than quantification B if the vi-
sual display resulting from A allows the data analyst to confirm or
discover (true) patterns in the data that are otherwise harder or im-
possible to learn using B. The quality of a visual display is more
difficult to measure and quantify. One alternative is to conduct user
studies and have subjects answer questions using data sets for which
they have some domain knowledge. Example questions include:
Based on your domain knowledge, are the values that are positioned
close together for the most part similar to each other? Are the val-
ues that are positioned far from the rest of the other values for the
most part that different? Are there fewer line crossings because of
the ordering and spacing? Did you discover any new patterns (e.g.,
outliers, clusters, strength of association between two nominal vari-
ables)? In general, which quantification do you feel is better (easier
to understand, more believable ordering and spacing)?

7.2.1 Automobile Data Set Case Study

We chose the Automobile Data Set because it is easy to interpret.
Figures 12, 13 and 14 display the quantified versions of selected

variables in a Parallel Coordinates display. In Parallel Coordinates,
each vertical line represents one variable, and each polyline cutting
across the vertical axes represents one instance in the data set. Par-
allel Coordinates is one type of display that requires ordering and
spacing of values and it can display several variables compactly. In
these figures, we have ordered the variables such that the vertical
axes of highly associated variables are adjacent to each other for
easier interpretation.
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Audi, VW, Jag r /ICONVERTIBLE
BMW /
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Ren,Isu,Dod,Ply
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/ \ [ HATCHBACK
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Figure 12: Automobile Data, MCA-Based Quantification
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Figure 13: Automobile Data, FCA-Based Quantification
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Figure 14: Automobile Data, Arbitrary Quantification

The MCA-based display (Figure 12) and the FCA-based dis-
play (Figure 13) present alternative notions of similarity among
the values. Some results are similar (Peugot/Mercedes are posi-
tioned away from Honda/Mazda), some are different (the spac-
ing between Convertible/Hardtop/Hatchback and Sedan/Wagon).
But both MCA and FCA displays confirm our domain knowledge.
Which is better depends on the user’s preference. Also, both MCA
and FCA-based displays have fewer line crossings than the Arbi-
trary Quantification display (Figure 14).
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7.2.2 PERF Data Set Case Study

Figures 15 and 16 display the quantified versions of the variables
in the PERF Data Set. Recall that the region-country pair has a
1-to-many association while the country-product code pair has a
many-to-many association. These perfect associations are revealed
in all CA-based quantifications but are hidden in the arbitrary quan-
tification.

Region Country Product

NORTH AM MEX,CAN,USA MED.BOO.GAD

EUROPE FRAUK.SPA JEW, ARTANT

SOUTH AM ARG, BRA,CHI FRU.VEG,CLO

ASTA FJAP SIN,TAI COM,.TV.RAD

GOL.IRO.SIL,

AFRTCA ZIMKEN,NIG

Figure 15: Perfect Association Data, FCA-Based Quantification
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Figure 16: Perfect Association Data, Arbitrary Quantification

7.3 Memory Space and Processing Time

The most memory-intensive part of our implementation is the use
of CA in the Distance Step, so we only focus on the memory
needed there. Ignoring any specific memory optimization that may
be employed by some CA implementations, in general, the MCA
input table (Figure 9) requires (sum_of _cardinality)> while the
FCA input table (Figure 10) requires at most max_cardinality
(sum_of _cardinality — max_cardinality) for each nominal variable
to be processed. These formulas and the example tables show that
MCA uses more memory than FCA.

Figure 17 shows the percentage of time the FCA-based approach
runs longer than MCA-based using the formula 100 * (fotal time —
MCA_total time) /(MCA total time). For each MCA bar, we show
the actual number of seconds that the MCA-based approach ran. So
although the gap between FCA and MCA run times seems large, the
actual run time of the FCA-based approach is still fast.

7.4 Quality of Quantification

Intuitively, a given quantification is good if (a) instances that are
close to each other in nominal space are also close together in quan-
tified space, and (b) if two variables are highly associated with each
other, we expect their quantified versions to also have high correla-
tion measure.

7sec 6sec

80 +

17sec 22se
60 -+ . )
51sec EMCA

mFCA

20 +

Normalized RunTime

0} . . . .
NOTPERF PERF Mushroom Auto Census

Figure 17: Total Run Time of Entire DQC Approach

[Greenacre 1993] suggests the use of Average Squared Cor-
relation to measure the quality of a quantification. Given the
original dataset, replace each nominal variable v; with its quan-
tified version Q- (i.e. scale). For each instance i, calculate
score; = average(Q ) for all variables j. For each quantified vari-
able Q i calculate the correlation of Q and score for the en-

tire data set. Then calculate the averagejquared,correlazion =
average((correlation( j,score))z) across all Q;. The higher the
average squared correlation, the better the quantification. Intu-
itively, if two variables are highly associated with each other, we
expect their quantified versions to also have a high correlation mea-
sure. If all nominal variables are highly associated with each other,
then the score of each observation should be highly correlated with
each individual quantified variable. This further implies that if two
observations are close together in nominal space, then they would
also be close together in quantified space; so the scores of these
observations would be close to each other.

Figure 18 shows the Average Squared Correlation for MCA-
based, FCA-based and arbitrary quantifications. It shows that both
CA-based quantifications are better than arbitrary quantification.
The figure also verifies the Optimal Scaling theory, namely, that the
quantification based on the coordinates of the first MCA extracted
dimension is optimal [Greenacre 1993]. Figure 19 shows how close
the FCA scales are to the MCA scales. This figure uses boxplots to
show, for the real data sets, the distribution of the correlation be-
tween MCA and FCA scales. These boxplots show the minimum
and maximum values as well as the 25th, 50th and 75th percentile
values of each set of correlation values. Correlation values close to
1.0 mean the FCA scales closely agree with the MCA scales.

1
08 +

06 1 [marbitrary|

EFCA
04 + I I { | |OMCA

Rl I i i

NOTPERF PERF Mushroom Auto Census

Average Squared Correlation

Figure 18: Average Squared Correlation

7.5 Quality of Classing

Intuitively, classing A is better than classing B if, given a classing
tree, the rate of information loss with each merging is slower. One
way of calculating information loss is given in Section 6.

Figure 20 compares the rate of information loss of MCA com-
pared to FCA for one variable. Each line shows the cumulative
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Legend
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Figure 19: Correlation between MCA Scales and FCA Scales

information loss incurred at each merging of nodes. The lower
the line, the slower is the information loss, the better the class-
ing. The gap between the lines (MCA_cumulative_loss minus
FCA_cumulative_loss) can be calculated for all variables. Its distri-
bution has been summarized in Figure 21. This plot shows that the
FCA-based classing is better than MCA-based for some data sets.
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Figure 20: Information
Loss Due To Classing
For One Variable

Figure 21: Distribution of the Differ-
ence in MCA and FCA Information
Loss

8 Conclusions

In this paper, we proposed the Distance-Quantification-Classing
(DQC) approach which enables the exploration of data sets con-
taining nominal variables using visualization tools that have been
designed exclusively for numeric variables. To make the approach
accessible to data analysts, we implemented it in XmdvTool, a
public-domain multivariate data visualization package. For our im-
plementation, we used Multiple Correspondence Analysis (MCA)
and our own Focused Correspondence Analysis (FCA) for the Dis-
tance Step, a modification of the Optimal Scaling formula for the
Quantification Step, and Hierarchical Clustering for the Classing
Step. We evaluated our approach in terms of memory space re-
quirement, run time, quality of quantification, quality of classing,
and quality of visual display. MCA-based and FCA-based quan-
tifications are clearly better than the common practice of arbitrary
quantification. In terms of the quality of classing and quantifica-
tion, MCA seems to perform better than FCA but in terms of the
quality of the visual displays, which one is better depends on the
eye of the beholder. When memory space is limited, FCA provides
a viable alternative to MCA for the Distance Step. The adjustment
made to the quantification function to make it work for variables
with perfect association improves upon the existing technique of
taking only the coordinates of the top CA dimension. Producing
classing trees further allows users to reduce the data for displays
requiring low cardinality nominal variables.

The DQC approach is a general-purpose pre-processing step
which can also be used for other techniques that require low car-
dinality nominal variables as input (e.g., such as clustering algo-
rithms, association rules, neural networks), or require numeric vari-
ables as input (e.g., regression). Possible future work includes al-
lowing the user to interactively modify the ordering, spacing and

classing of the nominal values, conducting formal evaluations, and
trying other alternatives for each step.

Acknowledgments: We gratefully acknowledge our colleagues
in the XmdvTool group at WPI for their contributions to this re-
search, as well as to NSF and NSA for the funding for XMDV re-
search.
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