Deep RL

G A

So Si S, S

Actions: Left / Right

Rewards: +1 for Goal

L Goal: Find policy 7(s) — a }

SZ 83
/X
S S

G A S

3
Righ
SO S1 SZ 83 Left y\o ight

S,

[Goal: Find policy #(s) — a } S,

[Q-Value Function: Q(s,a) =3 _, v, } /\

S, S

N

[Q-Value Function yields policy } 0 S,

3

[7(s) = argmax_ Q(s,a) }

G A
S, S, S, S

3

[Goal: Learn Q-Value Function }

[Q(s,a) =r+y max_ Q(s’,a’)

Need to estimate Q-values
from experience!

[Q-Learning Algorithm

Start with uniform Q-Values Q(*,*) =0
For Episode 1 ... convergence:

a. Gets

b. Take action a = argmax_ Q(s,a)
c. Getrewardr

d. Get next state s’
e
f.

N —

Targety =r +p max_ Q(s’,a’)
Q(s,a)+=a (y-Q(s,a))

Over time, Q(*,*) becomes more accurate — z(s) gets better.
Converges to optimal Q', &~ in limit.

Issues

1. Scalability as a function of ||
a. |S| <=10° Ok; |S| >= 10° maybe not okay

2. Generalization to new states
a. Need a good estimate for Q(s

*)
new’

Deep RL - Represent Q(*,*) as a NN

| aea) | [aes) |[asa) | One scalar output node for

w each action

0 Each output node estimates
Q-Value

Given experience (s,a,r,s’):

Generate target:
y =r+ymax_, Q(s,a|b)

L(s,a,r,s’|0) = [y - Q(s,a|0)]2

Minimize loss via SGD

Issues

1. Scalability as a function of ||
a. |S|<=10° Ok; |S|>= 10° maybe not okay

NN is agnostic to [S|.

2. Generalization to new states
a. Need a good estimate for Q(s__ , *)

NN has good generalization.

Issue 1: Constructive Interference

y =r+ymax, Q(s’,a’|9)

L(s,a,rs'|8)=[y-Q(s,al8) J?

Ifr>0 and s = s’ then repeating this update causes /\//\/\/\/

Q(s,

a) —

Update
0
1
2

3

Q(s,a)
0
5
.87

1.25

Q(s’,a’)
0

.25

5S)

75

1.25
1.5

1.75

VW

Solution 1: Target Networks M\ \/\/\\/&,j

Target Network Q(s,a|8") slowly tracks Q(s,a|0)

+
Revised Update: y =r + y max_ Q(s’,a’|6") /\//\/\/\/

L(s,a,r,s'|8)=[y - Q(s,ald)]2

Every 10,000 updates: 6 =0
Time Q(s,ald) Q(s’,a’|6) y

0 0 0 1
1 D 0 1
2 .75 0 1
3 875 0 1

10,000 ~1 5 1.5

Issue 2: Policy Influences Data

No fixed dataset; Data generated by interactions
using .

Possible to get to get “stuck” in a portion of the state
space and bias the update data.

If = prefers a certain part of the state space, agent
can avoid learning anything else by never visiting the
rest of the space.

Solution 2: Experience Replay

Maintain a Queue of experience tuples:
D={(s,ars),...,(s,ars)}
Updates randomly sample from (s,a,r,s’) ~ D

Benefits: i

1. Learn from collected experience more than once
2. Decorrelates (s,a,r,s’) tuples in updates
3. Can learn from states that 7 won'’t currently visit

Issue 3: Growing Rewards

Traditional Deep Learning uses SGD + momentum with learning rate decay.

This is a problem in Deep-RL if the agent discovered a new source of reward, but
had a learning rate too far decayed to change the policy to exploit new rewards.

Solution: Adaptive Learning Rate Methods

Adam / RMSProp / AdaDelta / AdaGrad

Deep
Q-Learning

[Q(s,a,)] [Q(s,a,)] [Q(s.a,)]

For episode = 1, M do
Initialize sequence s; = {x, } and preprocessed sequence ¢, =¢(s;)
For t = 1,T do

With probability ¢ select a random action a,

otherwise select a, =argmax, Q(¢(s;),a; 0)

Execute action g, in emulator and observe reward r, and image x, . ,
Set ;41 =5;,d;,X;+1 and preprocess ¢, ; =¢(s;+1)

Store transition (¢,,ds,r¢,¢,.,) in D

Sample random minibatch of transitions (q')-,aj,rj 0 j +1) from D

T if episode terminates at step j+1
Sety; = rj+7 maxy Q(lﬁﬁl,a’; H‘) otherwise

2
Perform a gradient descent step on (yi— 0 (cp 0 H)) with respect to the
network parameters ()

Every C steps reset Q=0

End For

End For

http://www.youtube.com/watch?v=TmPfTpjtdgg

DQN

1. Approximate Q-Values using NN

2. Follows Basic Q-Learning Algorithm
a. Target networks and Experience Replay Queue for

stability
3. Adaptive Learning Rate Optimizer keeps policy nimble

Questions about 1st paper?

Continuous Action Spaces | asa) || asa) || asay |

Atari has discrete actions but many domains require N/

continuous control: e.g. torque on actuator. 5
The Good: NN can output continuous actions
The Bad: DQN uses these continuous outputs to estimate

Q-Values rather than using them for control.

The Ugly: Need a new architecture!

Actor-Critic Methods

Two network solution:

Actor Network: a = u(s|6")

Outputs continuous actions. Actor is .

Critic Network: q = Q(s,a|0%)

Evaluates state, action pairs.

Critic

Actor-Critic Methods

[Q(s,a,) } [Q(s,a,)] [Q(s,a,) }

/ \
4!Actions | 6Paramet:ers |

D

State

Critic Update e

| ! ‘___A_citp_r____ .
Given (S’LJ alj T'Z) 8'&"‘1) E E 4Act|ons | 6Parameters |
Vaa ?q\ | i
/ ’ 2
yi = i +7Q' (sig1, 1/ (5541167)]609) <
V.
L= N Z (y: — Q(si, QZIQQ)) S

Note: No max over a’!

Actor Update

Forward Pass: q = Q(s, u(s|0*) [6%)
Targety=q+¢

L=(y-q) " =¢

Backwards pass through critic (ignore diff)
and then actor.

5. Equivalent to linking networks together and
backproping through both networks

BN~

1
Voud =~ N Zan(Saang)‘szsi,a:u(si)vgﬂu(s‘eﬂ) S;

4Act|ons | 6Parameters |

Va Q(S, a)

N

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#%) and actor p(s|6*) with weights < and 6+
Initialize target network Q' and x’ with weights 09 + 09, 0#" «— g
Initialize replay buffer R
for episode =1, M do
Initialize a random process N for action exploration
Receive initial observation state s;
fort=1, Tdo
Select action a; = pu(s¢|6*) + Ny according to the current policy and exploration noise
Execute action a; and observe reward r, and observe new state $; 1
Store transition (s;, az, r¢, S;41) in R
Sample a random minibatch of N transitions (s;, a;,7;, $;41) from R
Set i = 1; +YQ' (5141, ' (5:41|0*)|69")
Update critic by minimizing the loss: L = + > (y; — Q(s,a;/69))?
Update the actor policy using the sampled policy gradient:

1
VQHJ ~ N ZVQQ(SaaleQ)‘s:si,a:p(si)vﬂﬂp’('g'g“)‘Si

Update the target networks:
09 — 709 + (1 —7)69
0" T 4+ (1 —T)0"

end for
end for

Stability

1. Target networks for both actor & critic

2. Experience replay + Adam
3. Batch Normalization + Clipped Gradients

4. Close relationship to GAN training, where Critic =
Discriminator and Actor = Generator

Cheetah
Low Dimensional Features

http://www.youtube.com/watch?v=tJBIqkC1wWM

Deep RL S DDPG

[Q(s,a) =r +y max_ Q(s’,a’)

