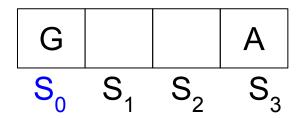
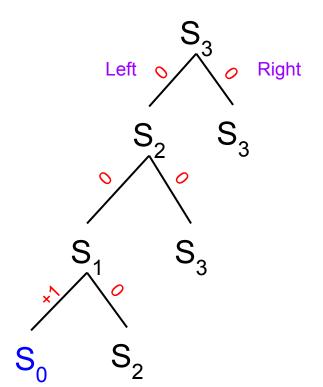
Deep RL



Actions: Left / Right

Rewards: +1 for Goal

Goal: Find policy $\pi(s) \rightarrow a$



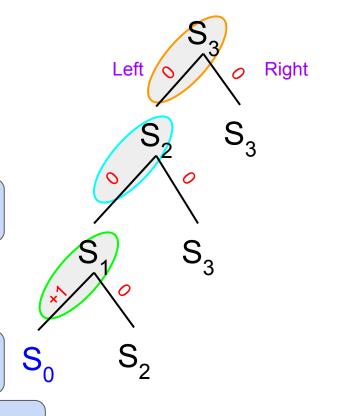
Goal: Find policy $\pi(s) \rightarrow a$

Q-Value Function: Q(s,a) =
$$\sum_{t=0}^{\infty} \gamma^t r_t$$

$$Q(S_3, L) = 0 + 0 + \gamma^2 1$$
 $Q(S_3, L) = .9025$
 $Q(S_2, L) = 0 + \gamma^1 1$ $Q(S_2, L) = .95$
 $Q(S_1, L) = \gamma^0 1$ $Q(S_1, L) = 1$

Q-Value Function yields policy

$$\pi(s) = \operatorname{argmax}_{a} Q(s,a)$$



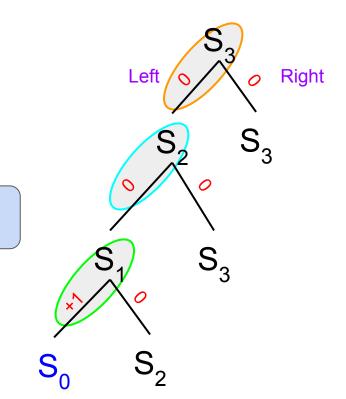
Goal: Learn Q-Value Function

$$Q(s,a) = r + \gamma \max_{a'} Q(s',a')$$

$$Q(S_3, L) = 0 + \gamma \max(Q(S_2, L), Q(S_2, R)) = .9025$$

 $Q(S_2, L) = 0 + \gamma \max(Q(S_1, L), Q(S_1, R)) = .95$
 $Q(S_1, L) = 1$

Need to estimate Q-values from experience!



Q-Learning Algorithm

- 1. Start with uniform Q-Values Q(*,*) = 0
- 2. For Episode 1 ... convergence:
 - a. Get s
 - b. Take action $a = argmax_a Q(s,a)$
 - c. Get reward r
 - d. Get next state s'
 - e. Target $y = r + \gamma \max_{a} Q(s',a')$
 - f. $Q(s,a) += \alpha (y Q(s,a))$

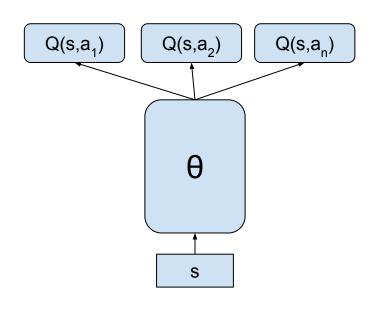
Over time, Q(*,*) becomes more accurate $\to \pi(s)$ gets better. Converges to optimal Q^* , π^* in limit.

Issues

Scalability as a function of |S|
 a. |S| <= 10⁵ Ok; |S| >= 10⁶ maybe not okay

2. Generalization to new statesa. Need a good estimate for Q(s_{new}, *)

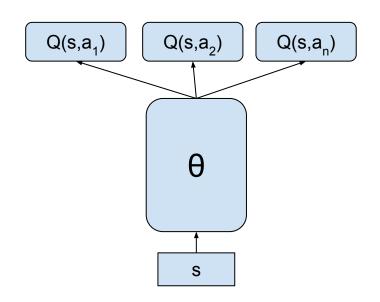
Deep RL - Represent Q(*,*) as a NN



One scalar output node for each action

Each output node estimates Q-Value

Update



Given experience (s,a,r,s'):

Generate target:

$$y = r + \gamma \max_{a'} Q(s',a'|\theta)$$

$$L(s,a,r,s'|\theta) = [y - Q(s,a|\theta)]^2$$

Minimize loss via SGD

Issues

- 1. Scalability as a function of |S|
 - a. $|S| \le 10^5$ Ok; $|S| \ge 10^6$ maybe not okay

NN is agnostic to |S|.

- 2. Generalization to new states
 - a. Need a good estimate for Q(s_{new}, *)

NN has good generalization.

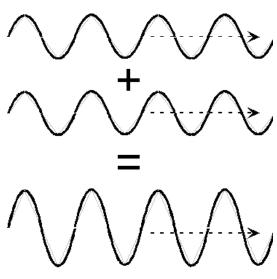
Issue 1: Constructive Interference

$$y = r + \gamma \max_{a} Q(s',a'|\theta)$$

$$L(s,a,r,s'|\theta) = [y - Q(s,a|\theta)]^2$$

If r > 0 and $s \approx s$ then repeating this update causes $Q(s,a) \rightarrow \infty$.

Update	Q(s,a)	Q(s',a')	у
0	0	0	1
1	.5	.25	1.25
2	.87	.5	1.5
3	1.25	.75	1.75



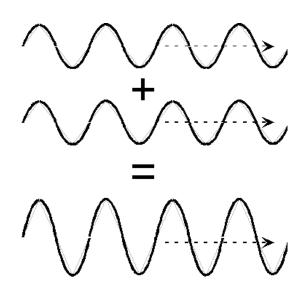
Solution 1: Target Networks

Target Network Q(s,a $\mid \theta^{-}$) slowly tracks Q(s,a $\mid \theta$)

Revised Update: $y = r + \gamma \max_{a} Q(s',a'|\theta')$ $L(s,a,r,s'|\theta) = [y - Q(s,a|\theta)]^2$

Every 10,000 updates: $\theta^- = \theta$

Time	Q(s,a θ)	Q(s',a' θ-)	у
0	0	0	1
1	.5	0	1
2	.75	0	1
3	.875	0	1
10,000	~1	.5	1.5



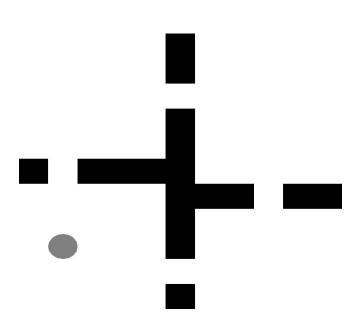
Generalization of NN is a double edged sword!

Issue 2: Policy Influences Data

No fixed dataset; Data generated by interactions using π .

Possible to get to get "stuck" in a portion of the state space and bias the update data.

If π prefers a certain part of the state space, agent can avoid learning anything else by never visiting the rest of the space.



Solution 2: Experience Replay

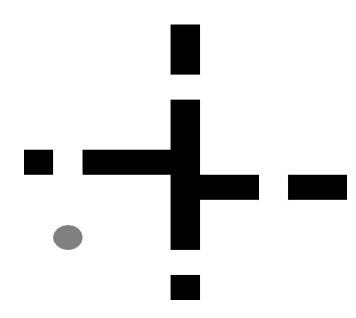
Maintain a Queue of experience tuples:

$$D = \{ (s,a,r,s'), ..., (s,a,r,s') \}$$

Updates randomly sample from (s,a,r,s') ~ D

Benefits:

- 1. Learn from collected experience more than once
- 2. Decorrelates (s,a,r,s') tuples in updates
- 3. Can learn from states that π won't currently visit



Issue 3: Growing Rewards

Traditional Deep Learning uses SGD + momentum with learning rate decay.

This is a problem in Deep-RL if the agent discovered a new source of reward, but had a learning rate too far decayed to change the policy to exploit new rewards.

Solution: Adaptive Learning Rate Methods

Adam / RMSProp / AdaDelta / AdaGrad

Deep Q-Learning

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

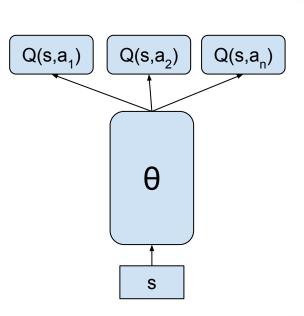
Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

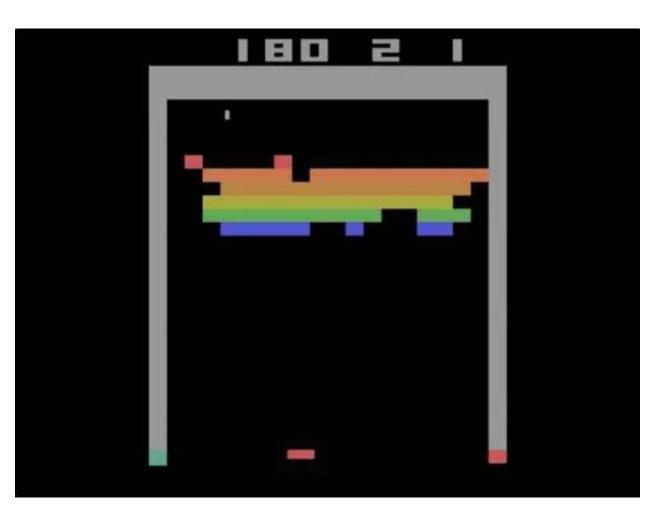
Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For





DQN

- 1. Approximate Q-Values using NN
- 2. Follows Basic Q-Learning Algorithm
 - Target networks and Experience Replay Queue for stability
- 3. Adaptive Learning Rate Optimizer keeps policy nimble

Questions about 1st paper?

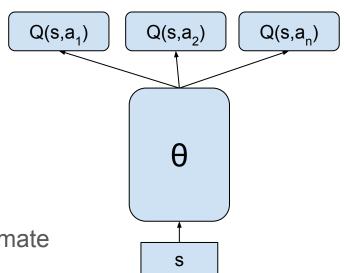
Continuous Action Spaces

Atari has discrete actions but many domains require continuous control: e.g. torque on actuator.

The Good: NN can output continuous actions

The Bad: DQN uses these continuous outputs to estimate Q-Values rather than using them for control.

The Ugly: Need a new architecture!



Actor-Critic Methods

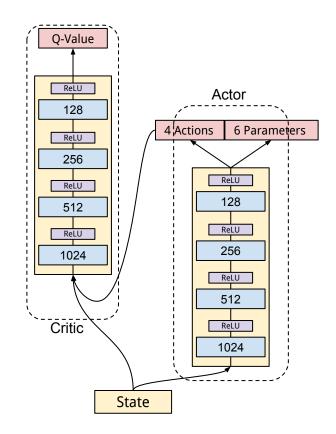
Two network solution:

Actor Network: $a = \mu(s|\theta^{\mu})$

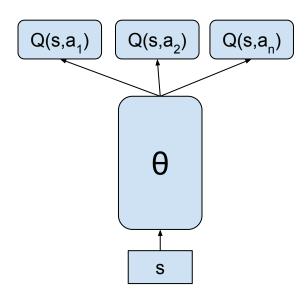
Outputs continuous actions. Actor is π .

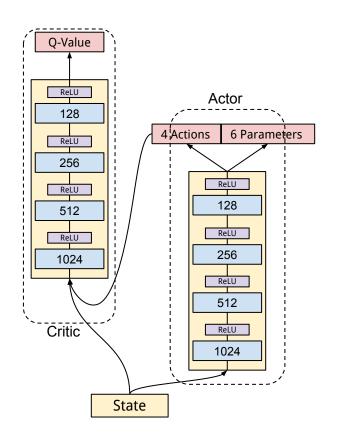
Critic Network: $q = Q(s,a|\theta^Q)$

Evaluates state, action pairs.



Actor-Critic Methods





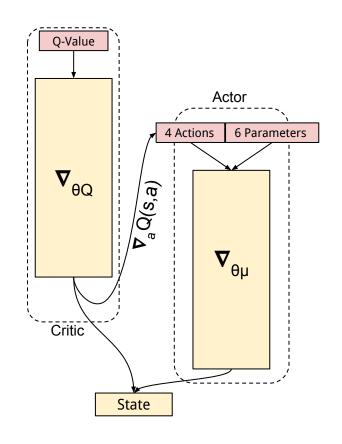
Critic Update

Given
$$(s_i, a_i, r_i, s_{i+1})$$

$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

$$L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$$

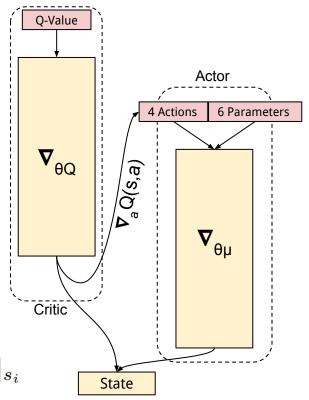
Note: No max over a'!



Actor Update

- 1. Forward Pass: $q = Q(s, \mu(s|\theta^{\mu})|\theta^{Q})$
- 2. Target $y = q + \varepsilon$
- 3. $L = (y q)^2 = \varepsilon$
- Backwards pass through critic (ignore diff) and then actor.
- Equivalent to linking networks together and backproping through both networks

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$



Algorithm 1 DDPG algorithm

Receive initial observation state s_1

Update the target networks:

Initialize replay buffer Rfor episode = 1, M do

for t = 1, T do

end for

end for

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

 $\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{\cdot} \nabla_{a} Q(s, a | \theta^{Q}) |_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) |_{s_{i}}$

 $\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$ $\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau) \theta^{\mu'}$

Initialize a random process \mathcal{N} for action exploration

Stability

- 1. Target networks for both actor & critic
- 2. Experience replay + Adam
- 3. Batch Normalization + Clipped Gradients

4. Close relationship to GAN training, where Critic = Discriminator and Actor = Generator

Cheetah Low Dimensional Features

