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Actions: Left / Right
Rewards: +1 for Goal

Goal: Find policy ᶢ(s) → a
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Goal: Find policy ᶢ(s) → a

Q-Value Function: Q(s,a) = ∑t=0 ᶕ
trt

Q(S3, L) = 0 + 0 + ᶕ21 
Q(S2, L) = 0 + ᶕ11
Q(S1, L) = ᶕ01

Q(S3, L) = .9025 
Q(S2, L) = .95
Q(S1, L) = 1
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ᶢ(s) = argmaxa Q(s,a)

Q-Value Function yields policy
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Goal: Learn Q-Value Function

Q(s,a) = r + ᶕ maxa’ Q(s’,a’)
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Q(S3, L) = 0 + ᶕ max( Q(S2,L), Q(S2,R) ) = .9025 
Q(S2, L) = 0 + ᶕ max( Q(S1,L), Q(S1,R) ) = .95
Q(S1, L) = 1

Need to estimate Q-values 
from experience!



Q-Learning Algorithm

1. Start with uniform Q-Values Q(*,*) = 0
2. For Episode 1 … convergence:

a. Get s
b. Take action a = argmaxa Q(s,a)
c. Get reward r
d. Get next state s’
e. Target y = r + ᶕ maxa’ Q(s’,a’)
f. Q(s,a) += ᶓ ( y - Q(s,a) )

Over time, Q(*,*) becomes more accurate → ᶢ(s) gets better. 
Converges to optimal Q*, ᶢ* in limit.



Issues

1. Scalability as a function of |S|
a. |S| <= 105

  Ok; |S| >= 106 maybe not okay 

2. Generalization to new states
a. Need a good estimate for Q(snew, *)



Deep RL - Represent Q(*,*) as a NN

θ

s

Q(s,a1) Q(s,a2) Q(s,an) One scalar output node for 
each action

Each output node estimates 
Q-Value



Update

θ

s

Q(s,a1) Q(s,a2) Q(s,an) Given experience (s,a,r,s’):

Generate target:
       y = r + ᶕ maxa’ Q(s’,a’|θ)
 

L(s,a,r,s’|θ) = [ y - Q(s,a|θ) ]2

Minimize loss via SGD



Issues

1. Scalability as a function of |S|
a. |S| <= 105

  Ok; |S| >= 106 maybe not okay 

2. Generalization to new states
a. Need a good estimate for Q(snew, *)

NN is agnostic to |S|.

NN has good generalization.



y = r + ᶕ maxa’ Q(s’,a’|θ)

L(s,a,r,s’|θ) = [ y - Q(s,a|θ) ]2 

If r > 0 and s ≅ s’ then repeating this update causes 
Q(s,a) → ∞.

Issue 1: Constructive Interference

Update Q(s,a) Q(s’,a’) y

0 0 0 1

1 .5 .25 1.25

2 .87 .5 1.5

3 1.25 .75 1.75



Target Network Q(s,a|θ-) slowly tracks Q(s,a|θ)

Revised Update: y = r + ᶕ maxa’ Q(s’,a’|θ-)
L(s,a,r,s’|θ) = [ y - Q(s,a|θ) ]2 

Every 10,000 updates: θ- = θ

Solution 1: Target Networks

Time Q(s,a|θ) Q(s’,a’|θ-) y

0 0 0 1

1 .5 0 1

2 .75 0 1

3 .875 0 1

10,000 ~1 .5 1.5

Generalization of NN is a 
double edged sword!



Issue 2: Policy Influences Data
No fixed dataset; Data generated by interactions 
using ᶢ.

Possible to get to get “stuck” in a portion of the state 
space and bias the update data.

If ᶢ prefers a certain part of the state space, agent 
can avoid learning anything else by never visiting the 
rest of the space.



Solution 2: Experience Replay
Maintain a Queue of experience tuples:

D = { (s,a,r,s’), … , (s,a,r,s’) }

Updates randomly sample from (s,a,r,s’) ~ D

Benefits:

1. Learn from collected experience more than once
2. Decorrelates (s,a,r,s’) tuples in updates
3. Can learn from states that ᶢ won’t currently visit



Issue 3: Growing Rewards
Traditional Deep Learning uses SGD + momentum with learning rate decay.

This is a problem in Deep-RL if the agent discovered a new source of reward, but 
had a learning rate too far decayed to change the policy to exploit new rewards.

Solution: Adaptive Learning Rate Methods

Adam / RMSProp / AdaDelta / AdaGrad



θ

s

Q(s,a1) Q(s,a2) Q(s,an)

Deep 
Q-Learning



http://www.youtube.com/watch?v=TmPfTpjtdgg


DQN

1. Approximate Q-Values using NN
2. Follows Basic Q-Learning Algorithm

a. Target networks and Experience Replay Queue for 
stability

3. Adaptive Learning Rate Optimizer keeps policy nimble

Questions about 1st paper?



Continuous Action Spaces
Atari has discrete actions but many domains require 
continuous control: e.g. torque on actuator.

The Good: NN can output continuous actions

The Bad: DQN uses these continuous outputs to estimate 
Q-Values rather than using them for control.

The Ugly: Need a new architecture!
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Actor-Critic Methods
Two network solution:

Actor Network: a = ᶞ(s|ᶚᶞ)

Outputs continuous actions. Actor is ᶢ. 

Critic Network: q = Q(s,a|ᶚQ)

Evaluates state, action pairs.
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Actor-Critic Methods
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Critic Update

State

ᵘθμ

4 Actions 6 Parameters

ᵘθQ

Q-Value

Actor

Critic

auQ
(s

,a
)

Given

Note: No max over a’!



Actor Update
1. Forward Pass: q = Q(s, ᶞ(s|ᶚᶞ) |ᶚQ)
2. Target y = q + ᶗ
3. L = (y - q)2 = ᶗ
4. Backwards pass through critic (ignore diff) 

and then actor.
5. Equivalent to linking networks together and 

backproping through both networks 
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Stability

1. Target networks for both actor & critic
2. Experience replay + Adam
3. Batch Normalization + Clipped Gradients

4. Close relationship to GAN training, where Critic = 
Discriminator and Actor = Generator



http://www.youtube.com/watch?v=tJBIqkC1wWM
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Q(s,a) = r + ᶕ maxa’ Q(s’,a’)
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