
Deep RL

G
S0 S1 S2 S3

A
S3

S2 S3

S1 S3

S0
S2

+1

Left Right

Actions: Left / Right
Rewards: +1 for Goal

Goal: Find policy ᶢ(s) → a

0 0

0

0 0

S3

S2 S3

S1 S3

S0
S2

+1

Left Right

0 0

0

0 0

Goal: Find policy ᶢ(s) → a

Q-Value Function: Q(s,a) = ∑t=0 ᶕ
trt

Q(S3, L) = 0 + 0 + ᶕ21
Q(S2, L) = 0 + ᶕ11
Q(S1, L) = ᶕ01

Q(S3, L) = .9025
Q(S2, L) = .95
Q(S1, L) = 1

G
S0 S1 S2 S3

A

ᶢ(s) = argmaxa Q(s,a)

Q-Value Function yields policy

S3

S2 S3

S1 S3

S0
S2

+1

Left Right

0 0

0

0 0

Goal: Learn Q-Value Function

Q(s,a) = r + ᶕ maxa’ Q(s’,a’)

G
S0 S1 S2 S3

A

Q(S3, L) = 0 + ᶕ max(Q(S2,L), Q(S2,R)) = .9025
Q(S2, L) = 0 + ᶕ max(Q(S1,L), Q(S1,R)) = .95
Q(S1, L) = 1

Need to estimate Q-values
from experience!

Q-Learning Algorithm

1. Start with uniform Q-Values Q(*,*) = 0
2. For Episode 1 … convergence:

a. Get s
b. Take action a = argmaxa Q(s,a)
c. Get reward r
d. Get next state s’
e. Target y = r + ᶕ maxa’ Q(s’,a’)
f. Q(s,a) += ᶓ (y - Q(s,a))

Over time, Q(*,*) becomes more accurate → ᶢ(s) gets better.
Converges to optimal Q*, ᶢ* in limit.

Issues

1. Scalability as a function of |S|
a. |S| <= 105

 Ok; |S| >= 106 maybe not okay

2. Generalization to new states
a. Need a good estimate for Q(snew, *)

Deep RL - Represent Q(*,*) as a NN

θ

s

Q(s,a1) Q(s,a2) Q(s,an) One scalar output node for
each action

Each output node estimates
Q-Value

Update

θ

s

Q(s,a1) Q(s,a2) Q(s,an) Given experience (s,a,r,s’):

Generate target:
 y = r + ᶕ maxa’ Q(s’,a’|θ)

L(s,a,r,s’|θ) = [y - Q(s,a|θ)]2

Minimize loss via SGD

Issues

1. Scalability as a function of |S|
a. |S| <= 105

 Ok; |S| >= 106 maybe not okay

2. Generalization to new states
a. Need a good estimate for Q(snew, *)

NN is agnostic to |S|.

NN has good generalization.

y = r + ᶕ maxa’ Q(s’,a’|θ)

L(s,a,r,s’|θ) = [y - Q(s,a|θ)]2

If r > 0 and s ≅ s’ then repeating this update causes
Q(s,a) → ∞.

Issue 1: Constructive Interference

Update Q(s,a) Q(s’,a’) y

0 0 0 1

1 .5 .25 1.25

2 .87 .5 1.5

3 1.25 .75 1.75

Target Network Q(s,a|θ-) slowly tracks Q(s,a|θ)

Revised Update: y = r + ᶕ maxa’ Q(s’,a’|θ-)
L(s,a,r,s’|θ) = [y - Q(s,a|θ)]2

Every 10,000 updates: θ- = θ

Solution 1: Target Networks

Time Q(s,a|θ) Q(s’,a’|θ-) y

0 0 0 1

1 .5 0 1

2 .75 0 1

3 .875 0 1

10,000 ~1 .5 1.5

Generalization of NN is a
double edged sword!

Issue 2: Policy Influences Data
No fixed dataset; Data generated by interactions
using ᶢ.

Possible to get to get “stuck” in a portion of the state
space and bias the update data.

If ᶢ prefers a certain part of the state space, agent
can avoid learning anything else by never visiting the
rest of the space.

Solution 2: Experience Replay
Maintain a Queue of experience tuples:

D = { (s,a,r,s’), … , (s,a,r,s’) }

Updates randomly sample from (s,a,r,s’) ~ D

Benefits:

1. Learn from collected experience more than once
2. Decorrelates (s,a,r,s’) tuples in updates
3. Can learn from states that ᶢ won’t currently visit

Issue 3: Growing Rewards
Traditional Deep Learning uses SGD + momentum with learning rate decay.

This is a problem in Deep-RL if the agent discovered a new source of reward, but
had a learning rate too far decayed to change the policy to exploit new rewards.

Solution: Adaptive Learning Rate Methods

Adam / RMSProp / AdaDelta / AdaGrad

θ

s

Q(s,a1) Q(s,a2) Q(s,an)

Deep
Q-Learning

http://www.youtube.com/watch?v=TmPfTpjtdgg

DQN

1. Approximate Q-Values using NN
2. Follows Basic Q-Learning Algorithm

a. Target networks and Experience Replay Queue for
stability

3. Adaptive Learning Rate Optimizer keeps policy nimble

Questions about 1st paper?

Continuous Action Spaces
Atari has discrete actions but many domains require
continuous control: e.g. torque on actuator.

The Good: NN can output continuous actions

The Bad: DQN uses these continuous outputs to estimate
Q-Values rather than using them for control.

The Ugly: Need a new architecture!

θ

s

Q(s,a1) Q(s,a2) Q(s,an)

Actor-Critic Methods
Two network solution:

Actor Network: a = ᶞ(s|ᶚᶞ)

Outputs continuous actions. Actor is ᶢ.

Critic Network: q = Q(s,a|ᶚQ)

Evaluates state, action pairs.

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic

Actor-Critic Methods

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic

θ

s

Q(s,a1) Q(s,a2) Q(s,an)

Critic Update

State

ᵘθμ

4 Actions 6 Parameters

ᵘθQ

Q-Value

Actor

Critic

auQ
(s

,a
)

Given

Note: No max over a’!

Actor Update
1. Forward Pass: q = Q(s, ᶞ(s|ᶚᶞ) |ᶚQ)
2. Target y = q + ᶗ
3. L = (y - q)2 = ᶗ
4. Backwards pass through critic (ignore diff)

and then actor.
5. Equivalent to linking networks together and

backproping through both networks

State

ᵘθμ

4 Actions 6 Parameters

ᵘθQ

Q-Value

Actor

Critic

auQ
(s

,a
)

Stability

1. Target networks for both actor & critic
2. Experience replay + Adam
3. Batch Normalization + Clipped Gradients

4. Close relationship to GAN training, where Critic =
Discriminator and Actor = Generator

http://www.youtube.com/watch?v=tJBIqkC1wWM

Deep RL

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic

θ

s

Q(s,a1) Q(s,a2) Q(s,an)

Q(s,a) = r + ᶕ maxa’ Q(s’,a’)

S3

S2 S3

S1 S3

S0
S2

+1

Left Right

0 0

0

0 0

DDPG

DQN

