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Abstract

This paper discusses the integration of tra-
ditional abductive and inductive reasoning
methods in the development of machine
learning systems. In particular, the paper
discusses our recent work in two areas: 1)
The use of traditional abductive methods
to propose revisions during theory refine-
ment, where an existing knowledge base is
modified to make it consistent with a set of
empirical data; and 2) The use of inductive
learning methods to automatically acquire
from examples a diagnostic knowledge base
used for abductive reasoning.

1 Introduction

Abduction is the process of inferring cause from ef-
fect or constructing explanations for observed events
and is required for tasks such as diagnosis and plan
recognition. Induction is the process of inferring
general rules from specific data and is the primary
task of machine learning. An important issue is
how these two reasoning processes can be integrated,
or how abduction can aid machine learning and
how machine learning can acquire abductive theo-
ries. My research group has explored these issues
in the development of several machine learning sys-
tems over the last eight years. In particular, we have
developed methods for using abduction to identify
faults and suggest repairs for theory refinement, and
for inducing rule bases for abductive diagnosis. We
treat induction and abduction as two distinct rea-
soning tasks, but have demonstrated that each can

be of direct service to the other in developing Al
systems for solving real-world problems. Below, 1
briefly review our work in these areas, focusing on
the issue of how abduction and induction is inte-
grated. !

2 Abduction and Induction

Precise definitions for abduction and induction are
still somewhat controversial. In order to be con-
crete, I will generally assume that abduction and
induction are both defined in the following general
logical manner.

e Given: Background knowledge B and observa-
tions (data) O both represented as sets of for-
mulae in first-order predicate calculus where O
is restricted to ground formulae.

e Find: An hypothesis H (also a set of logical
formulae) such that BUH I/ L and BUH + O.

In abduction, H is generally restricted to set of
atomic ground or existentially quantified formulae
(called assumptions) and B is generally quite large
relative to H. On the other hand, in induction,
H generally consists of universally quantified Horn
clauses (called a theory or knowledge base), and B
is relatively small and may even be empty. In both
cases, following Occam’s Razor, it 1s preferred that
H be kept as small and simple as possible.

Despite their limitations, these formal definitions
encompass a significant fraction of the existing re-

L Additional details are available in our publica-
tions listed in the bibliography, most of which are
available in postscript on the World Wide Web at
http://wuw.cs.utexas.edu/users/ml.



search on abduction and induction, and the syn-
tactic constraints on H capture at least some of
the intuitive distinctions between the two reason-
ing methods. In abduction, the hypothesis is a spe-
cific set of assumptions that explain the observa-
tions of a particular case; while in induction, the
hypothesis is a general theory that explains the ob-
servations across a number of cases. The body
of logical work on abduction, e.g. [Pople, 1973;
Poole, 1989; Levesque, 1989; Ng and Mooney, 1991,
1992; Kakas et al., 1993], generally fits this defini-
tion of abduction and several diagnostic models [Re-
iter, 1987; Peng and Reggia, 1990] can be shown to
be equivalent or a special case of it [Poole, 1989;
Ng, 1992]. The work on inductive logic program-
ming (ILP) [Muggleton, 1992; Lavra¢ and Dzeroski,
1994] employs this definition of induction, and most
machine learning work on induction can also be seen
as fitting this paradigm [Michalski, 1983].

The intent of the current paper is not to debate
the philosophical advantages and disadvantages of
these definitions of induction and abduction; I be-
lieve this debate eventually becomes just a question
of terminology. Given their acceptance by a fairly
large body of researchers in both areas, a range of
specific algorithms and systems have been developed
for performing abductive and inductive reasoning as
prescribed by these definitions. The claim of the
current paper is that these existing methods can
be fruitfully integrated to develop machine learning
systems whose effectiveness has been experimentally
demonstrated in several realistic applications.

3 Abduction in Theory Refinement

Theory refinement (theory revision, knowledge-base
refinement) is the machine learning task of modify-
ing an existing imperfect domain theory to make it
consistent with a set of data. For logical theories; it
can be more precisely defined as follows:

e Given: An initial theory 7" and a set of posi-
tive examples P and a set negative examples N
where P and N are restricted to ground formu-
lae.

e Find: A “minimally revised” consistent theory
T such that Vpe P:T'Fpand Vne N : T' ¥/
n.

Generally, examples are ground Horn-clauses of the
form C' - Bi,...,B,, where the body, B, gives
a description of a case and the head, C, gives
a conclusion or classification that should logically
follow from this description (or should not follow
in the case of a negative example). Revising a
logical theory may require both adding and re-
moving clauses as well as adding or removing lit-
erals from existing clauses. Generally, the ideal
goal is to make the minimal syntactic change to
the existing theory [Wogulis and Pazzani, 1993;
Mooney, 1995]. Unfortunately, this task is computa-
tionally intractable; therefore, in practice, heuristic
search methods must be used to approximate min-
imal syntactic change. Note that compared to the
use of background knowledge in induction, theory re-
finement requires modifying the existing background
knowledge rather than just adding clauses to it. Ex-
perimental results in a number of realistic applica-
tions have demonstrated that revising an existing
imperfect knowledge base provided by an expert re-
sults in more accurate results than inducing a knowl-
edge base from scratch [OQurston and Mooney, 1994;
Towell and Shavlik, 1993].

Several theory refinement systems use abduc-
tion on individual examples to locate faults in a
theory and suggest repairs [Ourston and Mooney,
1990; Ourston, 1991; Ourston and Mooney, 1994;
Wogulis and Pazzani, 1993; Wogulis, 1994; Baffes
and Mooney, 1993; Baffes, 1994; Baffes and Mooney,
1996; Brunk, 1996]. Each of these systems use ab-
duction in a slightly different way, but the follow-
ing discussion summarizes the basic approach. For
each individual positive example that is not deriv-
able from the current theory, abduction is applied to
determine a set of assumptions that would allow it
to be proved. These assumptions can then be used
to make suggestions for modifying the theory. One
potential repair i1s to learn a new rule for the as-
sumed proposition so that it could be inferred from
other known facts about the example. Another po-
tential repair is to remove the assumed proposition
from the list of antecedents of the rule in which it ap-
pears in the abductive explanation of the example.
For example, consider the theory:

P(X) :- R(X), Q(X).
Q(X) - s(X), T(X).

and the unprovable positive example:



P(a) :- R(a), s(a), vV(a).

Abduction would find that the assumption T(a)
makes this positive example provable. Therefore,
two possible revisions to the theory are to remove
the literal T(X) from the second clause in the the-
ory, or to learn a new clause for T(X), such as

T(X) = V(X).

Another possible abductive assumption is Q(a), sug-
gesting the possible revisions of removing Q(X) from
the first clause or learning a new clause for Q(X) such
as

Q(x)

or

Q(x)

In order to find a small set of repairs that allow
all of the positive examples to be proved, a greedy
set covering algorithm can be used to select a small
subset of the union of repair points suggested by the
abductive explanations of individual positive exam-
ples, such that the resulting subset covers all of the
positive examples. If simply deleting literals from
a clause causes negative examples to be covered,
inductive methods (e.g. ILP techniques like FoIL
[Quinlan, 1990]) can be used to learn a new clause
that is consistent with the negative examples. Con-
tinuing the example, assume the positive examples
are:

P(a)
P(b)

= V(X).

= S(X), V(X).

:= R(a), s(a), V(a), W(a).
:= R(b), V(b), W(b).

and the negative examples are:

P(c) :- R(c), s(c).
P(d) :- R(d), W(d).

The abductive assumptions Q(a) and Q(b) are gen-
erated for the first and second positive examples
respectively. Therefore, making a repair to the Q
predicate would cover both cases. Note that the
previously mentioned potential repairs to T would
not cover the second example since the abductive
assumption T(b) is not sufficient (both T(b) and
S(b) must be assumed). Since a repair to the single
predicate Q covers both positive examples, it is cho-
sen. However, deleting the antecedent Q(x) from the
first clause of the original theory would allow both
of the negative examples to be proven.

Therefore, a new clause for Q is needed. Positive
examples for Q are the required abductive assump-
tions Q(a) and Q(b). Negative examples are Q(c)
and Q(d) since these assumptions would allow the
negative examples to be derived. Given the descrip-
tions provided for a, b, ¢ and d in the examples,
an ILP system such as FoiL would induce the new
clause:

Q(x)

since this 1s the simplest clause that covers both
of the positive examples without covering either of
the negatives. Note that although the alternative,
equally-simple clause

Q(X) - W(X)

covers both positive examples, it also covers the neg-
ative example Q(d).

The EITHER [Ourston and Mooney, 1990; 1994;
Ourston, 1991] and NEITHER [Baffes and Mooney,
1993; Baffes, 1994] theory refinement systems allow
multiple assumptions in order to prove an example,
preferring more specific assumptions, i.e. they em-
ploy most-specific abduction [Cox and Pietrzykowski,
1987].  AUDREY [Wogulis, 1991], Auprey 1I
[Wogulis and Pazzani, 1993], A3 [Wogulis, 1994],
and CLARUS [Brunk, 1996] are a series of theory re-
finement systems that make a “single-fault assump-
tion” during abduction. For each positive exam-
ple, they find a single most-specific assumption that
makes the example provable. Different constraints
on abduction may result in different repairs being
chosen, effecting the level of specificity at which the
theory is refined. EITHER and NEITHER prefer mak-
ing changes to the more specific aspects of the theory
rather than modifying the top-level rules.

This general approach of using abduction to sug-
gest theory repairs has proven quite successful at re-
vising several real-world knowledge bases. The sys-
tems referenced above have significantly improved
the accuracy of knowledge bases for detecting spe-
cial DNA sequences called promoters that signal the
start of a new gene [Ourston and Mooney, 1994;
Baffes and Mooney, 1993], diagnosing diseased soy-
bean plants [OQurston and Mooney, 1994], and de-
termining when repayment is due on a student
loan [Brunk, 1996]. The approach has also been
successfully employed to construct rule-based mod-
els of student knowledge for over 50 students us-

= V(X).



ing an intelligent tutoring system for teaching con-
cepts in C++ programming [Baffes, 1994; Baffes
and Mooney, 1996]. In this application, theory re-
finement was used to modify correct knowledge of
the domain to account for errors individual students
made on a set of sample test questions. The result-
ing modifications to the correct knowledge base were
then used to generate tailored instructional feedback
for each student. In all of these cases, experiments
with real training and test data were used to demon-
strate that theory revision resulted in improved per-
formance on novel, independent test data and gen-
erated more accurate knowledge than raw induction
from the data alone. These results clearly demon-
strate the utility of integrating abduction and induc-
tion for theory refinement.

We are currently developing a system for revising
Bayesian networks [Pearl, 1988] using probabilistic
abductive reasoning to isolate faults and suggest re-
pairs [Ramachandran, 1995]. Bayesian networks are
particularly appropriate for this approach since the
standard inference procedures support both causal
(predictive) and abductive (evidential) inference.
Our technique focuses on revising a Bayesian net-
work intended for causal inference by adapting it to
fit a set of training examples of correct causal in-
ference. Analogous to the logical approach outlined
above, Bayesian abductive inference on each positive
example i1s used to compute assumptions that would
explain the correct inference and thereby suggest po-
tential modifications to the existing network. The
ability of this general approach to theory revision
to employ probabilistic as well as logical methods of
abduction is an interesting indication of its strength
and generality.

4 Induction of Abductive
Knowledge Bases

Another important aspect of integrating abduction
and induction is the learning of abductive theories.
Induction of abductive theories can be viewed as a
variant of induction where the provability relation
(F) is itself interpreted abductively. In other words,
given the learned theory it must be possible to ab-
ductively infer the correct conclusion for each of the
training examples.

We have previously developed a learning sys-
tem, LAB [Thompson and Mooney, 1994; Thomp-

son, 1993], for inducing an abductive knowledge base
appropriate for the diagnostic reasoning model of
parsimonious set covering (PCT) [Peng and Reg-
gia, 1990]. In PCT, a knowledge base consists of a
set of disorder — symptom rules that demonstrate
how individual disorders cause individual symptoms.
Such an abductive knowledge base stands in contrast
to the standard deductive symptoms — disorder
rules used in standard expert systems and learned by
traditional machine-learning methods. Given a set
of symptoms for a particular case, the task of abduc-
tive diagnosis is to find a minimum set of disorders
that explains all of the symptoms, i.e. a minimum
covering set.

Given a set of training cases each consisting of a
set of symptoms together with their correct diag-
nosis (set of disorders), LAB attempts to construct
an abductive knowledge base such that the correct
diagnosis for each training example is a minimum
cover. The system uses a fairly straightforward hill-
climbing induction algorithm. At each iteration,
it adds to the developing knowledge base the indi-
vidual disorder — symptom rule that maximally
increases accuracy of abductive diagnosis over the
complete set of training cases. The addition of rules
terminate when the addition of any new rule fails to
increase accuracy on the training data.

Using real data for diagnosing brain damage due
to stroke originally assembled by [Tuhrim et al.,
1991], this technique was shown to produce an ab-
ductive knowledge base that, according to one im-
portant evaluation metric, was more accurate than
an expert-built abductive rule base and the “de-
ductive” knowledge bases learned by several stan-
dard machine-learning methods such as ID3 decision
trees, FoiL Horn-clause rules, and neural networks
trained using backpropagation.

LAB employs a fairly simple, restricted, proposi-
tional model of abduction and a simple, hill-climbing
inductive algorithm. However, using techniques
from inductive logic programming, the basic idea of
using inductive learning methods to acquire abduc-
tive knowledge bases from examples could poten-
tially be generalized to more expressive first-order
representations. The existing results with LAB in-
dicate the promise of exploring this approach. Fi-
nally, on-going research on the induction of Bayesian
networks from data [Cooper and Herskovits, 1992]



can be viewed as an alternative approach to learn-
ing knowledge that supports abductive inference.

5 Conclusions

In conclusion, we believe our previous and on-going
work on integrating abduction and induction has
effectively demonstrated two important points: 1)
Abductive reasoning is useful in inductively revising
existing knowledge bases to improve their accuracy;
and 2) Inductive learning can be used to acquire ac-
curate abductive theories. We have developed sev-
eral machine-learning systems that integrate abduc-
tion and induction in both of these ways and exper-
imentally demonstrated their ability to successfully
aid the construction of Al systems for complex prob-
lems in medicine, molecular biology, and intelligent
tutoring. However, our work has only begun to ex-
plore the potential benefits of integrating abductive
and inductive reasoning. Further explorations into
both of these general areas of integration will likely
result in additional important discoveries and suc-
cessful applications.
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