
Python for Astronomers
An Introduction to Scientific Computing

Imad Pasha
Christopher Agostino

Copyright c© 2014 Imad Pasha & Christopher Agostino

DEPARTMENT OF ASTRONOMY, UNIVERSITY OF CALIFORNIA, BERKELEY

Aknowledgements: We would like to aknowledge Pauline Arriage and Baylee Bordwell for their
work in assembling much of the base topics covered in this class, and for creating many of the
resources which influenced the production of this textbook.

First Edition, January, 2015

Contents

1 Essential Unix Skills . 7

1.1 What is UNIX, and why is it Important? 7

1.2 The Interface 7

1.3 Using a Terminal 8

1.4 SSH 8

1.5 UNIX Commands 9
1.5.1 Changing Directories . 10
1.5.2 Viewing Files and Directories . 11
1.5.3 Making Directories . 11
1.5.4 Deleting Files and Directories . 11
1.5.5 Moving/Copying Files and Directories . 12
1.5.6 The Wildcard . 12

2 Basic Python . 15

2.1 Data-types 15

2.2 Basic Math 16

2.3 Variables 17

2.4 String Concatenation 18

2.5 Array, String, and List Indexing 19
2.5.1 Two Dimensional Slicing . 20

2.6 Modifying Lists and Arrays 21

3 Libraries and Basic Script Writing . 23

3.1 Importing Libraries 23

3.2 Writing Basic Programs 24
3.2.1 Writing Functions . 25

3.3 Working with Arrays 26
3.3.1 Creating a Numpy Array . 26
3.3.2 Basic Array Manipulation . 26

4 Conditionals and Loops . 29

4.1 Conditional Statements 29
4.1.1 Combining Conditionals . 30

4.2 Loops 31
4.2.1 While-Loops . 31
4.2.2 For-Loops . 32
4.2.3 Nested For-Loops . 33

4.3 Loading and Writing Files 33

5 Plotting . 35

5.1 Basic Plotting 35

5.2 Subplotting 37

5.3 Plotting 2D Images 37

5.4 Loading Astronomical Fits Files 39
5.4.1 The Header . 39
5.4.2 The Image . 40

6 Classes and Object Oriented Programming . 41

6.1 Defining Classes 41

6.2 Subclasses 42

7 LaTeX . 45

7.1 Creating a Document 46
7.1.1 The Preamble . 46
7.1.2 The Main Document . 46
7.1.3 Sections and Subsections . 47
7.1.4 Inserting Equations . 47
7.1.5 Inserting Figures . 48
7.1.6 Lists and Bullets . 48
7.1.7 Wrap Up . 49

5

8 HTML Editing . 51

8.1 Basic HTML 51

8.2 CSS and Styles 53
8.2.1 Using divs . 55
8.2.2 Tables and Lists . 55

9 Glossary . 57

1. Essential Unix Skills

1.1 What is UNIX, and why is it Important?
UNIX is an operating system which was developed at Bell Labs research center and was designed
to be a multi-user system which could multitask more efficiently than previous systems. Many
modern operating systems such as Mac OSX, Ubuntu, GNU, and many others are considered to
be UNIX-like in the way they are designed–specifically in terms of their filesystems. To be clear,
Unix is an operating system that handles files (and where they are stored within folders/directories)
the same way your own computer does. The principle user-end differences between UNIX and
other operating systems are the interface by which one interacts with the file system, and the way
filesystems can be store on servers that are accessible from any computer in the network (we’ll talk
more about this later).

1.2 The Interface
It follows that an understanding of UNIX can be extremely useful as many of its basic tenets can be
applied to a variety of scientific systems. Alternatively, most current operating systems on personal
computers offer what is called a graphical user interface*. This is the type of system most people are
accustomed to, in which the primary means of interacting with the filesystem is via a mouse which
can click to open up windows of different folders, etc. While GUI systems are usually more intuitive
by nature, they are also inefficient (for example, to move a file from one folder to another one has to
open two windows separately, usually by clicking through multiple other folders). In comparison,
command line interfaces have a steeper learning curve, because they require knowledge of syntax,
or the phrases and commands that can be interpreted by the computer. However, the advantage of
learning this syntax is that the command line is an extremely efficient way of navigating an operating
system. As a counterpart to the previous example, a single phrase in the command line (“mv filename
newlocation”) can accomplish what took many clicks and drags in a GUI.

R Note: Because these GUI’s on personal computers usually operate over UNIX, one can usually
find ways to access a command line interface for these computers as well, it just isn’t the

8 Chapter 1. Essential Unix Skills

primary interface by which most people interact with the operating system.

Perhaps most importantly, the majority of supercomputers and telescopes are operated by systems
which utilize Linux operating systems which makes it especially useful for astronomers to learn. For
example, one can often only access these systems through the use of the terminal’s “secure shell”
service, or more simply, SSH, which provides a remote, secure login. In utilizing the command line,
or terminal as it will be referred to from here on, one can accomplish many tasks by simply typing
a few commands rather than having to make several mouse clicks. Some examples which will be
explicitly outlined later include removing files, creating folders, opening programs, and searching
through droves of files for a specific keyword.

1.3 Using a Terminal

Most systems will have keyboard shortcuts to expedite and simplify the opening of a terminal
application. In Ubuntu (which is installed on the UG astro computers), one can press Ctrl+Alt+t to
open a new terminal window. In Mac OSX, perhaps the simplest way to open the terminal application
is to press Command + Spacebar then to type terminal and press enter. The new window should
open in your home directory, which is the directory of your own user account which holds your
documents, downloads, music, and other personal files. Not all operating systems have keyboard
shortcuts for this but if one wishes, one could customize his/her own keyboard shortcuts to allow for
this quicker functionality.

Once the terminal has been opened, there are really only two areas to understand. The prompt
is a line of letters and symbols that appears on the left of the terminal window. What this prompt
actually reads is different for different systems, and in fact can be customized to say whatever you
like. Many systems will be set up so that the prompt indicates to some degree the current path.
Path refers to the description of where you are in the filesystem, beginning with it’s most basic,
or root directory. For example, if you were in your documents folder, the path to your location
might be /root/home/users/your_name/documents. Different systems also have different names for
their root directory. In some cases your prompt may be the full path, but it is often a shortened
version which only indicates the name of the current directory; such a prompt might look like this:
“systemuserid:documents%” (Prompts almost always end in a % or $ symbol). Ultimately the prompt
doesn’t affect what you can or can’t type; at most it can be a handy way of seeing where you are in a
file system. The other area of the terminal is the actual command line, where you type the commands
to be interpreted by the computer. We will cover in depth all of the commands you need to know to
navigate a UNIX system. (See fig. 1.1).

1.4 SSH

Once a terminal has been opened, one can finally begin using its multitude of functionalities. As
mentioned before, many telescopes and supercomputers must be accessed remotely which can be
done by ssh-ing into the servers on which these computer clusters are held. This then begs the
question–how exactly does one ssh into a server? For Linux and Mac users, it is quite simple, one
types directly into the terminal ssh username@servername which for the UG-Astro servers used
in this course would look like ssh yourname@ugastro.berkeley.edu If one is interested in using
graphical applications which can be accessed through the terminal, one can add the ‘-X’ option after
the ssh command and before the hostname. As you have noted, we have distinctly avoided the topic

1.5 UNIX Commands 9

Figure 1.1: A typical terminal, with a prompt on the left hand side. An example command has been
sent through, which displays the contents of a folder.

of Windows operating systems until now; this is because Windows is not a UNIX-like file system
and does not have built-in support for a terminal application. However, one need not fret for this
problem has already been taken care of several times by different applications. Perhaps the most
complete way to emulate the functionalities of the terminal, one can install the program Git Bash.
Git Bash uses a terminal-like interface which even allows one to use some basic UNIX commands
on files/directories on his/her Windows machine though it must be noted that one should not expect
to be able to use typical UNIX commands on Windows files/directories one can use while on a
UNIX or UNIX-like OS. More importantly, though, Git Bash allows one to quickly access a UNIX
based server, such as the UG-Astro server. If you do not wish to use Git Bash, there are indeed other
options. Perhaps the more common option is to use the program PuTTy which essentially offers a
graphical interface which may be more friendly for Windows users and more straightforward to use.
Finally, Google Chrome and Firefox both have an entirely browser-based application which allows
you to ssh into a server. For more information on SSH-ing onto the UG Astro servers, head to the
website resources page where there is a step by step guide for different operating system.

1.5 UNIX Commands

UNIX terminals have a vast number of available commands which one can use but many of them are
outside the scope of this course. For the majority of this course, you will need only a few simple
commands which will be outlined and explored in this chapter. A more complete list of commands
with shorter explanations is available in the appendix, and on the website as the “UNIX Guide”.

We begin with the commands by which one actually navigates from folder to folder within a

10 Chapter 1. Essential Unix Skills

UNIX system. In the course of this textbook, we will frequently want to indicate commands to by
typed into the terminal. Our format for doing so will be to represent the prompt with “»”, and to
usually indent commands on separate lines: for example, to exit a terminal, type

»exit
and the shell will close. Additionally, in this section of the text it will be useful to define a “typical”
series of nested directories, so that as we practice navigation, we can use self consistent examples.
For now lets use this typical tree: root/physics/user/sally/documents/homework/python/week1/

1.5.1 Changing Directories

There is a single command by which one can navigate the entire UNIX directory tree of any system,
and as there are several subtleties to it, we will discuss it in some detail. The command in question
is “cd”. The syntax “cd” is interpreted by the computer to mean “change directories”. Clearly
though, with just this command, it would be impossible for the computer to know where to change
directories to. Because of this, the command cd takes what is called an argument. An argument is a
part of the command necessary for it to function, but that is variable- the user can specify different
values for the argument within a certain set of possibilities. In this example, the “cd” command
takes as an argument a path location, for example in the command, // » cd /root/physics/sally //
/root/physics/sally serves as the argument to “cd”, it tells cd where to actually change directories to.
The majority of commands in UNIX have arguments, although there are a few exceptions.

So the question is, how can we efficiently use the cd command to navigate between directories in
UNIX? Luckily, the cd command has several built-in shortcuts that make navigating easier. However,
we would like to point out that these shortcuts only work in certain situations, which will be described
below. On the other hand, there is one surefire argument for cd which will always work; unfortunately
it is the most cumbersome. Below, we describe the various ways to phrase arguments for cd, the first
being the sure fire method.

1. The full path : From any directory in a UNIX system, typing cd followed by a full path,
starting with the root directory, will take you immediately to the specified location. This is
possible because a full path is unique, and thus the computer knows exactly where you mean
to go.

2. A nested directory: For example, if you are in the directory “/root/physics/sally/” and want
to cd into the homework directory, you can simply type
»cd homework
This may seem confusing at first, because there is no “/” before homework. Essentially, the
computer is interpreting your lack of a “/” to mean that the directory you are looking to cd into
is within the one you are currently in. (It will complain if you give a directory as an argument
that is not in the current one, if you use this syntax.

3. A secondary nested directory: If you want to cd from a current location to two directories
deeper in the nesting system, you can start with the syntax from (2), but continue it into a
longer path, for example, if you were in “root/physics/sally/” and wanted to get into not just
“homework”, but all the way into “python” :
»cd homework/python
and further nested directories can be strung onto the end, if desired.

4. cd (space) : defaults you to your username’s home directory. This will be different on
different systems, but on UGAstro it will take you to your username’s directory within the
home directory.

1.5 UNIX Commands 11

5. cd (space) . : cd followed by a space and a period takes you to the current directory. In fact, a
single period is always a shortcut for “current directory,” in lots of different commands. Using
cd with just a period (as above) is pretty useless (it takes you nowhere). On the other hand:
»cd ..
is useful. This command will take you out one directory; i.e., if you were in the homework
directory of the sample tree, “cd ..” would take you to the “sally” directory. This command
can be strung together as well:
»cd ../..
brings you out two directories, and so forth. The single dot is most useful in other functions,
for example, when copying or moving files from remote directories to the directory you are in.

1.5.2 Viewing Files and Directories
You may notice that changing into a directory may change your prompt to reflect it, and/or typing
“pwd” will “print working directory” and show you where you are. (As a side note, we type “print”
though we arent printing things to a printer, because we are in essence printing the values from the
memory to the console screen). But none of this actually tells you what is in the directory in question,
unlike a GUI through which you actually see the files in a directory when you view it. No one’s
memory is perfect, so there is of course a command for viewing the contents of a directory. Typing:

»ls
into the terminal will print a list of the files and folders in the current directory in which you are
operating. ‘ls’ has many useful flags for various situations, which are listed in the appendix under
the UNIX guide. Additionally, typing “»man(ls)” will bring up the manual for it (or any command
you choose), right in the terminal. Note that ls is one of those few commands that does not take an
explicit argument.

1.5.3 Making Directories
Now that we know how to view the contents in our directories, it becomes important for us to know
how to create and delete files and directories as well. In order to create a directory, use the command,

»mkdir desired_name
which you may notice is a shortened version of the phrase “make directory”. For instance, if one
wants to create a directory in which to store their specific information regarding this course, one
would type into the terminal ‘mkdir python_decal’. If we use ‘ls’ we will see that this new directory
is included in the contents listed. It is imperative to note that you should avoid using spaces when
using the mkdir command as placing a space between two or more words will just end up creating
directories named after each individual word. If you really must have a space in your directory,
you can type a backslash before the desired space as this tells UNIX to ignore the space. On
shared-network file systems, having an organized system of directories that make logical sense is
very helpful, both for keeping yourself organized and for allowing you to direct others to specific
files and folders more easily.

1.5.4 Deleting Files and Directories
Now that we know how to create directories, move between them, and look at the files inside, the
next step is to learn how to delete things.

R NOTE: UNIX is not like a Windows or Mac where files are sent to a trash bin. When you hit

12 Chapter 1. Essential Unix Skills

delete, things are gone forever.

That being said, removing files is a relatively easy task in UNIX. If you are in the directory where
the file to be deleted is stored, simply type

»rm filename
to delete it. (Note: ug astro servers have a setting turned on such that it will ask you if you are sure
you want to delete. This is not native to the rm command, and on another system, do not expect rm
to query you). Removing directories requires the use of a flag, or option. A flag/option is a modifier
added after a command, before the argument, that changes exactly how the command is carried out.
for example, typing “ls -a” will list “all” files, whereas “ls” alone usually ignores hidden files and
directories. In this case, we need to make use of the “recursive” option:

»rm -r directory_name
which will go into a directory, delete the files within, and then delete the directory itself. The example
here illustrates the syntax for using flags/options in general (with a dash preceding the flag).

There is a secondary way of deleting directories, which may be easier to remember:
»rmdir directory_name which will also delete the directory in question and everything within it.

1.5.5 Moving/Copying Files and Directories
The last major skill needed for operating in UNIX file systems is moving and copying files and
directories from one place to another. Moving is done using the “move” command (funnily enough):

»mv filename new_location
(this assumes you are in the directory with the file to be moved. Depending on where you are moving
the file to, the new_location could be as simple as “..” or as complex as a full pathname to another
directory tree.).
Mv also gives you the option of changing the name of a file as you move it, for example:

»mv file_name new_name new_location
would move “file_name” to “new_location”, changing its name to “new_name” along the way.
Interestingly, because of this functionality, mv serves as the “rename” command as well. To rename
a file, “move” it to a new name without specifying a new location to send it. If you want to copy a
file instead of moving it, use:

»cp filename new_location
which will create a copy and put it in “new_location”. Cp also has the ability to rename files in
transit, by the same syntax as mv.

1.5.6 The Wildcard
One extremely useful thing to know about UNIX is the ability to use wild cards. Denoted by a “*”
symbol, wildcards can stand for any character, or any number of characters. The strategic use of
wildcards can save you a lot of time when working with large numbers of files. A few examples
should make clear how wildcards are used:

1. Deleting many files: Say for example you wanted to delete all files in a certain directory that
were of the type .doc (or docx for all you millenials). If you entered
»rm *.doc
The wildcard would feed rm every file with any combination of characters that ended in
.doc for deletion. In a similar vein, if you have a group of research files that all started
with “simulation_run1” (where an example filename might be simulation_run10004.dat,

1.5 UNIX Commands 13

simulation_run10005.dat, etc)
» rm simulation_run*
would delete all of those files, as rm doesn’t care what comes after the “n” in run anymore.

2. Copying files: This is somewhat of a trivial expansion, but it is useful to note that more often
than not you are going to be copying and moving large numbers of files rather than deleting
them (archiving data for later is safer than losing it). It becomes clear now why many research
processes that output many files have a very regular system for naming: it allows for the easy
extraction of subsets or all files within UNIX systems. Wildcards also work within names, for
example:
»cp simulation*.dat newlocation
would copy all files starting with simulation and ending with .dat to a new location. This can
be handy if your software also outputs files with the same prefix but different file endings, and
you only want the .dat files.

2. Basic Python

Python is a high level programing language which is easily readable and relatively simple in
comparison to many other high level programming languages such as Java,C, or C++. It has built-in
support for object-oriented programming and functional programming. Python has an incredible
comprehensive documentation which outlines its inherently defined functions and how one can use
them. In addition, Python has many user-created libraries and stacks which one can download and
use in his/her code. For this chapter, we will essentially be using Python as a calculator. For much of
this course, we will be referring to the ipython interpreter rather than the regular python interpreter.
(This is a technicality you don’t really need to worry about).

2.1 Data-types

Python, like most programming languages, divides up all the possible “things” you can play around
with into what are called data types. Some of these divisions seem obvious: clearly a word like
‘cat’ is a fundamentally different data type than an array of numbers [1,2,3,4,5]. Other divisions
seem more arbitrary at first glance: for example python makes the distinction between integers (the
counting numbers), and floats (numbers with decimals). It does so because of the way computer
processors store information in bits (which is a bit beyond the scope of this class), but it leads to the
interesting (and important) characteristic that “42” and “42.” are different in python, and take up
different amounts of computer memory. Essentially, what data-type a variable is determines what
rules python applies to it. Some basic data types are listed and defined below, and you will learn
more about them as we use them:

1. Integers: the counting numbers. Ex: 1,2,3,4,5,...
2. Floats: Decimal numbers. Ex: 1., 2.345, 6.3, 999.99999, . . .
3. Strings: An iterable data-type most commonly used to hold words/phrases or path locations.

Denoted by single or double quotes. Ex: ‘cat’ , ‘/home/ipasha’, “1530”, ...
4. Lists: Stored lists of any combination of data types, denoted with brackets. Ex: [1,2,’star’,’fish’]

or [1, 2, [3, 4, 5], ‘star’] (notice that you can have lists within lists)
5. Arrays: Like lists, but only for integers and floats. Arrays can be multidimensional, such as a

16 Chapter 2. Basic Python

2d matrix, and beyond. Are defined in Numpy.
6. Tuple: Also like a list, but immutable (un-changable). Somewhat like a read-only list. These

are defined with parentheses. Ex: tuple1 = (‘hi’, 1, 4, ‘bye’)
7. Dictionaries: A collection of pairs, where one is a “key” and the other is a “value”. One can

access the “value” attached to a key by indexing the dictionary by key:
»dictionary_name[‘key’] (more on this later).

8. Boolean: A data type with only two possible values: True, or False. They are used in
conditional statements.

2.2 Basic Math

Within the python interpreter (or indeed in any written code) you can perform simple to very complex
mathematical operations. As a few introductory examples we can see how adding and subtracting
works in ipython:

[IN]: 3 + 5
[OUT]: 8
[IN]: 9-3
[OUT]: 6

We can also test out multiplication and division (denoted in python with * and /):
[IN]: 4*3
[OUT]: 12.0
[IN]: 1/2
[OUT]: 0

But wait! Clearly 1/2 is not 0. (Unless we’ve jumped into some strange parallel reality). The reason
we are getting 0 here is that python is performing integer division, meaning the answer has to be an
integer. In this sort of situation, python simply rounds down to the nearest integer. The solution to
this is to cast either the “1” or “2” (or both) as floats rather than integers. Only one is required to be
a float because if one number in an operation (like addition, subtraction, multiplication, division,
exponentiation, etc) is a float, it will convert all to floats and express the answer as a float. For your
general knowledge, there is a function for converting integers to floats, and it looks like this:

[IN]: float(2)
However, there is a much faster way to create floats, which is simply to add a decimal (period) to
any number. Try it yourself: demonstrate that 1./2 and 1/2. both output the proper answer. The place
when the float() command comes in handy is when you have a variable (say, called “x”) in your code,
and you don’t necessarily know what its value is, perhaps it is the sum of many calculations, but
is just an intermediary holding value. If before the next stage of calculations you require it to be a
certain data type, you can use this hard casting, like

[IN]: x = float(x)
or

[IN]: x = int(x)
(Which will convert it to an integer if it is not already).

The other basic math operation in python is exponentiation. In python this is denoted with a
double asterisk (‘**’). For example:

[IN]: 2**3
yields

[OUT]: 8

2.3 Variables 17

To perform more complicated math like sin, cos, sqrt, etc., requires the use of some additional
packages, which is the primary focus of Chapter 3.

2.3 Variables
While using python as a calculator can be fun, the real power of programming comes in being able
to store things (numbers, lists, etc) as variables and access them later. Declaring variables in python
is easy; you simply type a desired variable name, an equal sign, and what you want it to be. For
example:

[IN]: x = 5.0
[IN]: y = ‘cat’
[IN]: berkeley = ‘no life ’ + ‘bad grades ’ +’no sleep ’

would set the variable x to the floating point number 5, set y to the string ‘cat’, and set berkeley to
the concatenated string ‘no life bad grades no sleep’ (more on string concatenation in a bit). Notice
that python doesn’t output anything when you declare a variable as it did when you entered a math
operation. But rest assured, those values are stored in the computer. If you type:

[IN]: print x
[OUT]: 5.0

it will output the value attached to your variable. As a shortcut, in our version of python,
[IN]: y
[OUT]: ‘cat’

simply typing a variable name alone will result in a printing of the variable value.
Variables in python are mutable- that is, you can change them, within certain bounds. Most

simply, if you consecutively typed:
[IN]: x = 5
[IN]: x = 3

then if you printed x you would find it is equal to 3. You can also use variables to change themselves:
[IN]: x = 5
[IN]: x = 2*x+3

In this case, the new value for x at the end of the line would be 2 times the value of x going in, plus 3.
(in this case, 13). You can also add, subtract, and multiply variable, if they are of the right data type:

[IN] : x = 5.
[IN] : y = 6.
[IN] : z = x + y
[IN] : x = 2*z
[IN] : y = x/z

That is probably a bit confusing to follow, and illustrates why typically we avoid such oft redefining
of variables, and instead come up with new variable names to store the various sums and products.

R Note: these calculations worked because both 5 and 6 were floats, and it makes sense to
perform math on them. If you attempted to multiply a string like ‘bozo’ with a number, python
would throw an error (and rightfully so). However, there are times when the operators like +, -,
*, and / can operate on non integers and non floats. (For example, as we saw before we can
“add” (concatenate) strings together into a single string).

Additionally, an interesting property of the array data type is the following:
[IN]: Array = np.array([1,2,3,4,5]) #Dont worry about the np syntax right now

18 Chapter 2. Basic Python

[IN]: x = 15.8
[IN]: z = x + Array
[IN]: print z
[OUT]: array([16.8, 17.8, 18.8, 19.8, 20.8])

Basically, if you add, subtract, multiply, or divide an array by a given value, each individual value in
the array has that operation performed on it.

There is definitely subtly in which data types can go together, and in what ways data types can
be succesfully changed (for example, the ‘int’ command we discussed can never convert ‘cat’ to an
integer, and will throw an error). We hope to cover much of these intricacies in time, but much of
it is common sense and experimentation. Note, if you were wondering what the # symbol above
indicated, it is what is called a comment. Comments in python allow you to write notes and guides
to yourself and others in your code. On a given line in python, anything coming after a # symbol
will be ignored when the code is run, allowing you to type anything you want there.

2.4 String Concatenation

While the majority of data we work with is stored in arrays and lists rather than strings, there are
still many useful tasks that can be accomplished with strings. As we know, strings are basically how
you can work with words like ‘music’ in python. Additionally, strings are often an input type for
arguments to functions, and are used to read in files. This is where we will focus. For example, to
read in a txt file from your computer to python:

[IN]: file = np.loadtxt(‘/home/sally/file.txt’)
will do the trick. (Don’t worry about the function np.loadtxt just yet). Notice that the format of the
location of the file was within a string.

Now say that you want to a hundred data files, with names file0.txt, file1.txt,...,file99.txt. Typing
the loadtxt command 100 times would be rather tedious. Instead we can use a for loop and string
concatenation to simplify the task. There was an example of string concatenation earlier. In essence,
it takes multiple strings and combines them into one:

[IN]: print ‘cat’ + ‘dog’
[OUT]: ‘catdog’

Notice that there is no space between cat and dog. Python shoves the two strings together exactly
character by character. To create the string ‘cat dog’, we could either have defined the first string to
be ‘cat ‘ (with a space after the t), or defined the dog string to begin with a space. Additionally, we
could have concatenated in the space manually:

[IN]: print ‘cat’ + ‘ ‘ + ‘dog’ # One space between the second pair of quotes
[OUT]: ‘cat dog’

This allows us to do something like the following:
[IN]: prefix = ‘/home/sally/file’
[IN]: suffix = ‘.txt’
[IN]: for i in range(100):
[IN]: . . . filename= prefix+ str(i) + suffix

Don’t worry about using for-loops yet, but notice that what we are doing is sequentially setting the
variable filename to the ‘/home/sally/filei.txt’ where that i in there is 1, 2, 3, 4, 5, . . . , 100. This
allows you to open multiple files and do things to them efficiently. Once we have learned how to use
for-loops, if-statements, and while-loops, we will return to this example in more detail.

2.5 Array, String, and List Indexing 19

2.5 Array, String, and List Indexing

Given that floats and ints (numbers) are the most basic (and conceptually easy) data types, there
remains a discussion of the other types. As already mentioned, arrays and lists are some of the most
applicable data types, and are where most of your useful information or data will be stored. Python
has a uniform way of extracting values from these list like objects.

This procedure is known as slicing/indexing, and the method is as follows: given a list, array, or
string (all 1D right now for simplicity), each entry is assigned an index. By convention (that you
may reasonably find annoying), this index almost always starts with 0, rather than one. Below we
have a sample list, with the indices for each entry listed below: i.e., ‘1’ is the 0th entry (or element)

Figure 2.1: List elements and corresponding indices.

in the list, and 5 is the 4th. Lets say then that you wanted to extract the 0th entry from the list, to use
for some other coding purpose. The way to slice a variable (of the proper data type) is by typing
the variable name, attached on the right with closed brackets and an index number. For example, to
extract the 0th element and set a variable for it:

[IN]: list1 = [1, 2, 4, ‘cat, 5]
[IN]: x = list1[0]
[IN]» print x
[OUT]: 1

Notice that for a list, each entry is the “thing” between the commas, so typing
[IN]: print list1[3]

would print
[OUT]: ‘cat’

as the string ‘cat’ is the third entry (if you start counting at 0).
Arrays can be sliced in precisely the same way as lists. Interestingly, strings can also be sliced. So if
we had set var = list1[3], we could then type:

[IN]: print var[1]
and get

[OUT]: ‘a’
Unfortunately, if you have a long integer like x = 1234456653453, you can’t slice through x the way
you can with lists, arrays, and strings. What you can do is turn (or cast) x as a string:

[IN]: x = 123456789
[IN]: x = str(x)

Now that x is a string, you can happily index it:
[IN]: print x[0]
[OUT]: ‘1’

Normally if you try to convert a string like ‘cat’ to a float or int, python will hate you. But if you
attempt to convert a string that only contains numbers, python can successfully make the conversion.
So we can get the integer number of the 0th element of 123456789 like so:

[IN]: x = 123456789
[IN]: x = str(x)

20 Chapter 2. Basic Python

[IN]: zeroth = int(x[0]) # or zeroth = float(x[0]) for the float
Sometimes we want more than a single value from a list/array/string. There is also a way to slice
through multiple indices at once. The format is as follows. Take the previous example of the string
‘123456789’. Say we want the 0th, 1st, 2nd, and 3rd elements to be pulled, turned back into an
integer, and set as the value of the variable H:

[IN]: H = int(x[0:4])
So basically, now instead of a single index in the brackets, we have a start index, a colon, and an end
index. Also note, python will go up to, but not include the end index given. As a shortcut, if you are
starting from the beginning, or slicing from some midpoint to the end, you can omit the 0 before the
colon, or the final index after, i.e.,

[IN]: print x[0:4]
is equivalent to

[IN]: print x[:4]

2.5.1 Two Dimensional Slicing
Strings and lists now primarily excluded, often astronomical data (like images from telescopes) are
stored in 2d arrays- essentially a large grid or matrix of numbers described by 2 indices, a row and a
column. (If it helps, you can think of the arrays above as matrices with row length 5 and column
height 1, so you only needed to index which column you were interested in). Lets cut to the chase
with an example. If A is a 2d array that looks like this:
A = [[1 , 3, 4, 5, 6]

[4, 5, 9, 3, 7]
[9, 4, 6, 7, 1]]

then we slice it with two indices, column, then row. To pull the 3 in the second row, we type:
»print A[1][3] # remembering that the “1” in the upper left corner is in the 0th row and 0th column
Alternatively, you can use the syntax A[1,3] to equal effect. To pull the 6 in the first row:

»print A[0][4]
Try it out: what would be the way of slicing to pull the 4 in the last row? Using the same colon
notation from above, how would you pull a whole row?

Given a 2D array, you may want to take a chunk of it, either end to end, or somewhere in the
middle. The syntax for doing so is a combination of commas and colons. Remember that colons
either separate a start and end index, or refer to a whole column if no start/end are specified. Lets
say you have an image with 1000x1000 pixels, which you are viewing as a 2d array of 1000x1000
values. The following is a list of example slices, from which you can infer how to slice any section
you’d like.

Exercise 2.1 Slicing Images
1. »array[350:370,:]

• takes the full rows 350-370 in the image (fig. 2.2)
2. »array[:,350:360]

• takes the full columns 350-360 in the image (fig. 2.2)
3. » array[350:370, 350:360]

• takes the box in fig. 2.2. (the region between/including rows 350-370 and cols
350-360)

2.6 Modifying Lists and Arrays 21

�

Figure 2.2: Left: Rows 350 to 370 pulled. Center: Columns 350 to 360 pulled. Right: Box of rows
350-370, cols 350-360.

2.6 Modifying Lists and Arrays

While we have shown how you can create a list of elements and how to extract and see specific
values within them, we haven’t talked about adding and removing, or changing, elements of lists and
arrays. Say we have a list of integers as follows: [1, 2, 3, 4, 5, 6, 7] . The most simple way to change
a value within the list is to set a new value equal to the slice of that list. For example:

[IN]: list1 = [1,2,3,4,5,6,7]
[IN]: list1[2] = ‘hi’

When we print the list one now, we will see that the third element of the list (formerly the integer 3)
will have been replaced:

[IN]: print list1
[OUT]: [1,2,‘hi’,4,5,6,7]

Of course, now that there is a string in our list, we can’t do things like sum(list1) and expect to get
a proper value. Now let us see how to delete values out of a list. This will involve use of the ‘del’
command. If we continue using our list1 from above:

[IN]: del list1[-1]
will delete the last entry in the list. (Note, a -1 index means the last element in a list or array, and -2
references the second to last, etc). We could also have used forward indexing just fine.

R Be careful with this command. Remember that once you delete an entry, the indexes corre-
sponding to all the remaining values get shifted. So you could run del[0] 3 times and it would
keep deleting the “new” 0th entry in the list.

Now while the principles of what we’ve used applies equally well to arrays, the syntax of how
everything is done will be somewhat different, due to the way numpy.array was created. We will
discuss working with numpy arrays later on, after having formally introduced numpy and other
scientific packages.

Before moving on we’d like to list 2 very basic image (2d array) manipulation commands that
might come in handy. We will go through more in much more depth later.

22 Chapter 2. Basic Python

Lets go back to our 1000x1000 entry 2D array. There are simple commands for if you want to
flip the image vertically and horizontally. For a vertical flip (about the horizontal centerline):

[IN]: flip_vert_array = array[: : - 1] # see fig. 5
(this is shorthand for array[: : -1, :] - it does the same thing but seeing it the second way makes the
next command make sense). For a horizontal flip (about the vertical centerline):

[IN]: flip_hor_array = array[: , : : -1] # see fig. 6

3. Libraries and Basic Script Writing

We saw earlier that one can use the ipython interpreter to do basic math, and that there were various
data-types that come “preinstalled” within python (like lists, strings, integers, etc). However, once a
code requires more sophisticated analytical tools (especially for astronomical processes), it becomes
apparent that the vanilla ipython functions are not sufficient. Luckily, there are hundreds of functions
that have been written to accomplish these tasks, most of which are organized into what are called
libraries. Most python distributions (like enthought and anaconda) come with a lot of these libraries
included. There are 3 key libraries that we will be discussing in detail. When writing code for
science, you will essentially always have to use these 3: numpy, matplotlib, and (sometimes) astropy.
Numpy is an extremely versatile library of functions to do the things ipython can’t. For example,
while you can create a polynomial yourself (x**2 + 3*x + 1), ipython provides no way to make sine
and cosine functions. Matplotlib is a library with functions dedicated to plotting data and making
graphs. Astropy is a library with functions for astronomical applications: we will be using it to
import fits images (images taken by telescopes).

3.1 Importing Libraries

Because these libraries are not automatically loaded up when python runs, we have to import them.
The syntax variations for doing so are shown below:

[IN]: import numpy
[IN]: import matplotlib.pyplot
[IN]: import astropy.io.fits

Notice that there is a dot notation within some of the imports. This is associated with classes. These
libraries are huge, and loading all of the functions in them is unnecessary if you know what you
want. Since pretty much everything you need to plot is within the “pyplot” sub-library of matplotlib,
we can just import that sub-library. Now that the functions are loaded, you can use them in your
code. However, the syntax for using them is slightly different than that of normal python functions.
Because python needs to know where the function you are calling is coming from, you have to first
write the library, then the function, using the same dot notation as above. For example, a sin function

24 Chapter 3. Libraries and Basic Script Writing

might be:
[IN]: import numpy
[IN]: x = numpy.arange(100)
[IN]: y = numpy.sin(x)

Clearly, writing out numpy all over your code would take forever. Luckily, python allows us to
import the libraries and name them whatever we want for the purposes of our code. 2 standard
choices are

[IN]: import numpy as np
and

[IN]: import numpy as n
There are multitudes of functions in these libraries, which can be intimidating. If you are trying to
figure out what a numpy function is for a task you want to do, google and stack overflow are your
friends. Additionally, we will include a list of commonly used numpy/matplotlib functions in the
appendix of this textbook, and as a separate document available on the website.

3.2 Writing Basic Programs

Thus far, we have been working entirely in the ipython interpreter. While this is a quick and easy way
to practice with python, it is unsuitable for the majority of things that you might want to accomplish
in python. Say you wanted to program a basic video game (a good final project idea!). This would
be essentially impossible to do in the command line, and you would only get to run it once (and
would have to retype all the code to create the game every time you wanted to re do it).

R Note: python cares about spacing when it involves tabbing at the beginning of a line, but
doesn’t care about spaces otherwise; i.e., x=5 is the same as x = 5 is the same as x= 5 and x =5.
We recommend using spaces between characters just to make your code easier to read.

A program is a self-contained list of commands that are stored in a file that can be read by python.
Essentially, it is a text file, with each line being the exact syntax you would have typed into the
terminal. Python then opens up your program and runs it through the interpreter, line by line. For
example, if this is what you did in interpreter before:

[IN]: import numpy as np
[IN]: import matplotlib.pyplot as plt
[IN]: x = np.arange(100)
[IN]: y = x**2 + np.sin(3*x)
[IN]: plt.plot(x,y)
[IN]: plt.show()

then you could write a program in a text file that looked like this:
START
import numpy as np
import matplotlib.pyplot as plt
x = (100)
y = x**2 + np.sin(3*x)
plt.plot(x,y)
plt.show()
STOP

3.2 Writing Basic Programs 25

You would type this up in any plaintext text editor (we will show you how to use vim and emacs,
but feel free to use sublime or any coding editor of your choice), and save it as something like
‘simple_program.py’. Then to run it, simply open up the interpreter (in the same directory as the file)
and type:

[IN]:run simple_program.py
and your plot will be output. You could’ve done the same thing in the interpreter, but now you
can easily modify one element (like change the 3*x to a 4*x) without having to change anything
else, you can share the code with others, and you can write code more than a hundred lines without
worrying about typing in all those lines every time!

3.2.1 Writing Functions
Remember how useful having those numpy functions was? Well, we will attempt to show that for
a large complex code, having everything isolated in your own functions will make your life much
easier. One of the main reasons why is debugging: if there is a problem in your code, as long as
you know which functions are working properly (and you can test them individually), you can track
down problems much more quickly.

When you define a function, you are defining a block of code that only gets run when someone
calls your function, giving it the inputs you define. One thing to note is that a function can ONLY
use variables that are input, or are defined within the function itself. So if you have a variable called
‘zeta’ in the main body of your code and you try to use that variable in a function without making it
one of the inputs, python will throw an error. All of this seems pretty abstract, so let’s move to some
concrete examples.

Exercise 3.1 A Function to Slice 2-D Arrays.
Start by remembering the syntax for 2d images: img[start:end,start:end] for rows, cols. Now, lets
say you had a few hundred images that you wanted to slice in a similar way. Indexing each one
individually would be tedious. We will now launch into defining the function. Try to follow, and
we will meet up after to discuss and explain all the syntax along the way.

def image_slicer(image, rs,re,cs,ce):
output = image[rs:re,cs:ce]
return output

Several important notes: first, to define a function, you begin a line with “def”, a space, and
then the name you want to give the function. You then put parenthesis right after the name, and
define what inputs it should have, and then end the line with a colon (this is very important).
Then, everything that’s part of the function is indented from the first line (one tab). (Also very
important.) You can define functions within other functions and loops, and the tab rule still
applies: if you define a new function, everything that’s part of it is tabbed in. Finally, there is
a return statement at the end, which is what the function is outputting. Let’s look at the part of
the function (image, rs,re,cs,ce). The names I give these quantities does not matter. They don’t
have to match anything else in my code, they just delineate 4 different inputs. the only thing
that matters is that those names (image, rs, re, etc) are the ones used consistently WITHIN the
function. It is easy to mistake this and think that you have to input a variable named rs into this
function: you don’t. You can input any variable, or just a number, so long as it satisfies the rules

26 Chapter 3. Libraries and Basic Script Writing

for what those values end up doing. To show this, here is an example of using this function,
assuming I have 3 variables, img1, img2, and img3, which are 2d arrays:

img1_slice1 = image_slicer(img1,10,40,20,70)
img1_slice2 = image_slicer(img1,500,560,410,420)
img2_slice = image_slicer(img2,0,-1,0,-1)

What we have done here is set a variable named img1_slice1 equal to the output of the function
image_slicer (which returns the sliced image). That output is img1[10:40,20:70]. (So we can
see that we will get errors if we put in pairs of numbers that are not ascending, or if we put in
variables that aren’t integer numbers). Take a look at the last one. What slice of the image do you
think it returns? �

Once we have gone through the magic of conditional statements and for-loops, we will see that we
can easily write a loop that requires only typing a call to our new function once, but will return slices
for many images.

3.3 Working with Arrays

Earlier we discussed how you can initialize a list, add to it, replace values in it, etc. We will now
repeat the discussion with the syntax for numpy arrays, given that we now know how to import
numpy into our code.

3.3.1 Creating a Numpy Array
If you have numpy imported as np, then you can initialize a numpy array by setting your variable
= np.array([1,2,3]). Basically, you make a list, surround it in parenthesis, and attach it to the call
np.array.

You can also initialize empty arrays by typing np.array([]).

If you want to create an array of increasing counting numbers (1,2,3,4....), you can set a vari-
able = np.arange(start,stop,step). Start is 0 by default, and step is 1 by default.

If you instead want to make an array between two numbers where you specify some number
of subdivisions, use np.linspace(start,stop,divisions). For example, np.linspace(0,1,100) would make
an array between 0 and 1 with counting by hundreths.

If you need an array of 0’s of a certain length, you can use np.zeros(length).

Note: You can convert any list of floats/ints into an array simply by setting it equal to np.array(listname).

3.3.2 Basic Array Manipulation
Remembering back to lists, the syntax for appending was listname.append(newvalue). For arrays,
we call the specific function np.append(arrayname, new value).

3.3 Working with Arrays 27

If you need to change a value in an array, the syntax is identical to before, simply set array-
name[index] equal to whatever you need.

To delete values from an array, you can use np.delete(arrayname, indices), where indices can
be a single index or a range.

To insert values into an array, call np.insert(arrayname, index, value) and your value will be inserted
at the index specified.

If you want to append one array onto the end of another (i.e., concatenate them), you can’t use the
’+’ syntax used for strings, because you’ll end up making a new array, the same size as the originals,
with each new value being the sum of the two values in corresponding positions in the original arrays.
Instead, we need to call np.concatenate(arr1, arr2, ...) to join them together.

Alternatively, if you have an array you need to split up, you can use np.split(arr, indices). If
you specify a single number, like 3, it will attempt to divide your array into 3 equal length arrays. If
you provide a range of indices in order, it will know to split your array at those spots.

There is a ton more fiddly things you can do with arrays, particularly once you start working
with 2 and 3 dimensional arrays. We will touch on that in Chapter 5, but primarily the scipy
documentation and the web are good resources for learning about numpy array functions.

4. Conditionals and Loops

We saw in Chapter 3 how to create programs and run them in python. That powerful tool allows us
to save text files containing coherent sets of python commands which python can run for us all at
once. As of now, understanding how python interprets our simple programs is easy: it takes each
line and enters it into the terminal. The real power of programming, however, lies in our ability to
write programs that don’t just contain a list of sequential commands. We can write code that repeats
itself automatically, jumps around to different sections of the document, runs different functions
depending on various inputs, and more.

4.1 Conditional Statements

As you might have guessed from the chapter title, we create programs like this by implementing
various conditional statements and loops.

Definition 4.1.1 A conditional statement begins a defined, separated block of code which only
executes (runs) if the conditional statement is evaluated by the interpreter to be “true”. Essentially,
you are telling the computer “only run this block of code IF some condition is true.” The condition
itself is determined by the programmer.

Let us start with some examples of conditional statements. The primary conditional you will use is
“IF”. The syntax for creating an if-statement is as follows:

� Example 4.1 A Simple Conditional
x = 5
y = 7
if 2*x**2 > y**2:

print ‘Wow, that’s cool!’
�

Notice how the syntax is somewhat similar to defining a function. We start the line with the word
“if”, which is a special word in python (and your text editor will probably color it differently) that

30 Chapter 4. Conditionals and Loops

tells the interpreter to evaluate the truthiness of the rest of the line, up to the colon (again, the colon
is important, don’t forget it). In the case above, the if-statement would indeed print "Wow, that’s
cool!", because 2∗ (52) = 50 > 49. In this case of course, because x and y were simply defined to
be numbers, the condition would always be true, and the print statement would always occur. But
most of the time in your code, you have variables which are arrays, or parts of arrays, and the values
have been changed in various steps of the code that you can’t keep track of. Also note that, like for
functions, all lines to be considered part of the conditional must be indented one tab.

To create a conditional with an "equals" condition, you have to use the strange syntax of the
"==" double-equals, in the spot where you otherwise had > or <. The reason for the “double-equals”
notation is that in python, a single ‘=’ sign is reserved for setting the values of variables. As we will
mention later, the “+=” notation means “set x = x+1” . Some other conditional combinations are
"not equal," given by "!=", greater than or equal to, ">=", and less than or equal to "<=".

Conditional Symbol Conditional Symbol Conditional Symbol
Equals == Greater than > Less than <

Not equals != Greater than/equal to >= Less than/equal to <=

Table 4.1: Symbols for various conditional statements

4.1.1 Combining Conditionals
We are not limited to one conditional per statement; we can combine as many as we need (within
reason).

Exercise 4.1 Multiple Conditionals
x = raw_input(‘enter a number’)
x = float(x)
y = 15
z = 20
if (x > y) and (x != z):

print ‘Nice!’
if (z > x) or (x != y):

z = x+y+z
So here we have 2 if-statements, with the two possible combinations of conditionals, ‘or’ and
‘and’. These statements can be combined indefinitely (for example, if ((a and b and c) and (d and
f)) or (g +1>y) demonstrates how you can combine ‘and’ and ‘or’s’ to suit your needs). �

From now on, we will begin dropping new python commands and code into our examples, and will
explain them either in comments in the code, or after the example. In this example, the command
raw_input(‘text’) prints ’text’ to the screen and waits for the user to enter something. Whatever is
entered is stored as a string in the variable x. (So above, if you said “enter a number” and a user
entered a letter, the code wouldn’t work).

So using the if-statement we have been able to set off blocks of code to be run only if some
combination of conditionals is true. What happens otherwise? Typically we include an “else”
statement following the if block, to determine all other cases.

4.2 Loops 31

� Example 4.2 An Else Statement
x = raw_input(‘enter a number: ‘)
if int(x) ==5:

print ‘Wow, this was an unlikely coincidence.’
else:

print ‘Well, that’s interesting.’
�

If your ‘else’ statement contains an if statement as well, you can use the “elif” command, which
stands for else if. This saves you the trouble of an extra indent.

Exercise 4.2 Using Elif

if x < 0:
print ‘Negative”

else:
if x==0:

print ‘Zero’
else:

print ‘Positive

Can be condensed to:

if x < 0 :
print ‘Negative’

elif x ==0:
print ‘Zero’

else:
print ‘Positive’ �

So now we know how to set up a “fork” in our code, to allow it to go in different directions based on
various conditions. There is another type of block which instead continues to run the block over and
over as long as some condition is met (to be clear, we refer to block as the indented section of code
within various loops, conditions, functions, etc). This is known as a while-loop.

4.2 Loops
The two primary loops in Python are the while and for loops:

Definition 4.2.1 A while-loop is a set off block of code that will continue to run sequentially,
over and over, so long as a certain condition is met.

Definition 4.2.2 A for-loop is a set off block of code that contains a temporary variable known
as an iterator, and runs the block of code over and over for different specified values of that
iterator.

4.2.1 While-Loops
Lets begin with a simple example of a while-loop.

32 Chapter 4. Conditionals and Loops

� Example 4.3 A while-loop
x = 100
while x > 5:

print x
x = x -1

�

What’s going on here? We initialize x to be some value. The next line of code read by the interpreter
(remember it goes line by line) tells it that as long as x is greater than five, keep running the indented
code over and over. The indented code in question prints x, then sets x = x-1. Eventually, after 95
times through the loop (and 95 prints), x would become 6-1 = 5, which would no longer satisfy
the while statement. The interpreter would then move on to the next line of code in the document.
This brings up a very important point: you can see that if we had not included the “x = x-1” part
of the code, x would never end up being 5 or less. Thus, your code would hang in this loop for all
eternity. Luckily, if you find yourself in this situation, there is hope besides frantically shutting off the
computer. Python interpreters have built in keyboard shortcuts to interrupt and stop your code from
running. (In the lab computers this is ctrl+c). When using while loops, be sure you have included
something within the loop that will eventually cause it to end. As a precaution, most programs that
are more involved have special if statements within the while loop that will automatically break
out of the while loop if, say, a certain threshold of time has passed. The rules for the conditionals
themselves (the x>5 above) are the same as for if.

4.2.2 For-Loops

For-loops are one of the most powerful tools in Python. What they allow us to do is write a block of
code that’s like a template- it has the code we want to run, but without defining exactly "on what"
the code acts. We then initialize a for-loop, picking a range of values, variables, etc., to plug into
those designated spots in our block of code.

Exercise 4.3 A simple for-loop
arr = [1,2,3,4,5,6,7,8,9,10]
for i in arr:

if i %2 ==0:
print i

would print 2,4,6,8,10 (the even numbers). The % sign means "modulo," and the conditional
would read "if i divided by two has a remainder of 0:". The letter i in this loop is a generalized
iterator- when you type “for i in arr” you are telling the computer to run the block of code,
replacing i in the block with the first second, third, etc. element in the array. (you could use
any character/combination of characters for i, but i is standard practice (followed by j, and k if
necessary). �

The point of for-loops is that they are as generalizable as possible. In the above example, the
array "arr" could be replaced with any variable that is an iterable data-type. You could say, "for i in
range(15)" to have it plug the numbers 0 through 14 into your block of code, wherever a variable ’i’
appeared. you could even iterate over a string, and it would plug in the elements of the string (as
single character strings) into your block of code.

4.3 Loading and Writing Files 33

One common iteration practice is to iterate over an ascending list of numbers equal to the length
of a certain array. In this situation you could use "for i in range(len(array)-1)", where "array" is your
array and len() is the command for returning the number of elements in an array, list, or string. The
minus one is needed because the nth element of an array, list, or string is has an index of n-1.

4.2.3 Nested For-Loops
Just briefly, we’d like to mention that you can in fact nest multiple for-loops together, if you need to
iterate over more than one value in your code. This often happens when dealing with two-dimensional
arrays.

� Example 4.4 Iterating a 2D Array
for i in range(len(x)-1):

for j in range(len(y)-1):
if arr[i,j]<1500.:

arr[i,j]=0
�

In the above example, x would be a variable representing the x coordinates in the array, with a similar
deal for y. This particular block of code would run through every combination of i, j to hit every spot
on the 2D array, and if the value at any given point was below the 1500 threshold, it would just set
that element to be 0.

4.3 Loading and Writing Files
At numerous points in this text we have alluded to the ability for loops to aid in the process of loading
multiples files of data. Now that you know how to concatenate strings and generate for-loops, we
can cover the file loading/writing process.

There are several ways of opening data files in python. Python itself has a built in mechanism
for openin/writing files, and numpy also has support for file handling. To open a file in python’s
interface, we type:

»file1 = open(’filename.txt’,’w’)
where ’w’ indicates we plan to write to the file. (We could instead use ’r’ for read only, or ’a’ for
appending to a file that already contains data.

� Example 4.5 Writing to a File
»file1 = open(‘file.txt’,’w’)
»file1.write(‘this is a file’)
»file1.write(‘this is not a drill’)
»file1.close()

�

The close statement above tells python to close and save the file to the hard disk.

Exercise 4.4 Writing data to a file
You may have to analyze data in python but then export it to be analyzed more extensively by
other programs. For example, you might have an array of planet distances and a second array
with corresponding planet velocities that you wish to do some statistical analysis on with some
other software. Likely you will want to save your data in a format that is easily usable in other

34 Chapter 4. Conditionals and Loops

programs. Thus, we can write it as such using a for loop. Assume we have already opened the
file in write mode and have predefined arrays of the same length.

for i in range(len(planet_dist)-1):
file.write(planet_dist[i] + ‘ ‘ +planet_vel[i] + ‘\n’)

where the \n is necessary for us to create a new line when writing the file so the data will
be properly divided into their respective row and column. �

Numpy also has a file input output framework that is often useful to use. The two we will discuss
here are np.loadtxt and np.genfromtxt. These are useful tools because they have many specifiable
options, and load your data straight into numpy arrays that you just love to work with!

� Example 4.6 Loading files using loadtxt
data = np.loadtxt(‘filename.txt’)

Lets say the file we loaded had three columns:times, positions, and velocities. These would all be
stored in data, and could be singled out as such:

data = np.transpose(data)
times = data[0]
positions = data[1]
velocities = data[2]
�

R Note: Because of the way columns/rows work in python, data in multiple columns are read
in as individual data pairs. On the other hand, simply running an np.transpose on them sorts
them to be 3 long separate arrays with all the times, all the positions, and all the velocities
respectively.

Oftentimes data files have headers and footers- text that tells you what data is stored in the file. Of
course, we don’t want to try to read these into python as our data. For example, to skip a 5 line
header and 3 line footer text, use

[IN]: data = np.genfromtxt(‘file.txt’, skip_header=5, skip_footer=3)
This function is pretty versatile, and also has options for skipping columns, specifying data-types, etc.

Believe it or not, that’s all there is to basic functional programming. By cleverly combining
for loops, while loops, and conditional statements, we can do a lot of powerful analysis. While there
is a lot more to python (for example, you can introduce classes and object-orientation (chapter 6),
this is all you need to do the majority of scientific coding. What is missing in the above descriptions
is the multitude of python and numpy functions you will need to use along the way. A list of useful
functions is included in the appendix, and we will go over many functions in class.

5. Plotting

While we introduced the matplotlib library, and occasionally used plotting in examples, we’d like
to go into more detail about plotting here, as being able to produce graphs and plots is not only
important for use in scientific papers, etc., but also being able to quickly visualize data properly will
save you a lot of time when working with large data sets.

5.1 Basic Plotting

Let’s start with the basics. Say we have an independent variable (like time), and a measured variable
(like position). This type of data could easily be read in from a 2 column text file and then plotted
against each other.

Exercise 5.1 Plotting x vs. y
import matplotlib.pyplot as plt
import numpy as np

file_name = ‘/home/sally/data.txt’
data = np.loadtxt(file_name)
times = data[0]
positions = data[1]
Now let’s plot the data
plt.plot(times,positions)
plt.show()
�

R Note that in python when plotting, the first argument is an array of x values and the second
value is an array of y values, and the number of elements in the two arrays must match.

36 Chapter 5. Plotting

If you want to try this example, try creating an array of times using np.arange(1,11), and position
values as an array you define manually: (using position = np.array([1,2,6,34,56,57,...]). Make sure
that the number of positions you make is the same as the length of the times array. Try plotting as
we did above. You’ll notice that the default way python plots is by plotting the positions against the
times and connecting them with blue lines. Now, as scientists, we know that raw data shouldn’t be
connected- what we were graphing was individual pairs of points. When using plt.plot, there are
other optional settings you can specify. We will focus on color and linestyle. First, lets attempt to
plot just discrete points, without a connecting line. Fig. () has a chart of how to specify colors and
symbols within the plot command. If you choose a discrete symbol (like ‘o’ for circles or ‘+’ for
plusses), then python won’t connect them automatically.

You can use a matplotlib shortcut to simultaniously choose a color and linestyle as follows:
»[IN]: plt.plot(times, positions, ‘ro’)
»[IN]: plt.show()

would plot the discrete points as red circles, while
»[IN]: plt.plot(times, positions, ‘b+’)
»[IN]: plt.show()

would plot the discrete points as blue plusses. You can also specify the size of the symbol by
including the argument ms=10 (play around with the number till you get the size you want).

If you are plotting multiple dependent variables against one axis (say, positions of multiple objects
over the same time intervals), you’ll want to create a legend to show which is which. to do so, use
the optional command “label” within your plt.plot as follows:

»[IN]: plt.plot(times, positions_obj_1, ‘k+’, label=’car one’)
»[IN]: plt.plot(times, positions_obj_2, ‘bo’, label=’car two’)
»[IN]: plt.legend()
»[IN]: plt.show()

The labels defined in the plot functions will now show up in a legend. You can also comment
out the plt.legend line- the labels will still exist but no legend will be shown. Legend has some
optional inputs as well, primarily the one you need is plt.legend(location=1), where 1 is a number
1-4 corresponding to the 4 corners of the plot. So if you find your legend covering up some of your
data, try moving it to a new location.

One helpful plotting command to use is plt.ion(). This stands for interactive. It doesn’t take any
arguments. You may notice that generally when you use plt.show(), a plot pops up, and then your
terminal stops accepting inputs until you close the plot. If you have a plt.show within the body of a
large code, the rest of the code won’t run until you manually close the figure. Using plt.ion() once,
before all the plotting, will make it so that the plot opens, but the code continues running, and the
terminal is still accessible. This allows you to make multiple plots in a row pop up as well. We
recommend just putting plt.ion() right at the top of your programs next to the matplotlib import.

As you may have noticed above, if you type plt.plot(any arguments) multiple times, the graphs
appear on the same plot (so you only want to do this when they share an axis). If you want to make
two separate plots in a row , with different axes and such, just type plt.figure() in between the plots
you are trying to make (so, for example, in between the first plot’s .show() and the second plots first
.plot()).

5.2 Subplotting 37

Figure 5.1: How to specify different symbol types in matplotlib

5.2 Subplotting

5.3 Plotting 2D Images

Earlier we discussed 2-D arrays. Pyfits/the Astropy libraries have a way of displaying these as
images. The easiest way to think about a 2-D array in terms of plotting is to pretend it is a black
and white image. Each “pixel” is a value within the array. Some pixels might have low numbers
(not bright), others higher (very bright). Matplotlib can generate an “image” based on this data- it
simply assigns a color-table to follow the varying brightnesses, and displays the strength/intensity
of each ‘pixel’ exactly as you would expect. (This is actually not a bad way to think, since images
taken by telescopes are simply 2D CCD pixel arrays “counting” how many photons hit each pixel
and returning a 2-D array with the totals).
Lets say we used astropy to read in a fits image, and turn it into a 2-D array (we cover how to do
this in the next section). Now we have a two dimensional numpy array, with array[0,0] giving the
number of photons in the top-left pixel, and so forth. To plot it, we would type:

38 Chapter 5. Plotting

Figure 5.2: How to specify different symbol/line colors in matplotlib

»[IN]: plt.imshow(array, cmap=’gray_r’)
»[IN]: plt.show()

R Note: for reasons that really don’t matter, you don’t have to call plt.figure() before using
imshow, even if it is after plotting other things. It’s a different kind of plot, and will show up in
its own figure on its own.

In this example, we chose a cmap (color map) to be gray_r, which is essentially “reversed black
and white”. Most of the time, when viewing images from telescopes, we want to use this setting,
even though there are many wacky and colorful color-maps to chose from. The primary reason is
that the astronomical image (unless taken with a specific filter), contains information only about raw
numbers of light particles. So there is only one gradient- which is easily modeled as a transition
between black and white. So why the reversal? Using the ‘gray’ cmap alone produces images
that look quite a lot like the night sky anyhow. The answer is that when trying to pick out faint
objects and stars, it is easier to see contrast between dark things on light backgrounds than the
reverse. Furthermore, often times these figures end up in papers which are printed, and reversing the
color-scheme saves on ink.

Plotting 2-D arrays, whether real images or other values, can sometimes be tricky. You are
looking to get a certain level of contrast between light and dark, which maximally displays the
information in the array (you don’t want it to be washed out, or not visible). We encourage you
to see the documentation for plt.imshow() to see how to select different scales (linear, quadratic,
logarithmic, etc). This will also be covered in the image processing tutorial. An easy way to start
pulling useful ranges within an images are the vmin and vmax commands. They are used to set the
upper and lower range of the linear (by default) scale between black and white. Basically, if you
set vmin=50, and vmax=500, it would create a linear scale from pure white to pure black between
these two values; anything less than 50 is white, anything higher than 500 is just black. What this
seemingly does is take away your ability to discern by a gradient a pixel of 500 and a pixel of 600.
This is true. But when viewing astronomical images, often times there are several bright objects
(like stars or galaxies), and a mostly black background (the sky). Since the difference between the
sky brightness and object brightness is so huge, it doesn’t make much sense to attempt to see the

5.4 Loading Astronomical Fits Files 39

“gradual” shift between them. Furthermore, in a simple plot like this, we only really care what is
“not-sky” and what is “sky”, so we want a high level of contrast. If you need to know which pixels in
a given star are brighter, and which are dimmer, comparatively, you would probably want to be more
quantitative and write a piece of code to determine that for you.

R A boring but important (sometimes) note: The convention amongst astronomers and scientists
in general is the the “origin” of an image is in the lower left hand corner, (0,0), i.e., what
we see is the first quadrant of a coordinate plane. Unfortunately, matplotlib has other ideas.
When you use imshow, it displays like a matrix, the way arrays are defined, with (0,0) in the
upper left corner. If you want to conform to convention and plot with (0,0) in the bottom left
(which you should), you’ll want to use the command origin=’lower’ within your plt.imshow
command. Unfortunately, doing THIS will end up flipping your image vertically. Sometimes,
astronomical images come in upside down anyway (to the convention of north being up and
east being left). Then origin=’lower’ actually solves your problem. But if your image was
rightside up when plotted before, it is now upside down. Luckily we know how to fix this: just
set your image = image[::-1] to flip the array, before plotting (and therefore flipping it).

5.4 Loading Astronomical Fits Files

Being able to manipulate data stored in images is one of the most important things you should try to
take away from this course. In many physical science fields and especially in astronomy, images are
taken using either microscopic or telescopic techniques and each pixel in the images corresponds to
a specific intensity value. The meaning of these values is dependent on the actual instruments and
the physical system you’re studying.

In astronomy, in particular, it is useful to work with FITS (flexible image transport system) files.
FITS files are widely prevalent because of a feature they contain called a header. Headers often
contain information about the image itself. For instance, they will often contain things like the
declination, ascension, exposure time, as well as a description about the image itself.

FITS files are, like most things we will work with, not actually native to python itself. To use
them, we will have to import a library called pyfits (or on the lab computers, astropy.io.fits); then
we can start working with our images. Typically we import either of these as "pf". The syntax for
opening a fits file is:

»hdu = pf.open(path)
where path is a string with the path location of the fits file, or, if your python file and fits file are in
the same folder, then just a string with the filename is sufficient.

The reason we often refer to fits "files" rather than fits "images" is because a fits file actually
contains more information in it than just an image. The two most important "sections" stored within
a fits file are a header, and the image itself.

5.4.1 The Header

The header is a dictionary containing a lot of useful information about the images stored in the fits
file: when they were taken, what exposure time was used, what type of filter was on the telescope,
what the RA and DEC of the object viewed were, etc. Assuming we continue with hdu being the raw
imported fits file, we can single out the header with dot notation:

»head = hdu[0].header
At this point, you could print "head" and see the entire header file. Alternatively, to see or pull

40 Chapter 5. Plotting

individual pieces of information from the header, you query it the way you would a dictionary, using
a key.

� Example 5.1 Pulling from a header
ra = head[’RA’]
dec = head[’DEC’]
time = head[’EXPOSURETIME’]

Note: the strings used in the dictionary call are not case sensitive. �

5.4.2 The Image
To access the image itself, we call

»img = hdu[0].data
as the data attribute of the fits file contains the 2D array of the image, and the hdu[0] is due to the
fact that sometimes fits files have multiple images stored within them.

Now, if you simply print img, you’ll see a 2D array of data (likely with the whole center chopped
out to save spave). To see what that array looks like as an image, you can use plt.imshow(), as we
discussed earlier in the chapter.

6. Classes and Object Oriented Programming

Object Oriented Programming is a relatively new system of organizing programs which is included
in many higher level programming languages.

6.1 Defining Classes

Objects, or Classes, are useful for a variety of reasons; primarily we use them to easily organize
groups of functions that act on a specific "object" that we define. There are two main components
to a defined class: attributes and methods. Attributes are properties which are created when an
instance of a class is initialized (when you create a new instance of an certain class in your code).
Methods are functions which each instance of a class carries and can utilize. Accessing attributes
and methods is done via dot notation, similarly to the way we utilize functions inherited from the
libraries we imported. Essentially you can think of those libraries as large, complex classes.

Let’s start with the basic syntax of classes. Before we can initialize an object of a certain class,
have to define one first. Say we want to create a class called Planet which has certain attributes such
as planet name, revolution period, and mass.

� Example 6.1 Defining a Planet Class

class Planet(object):
def init (self, planet_name, rev_period, mass):

self.planet_name = planet_name
self.rev_period = rev_period
self.mass = mass

�

This looks a little funky, but its just the basic syntax for defining a class. The first function in a class
is always the init function (which has a double underscore before and after the word init). The first

42 Chapter 6. Classes and Object Oriented Programming

argument of init is always "self" (the word self isn’t special, it could be any word, so long as it was
consistent in the rest of the class. But self is the overwhelmingly common choice. The position
of self as being the first argument is what makes it special). After this first argument, you list the
other attributes that the user can define for a class object when they attempt to make one. Here, we
let them specify a name, revolution period, and mass. Now, within the init function, we have to
initialize "self" to be all of the things the user specifies. For example, by setting self.mass = mass
(where mass comes from the user when they call the init function), then later someone can name
a planet "mars" by typing mars = Planet(’mars’, 3,25), and call the mass by typing mars.mass. In
short, when a person initializes a class object (like we just did in the previous sentence), the variable
(in this case mars), stores all the information that "self" does within the init function.

R Note: The reason we have the word ’object’ in Example 6.1 is that we are actually creating a
subclass of the superclass object. Don’t worry too much about it, (we will get to subclasses in
a moment), but just know that when defining a class in your code, you will probably use object
in the class line.

Once we have created an init function, we can put other functions in our class as well. These are
known as methods. For example, our Planet class could be updated to easily return the semimajor
axis of the planet’s orbit using Kepler’s third law.

� Example 6.2 Methods

class Planet(object):
system_name = ’2014-B178h’
def init (self, planet_name, rev_period, mass):

self.planet_name = planet_name
self.rev_period = rev_period
self.mass = mass

def semimajoraxis(self):
return (self.rev_period**(2./3.))

�

As you can probably infer, this method will be inherent to any instance of the Planet class you create
and you can use it on any of them, just as any other method you include in the Planet class.

In addition to instance attributes (attributes set when an object is made) there can also be
class attributes which are the same regardless of the instance. You simply set them within your
class, outside the functions. In example 6.2, every planet you create will have the attribute of a
system_name, and it will always be ’2014-B178h’.

6.2 Subclasses
When discussing the class initialization, we mentioned that you use the word object within the paren-
thesis to pull methods and attributes from the object superclass. We usually don’t call the classes we
create subclasses though, since the object class is basically inherently necessary to working with
classes. Thus, the classes in your code are the highest level ones you create. It is possible to make

6.2 Subclasses 43

subclasses of your own, which inherit all the attributes and methods of their parent class, while
having some specialized methods and attributes of their own. For example, we can make a subclass
of Planet called Dwarf:

� Example 6.3 Subclasses
class Dwarf(Planet):

def describe(self):
return self.name + ‘:’ + ’Mass-’ + self.mass + ’Period-‘ + self.rev_period

�

Notice how instead of using object, we call Planet within the class call. Because Dwarf inherits
everything from Planet (including the init function), we only have to worry about the special methods
and attributes we want to apply only to the dwarf planets we define.

Classes and subclasses have lots of applications. For example, if you were designing a chess
game, you might have a "board" class and a "piece" class, and then subclasses for the different kinds
of pieces and the rules they follow, all while still having the common attributes of a piece.

7. LaTeX

Latex is a typsetting compiler used to produce high quality documents such as papers for publication,
books, and more. For example, this textbook was written in Latex, as well as all the tutorial guides.
Latex has somewhat of a learning curve, but once you learn it, it has distinct advantages over trying
to write up documents in Word, or other normal processors. Here are some of those advantages:

• Latex has built in support for easily including complicated mathematical equations and
expressions, as is often needed in a scientific paper.

• Figure/numbering handling. Latex lets you insert figures, equations, etc., all over your
document and handles the numbering for you- if you insert a figure before fig. 3, all the figures
in the document automatically renumber accordingly.

• Format and placement. Latex basically controls the format of your document for you- where
figures go, how the text is laid out (based on certain styles you can specify). At first it’s
infuriating not to have complete control over every detail, but after a while you are thankful
that it just does everything pretty nicely.

• Journal Styles: If you are submitting to an academic journal such as ApJ (the astrophysical
journal), you can import that style into latex and it will automatically format your document
to fit ApJ standards.

• Internal referencing. Latex has a built in reference system, so that you can label a figure as
"star", and reference that figure throughout the document, and your text will say fig. 4 (where
the 4 will change anytime the figure numbering does).

• Citations. There is a package known as bibtex that allows you to easily and short hand cite
authors or papers throughout your own, and it automatically assembles a reference page at the
end of your paper.

There are more advantages, based on the situation, but for now we will leave it at that. If you are
planning on taking the Upper division lab, you will need to type up your reports in Latex. If not, it’s
still a valuable tool to know how to use.

46 Chapter 7. LaTeX

7.1 Creating a Document

Latex is a compiled format, which means that you type in your text with a bunch of special commands
to define things like new sections, equations, etc. Then, a Latex compiler turns all those commands
into the appropriate formatting, and outputs a pdf of your document. To create a new latex document,
you can type vim text.tex into terminal. Additionally, there is an awesome site called overleaf.com
(previously writelatex.com), which lets you write and compile latex documents online (and store
your stuff in the cloud for safety and for sharing with collaborators). In a moment, we will be going
over the preamble and what needs to go there, but know that overleaf has plenty of templates with
these finicky terms already in place, so you can focus on content.

7.1.1 The Preamble
The preamble to a latex document is a collection of commands that specify the overall formatting of
the document. The first line in almost any latex file is
\documentclass[12pt]{article}
which determines the "class" of document and default fontsize you will be working with. There
are many classes (which you can look up online), some typical ones include article, book, report,
minimal (mostly for debugging), slides, memoir, and letter. You can also import specific classes to
match a journal you want to submit to. After the document class is defined, you will want to import
some packages (just like importing libraries in python) to make the environment more rich. These
are the barebones ones you need to make sure you can include pictures and math:

\usepackage[margin=1in]{geometry}
\usepackage{amsmath,amsthm,amssymb}
\usepackage{graphicx}

When you are working you may need to download or install more packages to suit your needs.
Overleaf has the majority of commonly used packages already imported online for you to access.
Once you have all the packages and formatting you need done, you can move to a new line and start
the document.

7.1.2 The Main Document
We start the document by having a line that reads

\begin{document}

"Document" here is what is known as an environment. Environments are set off from the rest of the
latex document by "begin" and "end" statements (so your paper will end with an "end{document}"
line). Other environments include equations, figures, etc. The rule of thumb is, if you have to begin
something, you have to end it.

The first thing we want to do is create a nice title for our paper. We can do that by typing

\title {A witty title}

Most document classes come with titling code which also takes an author, which we can set by typing

7.1 Creating a Document 47

\author {Author }

There are some other things you can put in a title, but this is the basics of it. Now, once those lines
of code are down, you need a line

\maketitle

to actually have latex make the title when it compiles your document.

7.1.3 Sections and Subsections
Now you are ready to start dividing up your paper, book, assigment, etc., in to sections and subsec-
tions. (These will all be numbered for you automatically). To start a new section, we type

\section{Section Name}

And then type our text in a block. If you need a new line, two backslashes in a row will do
the trick. To create a subsection within a section, the syntax is identical to section creation, just with
the word subsection instead. Keep in mind that this is not like an outline: you can’t jump out of
a subsection to the main section once a subsection has been defined. For scientific papers, doing
so should really be unnecessary; sections will have introductions and then be divided into smaller
subsections as needed.

7.1.4 Inserting Equations
There are two primary ways of inserting equations into latex: inline, and ownline. Inline refers
to when you see a short equation or expression within a line of code. For example, few would
think the equation F = ma would require its own line. The way we wrote that equation just
there was by surrounding everything we wanted in the equation by dollar signs. These set off
the inline equation environment, which italicizes letters, allows for subscripts and superscripts,
etc. To create an equation on its own line, we use could use something like the following:

� Example 7.1 Defining an Equation
\begin{equation}
U = -\frac{Gm_1 m_2 }{r}
\end{equation}

which would translate to:

U =−Gm1m2

r
(7.1)

�

There are too many different subtle syntax variations for actually entering the symbols and math
format needed, but the rule of thumb is basically to google it, and after a while the common ones
become second nature.

48 Chapter 7. LaTeX

7.1.5 Inserting Figures

If you have pictures (like .jpg, .png) that you’ve saved and want to include in your document, you
can use the following template:

� Example 7.2 Inserting Figures
\begin{figure}[htp]
\centering
\includegraphics[width=.55\textwidth]{img.png}
\caption{Enter a caption here}
\label {enter a label here for referencing}
\end{figure}

The [htp] tells latex where youd LIKE the figure to be, in this case we use the default of "here" (in
its position in the latex document with reference the the text). Latex might decide it will go better
at the top of the page, bottom, next page, etc. Usually you just let it do what it wants until the end,
when all figures and text are entered, then you can start trying to push things around a little. a [h!]
will attempt to force latex to put a figure "here". No promises though.

The centering line tells latex to center the image within the text or column of text it is in. the
[width=] tag lets latex know how wide to scale the image; here we say .55 of the text width (you can
choose any percentage, or just use in or cm if you want). The caption you specify appears under the
image. The label is invisible (no one will see it), but it allows you to reference this figure in your text
by a name you can remember, so that latex can replace that reference with the proper figure number
later. �

In the body of your text you may want to make reference to a figure you inserted by number, eg, (see
fig. 1). But remember that latex numbers for you, and inserting another figure somewhere could
throw off all your numbers if you do it manually. The solution is labels. If we specify a label tag on
our figures and equations, we can then type see fig. \ref{labelname} and the ref labelname part will
automatically show the figure number in question when we compile.

7.1.6 Lists and Bullets

In the tutorials we often had a list of commands, or bullet points, or both. Lists (both numbered and
bulleted) are their own environments within latex.

You can begin a numbered list by having a line \begin{enumerate} (and of course a corresponding
"end" command at the end. Inside, you can make individual items by typing \item (a space) and then
the content of that number-bullet. It will automatically number each item in order. To make a bullet
list, the syntax is identical, except you use "itemize" rather than "enumerate" in the begin and end
statements.

You can also nest enumerates and itemizes together: if you have a full itemize chunk within an
enumerate chunk, it will make an indented bullet between two of the numbers. You can look back at
the tutorials for how this type of thing looks.

7.1 Creating a Document 49

7.1.7 Wrap Up
That’s about it for basic Latex! If you want to work with latex files from scratch, you’ll need a latex
compiler for your computer. The compiler installed on the lab computer is pdflatex, and typing
pdflatex filename.tex into terminal will compile and create a pdf of your document (and or warn you
of compile errors). If you are on your own computer, you will also have to download and install a lot
of the packages for different formatting styles. There are some latex editors that will automatically
try to download packages you don’t have if you call them in your document.

Honestly, overleaf is a great resource if you need to write in latex. Not only does it store your
files, images/figures, etc online (in case your computer crashes), but it has pretty much all the
commonly used packaged "installed". Additionally, it has the cool feature of autocompiling a live
preview in a pane next to where you are typing, so you can see quickly what your formatting looks
like and if you’ve made a mistake. Learning latex is a lot of trial and error and google, but once you
get a basic hang of it, and learn where to find the templates that handle a lot of the nasty junk for
you, you can produce some really good looking documents.

8. HTML Editing

HTML is the language of the web. HTML stands for HyperText Markup Language and it allows you
to build simple, functional web pages. This book will not delve deeply into the intricacies of web
development but will give you a brief foray into the basics of websites. In addition to HTML, we
will touch on the basics of Cascading Style Sheets, or CSS. CSS files, as their name suggests, allow
you to manage the style of the page including the fonts, colors, text size, and various other factors.

8.1 Basic HTML

Just as you create a python file by typing ‘vim filename.py’, you create HTML files by typing ‘vim
filename.html’ or by initializing a ‘.html’ file in whatever text editor you choose. Once you do so, it
is pretty standard practice to start off your file by typing <!DOCTYPE HTML> This line indicates
to your web browser which version of HTML to use. Once you have this, you include the <html>
tags such as this:
<!DOCTYPE HTML>
<html>
</html>
As you have likely noticed, actual HTML code is placed in between brackets and the closing bracket
always has a slash before the html tag. In HTML, anything placed between the two brackets is
called a tag. Now that you’ve created your basic HTML, it’s time to get started with some actual
content. In between the <html> tags, you will likely want to include the <head> tag. The <head> tag
is where you will put information about the site title, author, and description and where you will
include the code to tell the HTML files to incorporate CSS, Javascript, jQuery, or any other files you
may need to include. For now, we will focus simply on the title tag. The title is what appears in
the actual tab. Say we were to make a website about Jupiter and want to have our title be Jupiter.

52 Chapter 8. HTML Editing

� Example 8.1 Creating a Title

<!DOCTYPE HTML>
<html>

<head>
<title>

Jupiter
</title>

</head>
</html>
�

R Note: The indenting we have demonstrated here is merely for aesthetics: ease of reading and
editing. The browser itself doesn’t care about indenting, only about start tags and end tags.

Now if we take this code and save it in an HTML file then open it with a browser, we would
notice that the tab now reads “Jupiter” where it would have read the URL (or file path if it’s locally
hosted) before (note that this isn’t titling the web page itself, only the tab bar). After the head tag,
you can start writing the code which contains the actual content of the web page. This will be
contained inside the body tags of the page. We will now go into some of the basic html tags, which
are summarized in table 8.1.

Once you have created the enclosing body tags, we can get into the meat of the page. You’ll
probably want to include a title to indicates what the site is about. There are multiple title-types and
they are designated with numbers <h1> through <h6>, where the increasing number corresponds to
a decrease in the size of the text (h1 headers are the largest). These header tags are used typically to
separate the page into subsections.

Typically, normal text is contained inside paragraph tags, designated <p>. Perhaps the most
ubiquitous tag used in HTML code is the <div> tag. The div tag is used to enclose sections which
will have the same styles. They are often most useful in conjunction with CSS classes and IDs. Often

html tag description example
<h1 > headers, size by number <h1>A title </h1 >
<a > linking to files/web pages Link text
<p> denotes paragraphs <p>paragraph text </p>
<div> denotes chunks for given style <div>content chunk </div>
 insert an image

Table 8.1: Basic Html tags and their functions

we need to create hyperlinks which when clicked, go to a new web page. This is accomplished with
the <a> tag. The <a> tag is not as straightforward as some of the other ones. It is best displayed
through an example.
Click here!
The text in between the <a> tags will be the text displayed in link form on the actual web page and
the address in the quotations will be where the user is redirected to. It should be noted that you can

8.2 CSS and Styles 53

also use path addresses to a specific file or folder in your directory instead of a URL (say, if you’d
uploaded a pdf to your directory you wanted to share).

Images are an important part of many websites and are are dealt with using the tag. Like
the link tag, images point to a source file or address. In addition to the source attribute, images also
have an alt attribute which displays some specified text in case the images are unable to load. Say
for example we want to load a picture of Jupiter in our directory called “jupiter.png” we would write

After specifying the alt, you can also specify a height and width in px or inches by the same
syntax, (height="42", etc). If you want to be really fancy, you can make images into clickable links
like this:

Armed with this information, you can create a basic web page to present yourself to the world.

8.2 CSS and Styles

However, you have likely noted that this will all be plain text, which isn’t necessarily a bad thing
as it will get its point across but in this Web 2.0 World it’s nice to give your site a little flash. This
is where CSS comes in. As previously mentioned, CSS files contain the “styles” of the web page.
First off, we need to know how to include CSS files in our HTML web pages. Inside our head
tags, we use the <link> tag to link to the external files as such <link rel=”stylesheet” type=”text/css”
href=”stylesheet.css”> This is, of course, assuming we have named our stylesheet to be simply
“stylesheet.css”. Let’s put together all our code before into some basic website.

Exercise 8.1 Basic Web Page
<!DOCTYPE HTML>
<html>

<head>
<link rel=”stylesheet” type=”text/css” href=”stylesheet.css”>
<title>

Jupiter
</title>

</head>
<body>
<h1> Jupiter</h1>
<p>Jupiter is the largest planet in our solar system</p>
<p>Jupiter is a gas giant</p>

</body>

</html>
�

Now say we wanted to make the body of the document have a blue background but we wanted
<h1> and <p> tags to be two different colors and fonts. First off let’s initialize our CSS file and then

54 Chapter 8. HTML Editing

we can begin looking at the syntax of CSS. In CSS, you include the HTML tag you wish to modify
followed by a set of brackets. Inside these brackets are the actual stylistic attributes. Let’s say we
want to make the background color of our body be green. We would write in our file:

body {
background-color: green;

}

where the semicolon tells the compiler that the attribute has received its assigned value. Now
let’s say we wanted to make the h1 tag some wild, exotic color, like orange and we wanted to center
it, just for kicks. We would write that as such:

h1 {
color: orange;
text-align: center;

}

You can just keep adding attributes as you wish and there are so many to choose from.

Now we want to specialize our <p> tags. However, we have two of them and we may want to
give them separate styles. This is accomplished through the beauty of classes and IDs. IDs and
classes work in essentially the same way but differ in one specific way that is crucial to success of
your web page. IDs can only be used on one element of a web page, whereas classes can be used
as many as you may like. For that reason, it is likely a better idea to use classes where possible as
it will avoid most complications. These are implemented in your html code when you initialize a
paragraph. We simply adapt the typical <p> marker to be:
<p class = “classname”>
inside the one of the two <p> tags (in this case the first one). We then write some CSS:
p
{

color: blue;
background-color:red;

}

.classname
{

text-align: right;
color: red;
background-color:blue;

}
and if we update our files and load the page, we will find that the paragraph we specified with a
different class now appears different than any normal paragraph tagged lines (which default to the
normal css description). The dot before the class name tells the browser to interpret the following
thing as a class selector. For IDs, one would use a number sign before the identifier, but the rest
would be the same.

8.2 CSS and Styles 55

8.2.1 Using divs

As things get more complex, it is often useful to enclose larger sections in div tags. There are a
few reasons for this; it makes the code easier to read and edit, and more importantly, allows us
to specialize our css further. For example, say we were to have a div section with a h1, h2, and
a p section. However, all of those tags appear in other div sections and we do not want the same
style in those sections. Thankfully, CSS has a simple way of implementing such a thing. As in the
previous example, we specify the div we are interested in with a special class name, and then define
the special formatting of that class in the CSS. The easiest way to learn about how these structuring
elements work is to load up a simple website and look at the html and css code that went into it.
One easy way to do this is to google "free css templates". There are numerous site with free html
templates that come with a css sheet as well. Knowing what we’ve discussed above, you can use the
structure in place to enter your own content, move things around, and so on. Viewing the page in a
browser, you should try to follow along the html, see where the different styles are linked to, etc.

8.2.2 Tables and Lists

One thing we want to touch on before wrapping up is how to format a simple table or list, since they
are effective ways of placing a lot of information.

Tables have several HTML tags associated with them. In order to initialize the table environment,
one types <table>...</table> where the other information will go in between the two tags. First,
you will need to create a row. This is done by writing the row tags <tr>...</tr>. Inside the row
tags, you will include your column headers in between <th>...</th> tags. This tells the browser
that these are table headers and it will automatically bold them and center them, which you could
eliminate with CSS if you really wanted to. Once you have that, you can start creating your regular
table rows using the <td>...</td> tags, which contain the information to wanted to show in the first
place.

Exercise 8.2 Creating a table
<table>

<tr>
<th>Planet</th>
<th>Distance from Sun (AU)</th>

</tr>
<tr>

<td>Earth </td>
<td>1 </td>

</tr>
</table> �

In HTML, there are essentially two types of lists: ordered and un-ordered lists. These are
designated by the tags and respectively. Inside a set of and (same fo), you
list individual items inside and tags. This is very similar to lists in Latex- with enumerate
vs. itemize and the \item commands. Here’s an example:

56 Chapter 8. HTML Editing

� Example 8.2 Say you had a to-do list of things you wanted to do in a specific order.

Get groceries
Cook Dinner
 Shower
 Cry self to sleep

whereas if you had just a list of things you might want for your birthday you may write

 Socks
 Underwear
Ties
Carrots

 �

There is more to lists than simply in paragraph denotation. The added usefulness of lists is rooted in
the power of CSS and other helping languages. For instance, most navigation menus are created
using unordered lists.

Ultimately, HTML and CSS are not the most astronomically relevant languages to learn but their
usefulness lies in their ability to convey information to those around you. Make your research look
exciting and it will likely get more people behind it. What we do as scientists is research, and then
communicate that research, so effective communication is essential to success in the field. Now, you
should not expect yourself to be able to create intricate websites overnight and in actuality, there
really is not even a need for it. There are already a plethora of splendid HTML templates out there
which we are confident you can fully implement now. These are often much more complex than
the stuff you learned in this textbook but you can break it down into the elements you learned here.
Work smarter, not harder. Do not waste your own time reinventing the wheel. After all, that is why
we program in the first place.

9. Glossary

Argument
An argument is essentially an input to a function. The term can be seen in the math-
ematics application, in which the sine function takes an argument, such as (x-5), in
the form sin(x-5). In UNIX, the commands like mkdir, rm, and vim serve as built-in
functions, and the syntax for applying arguments is by typing the function, a space,
and then the argument. Within python, functions, both built in and user defined, are
referenced much like in the math example: via parenthesis attached to the function call.
(Ex: np.sqrt(15), my_function(name, dob, gender)).

CLI
Command-line Interface (terminal). A means of interacting with a computer system via
successive lines of text in the form of commands.

Command
A word, phrase, or instruction that can be understood and interpreted by a computer
system which then executes the command in question.

Conditional Statement
A statement defining a certain condition, using operators like greater than, less than,
equals to, their opposites, or some combination. These statements enclose a block of
code that runs only if the conditional statement is evaluated to be true.

Data Type
Refers to the different types of objects in python to which python places certain rules.
For example, integers and floats can be added, but not indexed.

Directory
Within a UNIX system, a directory is analgous to “folders” on a PC or Mac. It’s where
all your files are stored.

Element
A single discrete object within an iterable set. For example, a single character in a
string, or a single entry in a list or array, or an entry in a dictionary.

FITS

58 Chapter 9. Glossary

Flexible Image Transport Syste. A file format typical to astronomical images.
Flag

Also known as an option, a flag is a way to modify a UNIX command to alter the way
it performs a task. Flags are entered between the command and the argument, with
spaces in between both the command and the flag, and the flag and the argument. The
typical syntax for a flag is a dash (-) followed by a letter or short combination thereof.
(Ex: ls -l). To see what flags are available to use for any UNIX command, typing
man(command) will have them listed.

For-loop
A for loop is a block of code that contais some iterative variable like "i" within it, with
"i" cycling through different values defined in the initiation of the loop.

Function
A function is an operator that takes some inputs (or none) and, when called, performs
some operations and outputs something (or multiple things). Functions can come from
libraries, within python, or be user defined.

GUI
Graphical User Interface. A means of interacting with a computer system via graphical
icons and visual indicators, through the direct manipulation of graphical elements (e.g.,
clicking, double clicking, and dragging)

Index
Given a list, array, or other sliceable data type (these are called iterable data types),
every element is assigned an index based on its position from the leftmost element,
starting with i = 0, and “reverse index” which starts on the rightmost element with -1,
and gets more negative as you move left.

Library
A large collection of functions that can be used in Python by importing the library.
Calling functions from libraries usually requires the dot notation call of the library
name (dot) function name. Libraries have defined names like numpy and matplotlib,
but you can import them into your program as anything you like.

Loop
A block of code that is run multiple times, either due to iteration through some prede-
fined range of values, or indefinately so long as some condition is met.

Operating System
Software that manages the hardware and software resources for a computer. A vast
majority of applications and programs require an OS be installed on a computer in
order to function. Common OS’s include Windows, MacOS, and Ubuntu.

Path
The description of your location within a file system, indicated by the names of succes-
sively nested directories, usually separated by slashes (e.g., home/documents/project/)
Prompt: In essence, the computer is “prompting” you to issue a command. This string
of letters could be anything, but is usually set to be some variance on the current path
(meaning the prompt will change as the directory does).

Prompt
A line of text appearing on the left of the the command line interface, usually containing
some sort of path information. It can also be altered to read anything. You type in
terminal next to be prompt.

59

Root Directory
The root directory is the directory within which all other folders/directories and files
are contained. In essence, one could start from any directory in a file system and move
up in directories until the root directory is reached.

SSH
Secure Shell Host. A way of logging into a server of networked computers via the
terminal of any external computer.

Syntax
The specific set of words, phrases, and commands that can be successfully interpreted
and understood by a computer. For example, a computer can understand that upon
receiving the typed command “ls” it should display all files in the current directory.
Had the user typed “list files” the computer would have thrown an error as this phrase
is not in its syntax.

Terminal
Also called a shell, the terminal is where the prompt and command line interface are
contained. It is the program through which one can issue commands directly to the
computer’s OS through text commands.

UNIX
An operating system developed by Bell Labs upon which many other systems are
currently built. UNIX is also the primary operating system on scientific machines like
telescopes and supercomputers.

Variable
A variable is a user defined set of characters (could be a word, or number, or combina-
tion), which is assigned a value, array, etc. Variables allow us to implement large arrays
and strings etc. in shorthand throughout our code.

While-loop
A while loop is a block of code that will run over and over so long as a conditional
statement is still true after each run through of the block. This of course means that
there must be something within the loop that will eventually force the condition to
become false.

	Essential Unix Skills
	What is UNIX, and why is it Important?
	The Interface
	Using a Terminal
	SSH
	UNIX Commands
	Changing Directories
	Viewing Files and Directories
	Making Directories
	Deleting Files and Directories
	Moving/Copying Files and Directories
	The Wildcard

	Basic Python
	Data-types
	Basic Math
	Variables
	String Concatenation
	Array, String, and List Indexing
	Two Dimensional Slicing

	Modifying Lists and Arrays

	Libraries and Basic Script Writing
	Importing Libraries
	Writing Basic Programs
	Writing Functions

	Working with Arrays
	Creating a Numpy Array
	Basic Array Manipulation

	Conditionals and Loops
	Conditional Statements
	Combining Conditionals

	Loops
	While-Loops
	For-Loops
	Nested For-Loops

	Loading and Writing Files

	Plotting
	Basic Plotting
	Subplotting
	Plotting 2D Images
	Loading Astronomical Fits Files
	The Header
	The Image

	Classes and Object Oriented Programming
	Defining Classes
	Subclasses

	LaTeX
	Creating a Document
	The Preamble
	The Main Document
	Sections and Subsections
	Inserting Equations
	Inserting Figures
	Lists and Bullets
	Wrap Up

	HTML Editing
	Basic HTML
	CSS and Styles
	Using divs
	Tables and Lists

	Glossary

