
Appears in Proceedings of the 1996 IEEE International Conference on Neural Networks,
pp.82-87, Washington D.C., June 1996.

Revising Bayesian Network Parameters Using Backpropagation

Sowmya Ramachandran, Raymond J. Mooney

Department of Computer Sciences,

University of Texas,

Austin, TX 78712

sowmya@cs.utexas.edu, mooney@cs.utexas.edu

ABSTRACT

The problem of learning Bayesian networks with hidden variables is known to be a hard
problem. Even the simpler task of learning just the conditional probabilities on a Bayesian
network with hidden variables is hard. In this paper, we present an approach that learns the
conditional probabilities on a Bayesian network with hidden variables by transforming it into a
multi-layer feedforward neural network (ANN). The conditional probabilities are mapped onto
weights in the ANN, which are then learned using standard backpropagation techniques. To avoid
the problem of exponentially large ANNs, we focus on Bayesian networks with noisy-or and noisy-
and nodes. Experiments on real world classi�cation problems demonstrate the e�ectiveness of
our technique.

1. Introduction

Bayesian networks are increasingly being used for representing probabilistic knowledge [8]. Their strong
grounding in probability theory makes them a particularly attractive formalism for representing knowledge.
However, they su�er from the knowledge acquisition problem. Not only is it di�cult to formulate the
underlying structure of the network, it is especially di�cult to specify the conditional dependencies between
the variables in precise numeric terms.

The problem of learning Bayesian networks from data has attracted a lot of attention in the recent years.
Many researchers have studied this problem and o�ered interesting solutions. One approach [2, 1, 3, 9] is
to use a scoring metric to hill climb through a space of possible Bayesian networks to �nd one that is most
probable given the data. However, a drawback with this approach is that it becomes too expensive when
there are hidden variables, i.e. variables that cause some observations but are not themselves observed. This
technique also requires that a total ordering on the variables be speci�ed.

Schwalb [12] proposed using connectionist methods to learn the conditional probabilities on a Bayesian
network inductively, given its structure and data. By mapping the given Bayesian network onto a neural
network with SIGMA-PI nodes, this technique can learn the conditional probabilities associated with the
network (represented by link weights in the corresponding neural network) using standard backpropagation
techniques [5]. This has the advantage that it is able to learn the conditional probabilities even in the presence
of hidden variables. However, the size of the neural network is combinatorial in the number of parents a
node has in the corresponding Bayesian network, making the technique infeasible for even modestly large
networks.

In this paper, we describe Banner (BAyesian Networks NEural Revision), a system that learns the
conditional probabilities in networks with noisy-and and noisy-or nodes by mapping such a network onto a
multi-layered feed-forward neural network (ANN) and re�ning the weights using standard backpropagation
techniques. This, again, enables the learning of conditional probabilities even in the presence of hidden
variables. However, by concentrating just on noisy-and and noisy-or nodes, we have avoided the problem of
intractably large networks faced by Schwalb [12].

Banner is an extension of Rapture, described in [4]. While Rapture is concerned with applying
symbolic and connectionist techniques to revise certainty factor rule bases, we address the issue of doing the
same with Bayesian networks.

Although, in this paper we describe only our research into learning conditional probabilities, this is but a
�rst step towards our goal of using this technique to revise the structure of the network inductively. The main
goal of our research is to address the problem of inductively revising knowledge represented as a Bayesian
network. Theory revision is an active area of research in the �eld of machine learning and various algorithms
have been proposed for knowledge re�nement [13, 7, 11, 4]. We aim to adapt these algorithms to revise
Bayesian networks.

Our proposed technique for inductively learning the conditional probabilities on a Bayesian network works
by �rst mapping the given Bayesian structure onto a multi-layered feed-forward neural network, then training
the neural network on the given data using the standard gradient descent backpropagation algorithm, and
�nally mapping the trained neural network back into a Bayesian network. In the following subsections, we
describe these steps in more detail.

2. The Noisy-or and the Noisy-and Models

The speci�cation of a general Bayesian networks is combinatorial in the fan-in of the nodes. It requires the
speci�cation, for each variable, of the conditional probabilities of the variable given all possible combinations
of values of its parents. Thus, for a network where all variables are binary-valued, a variable with n parents
would require 2n conditional probabilities to be speci�ed. Thus, mapping a general Bayesian network into
an ANN by mapping each conditional probability onto a weight in the neural network [12] becomes infeasible
for even modestly large Bayesian networks.

The noisy-or and the noisy-and models of Bayesian networks [8] avoid this problem providing a way to
compute the conditional probability of a variable given a combination of values of its parents from just the
conditional probabilities of the variable given the value of each of its parents in isolation.

A noisy-or node in a Bayesian network is a generalisation of a logical or. As in the case of the logical or,
an event E is presumed to be false if all the conditions that cause E are false (i.e. P(E)=0). However, unlike
a logical or, if one of the causes of the event E is true, it does not necessarily imply that E is de�nitely true.
Each condition Ci causing the event E can be thought of as having an associated inhibitory in
uence which
is active with a probability qi. Thus, if Ci is the only cause of E that is true, then E is true with a probability
(1 � qi). Moreover, the likelihood of E is a monotonic function of the number of its causal conditions that
are true. The parameter ci = 1� qi is the degree to which an isolated cause Ci of an event E can endorse
the event.

Given some evidence, the ci associated with each link in a network and the belief measures of all the
parents of a node in the network, there is a simple equation for calculating the degree of belief that the node
is true. Under the assumption that all the evidence in the network is causally upstream of the node, the
degree of belief in a node X is given by

Bel(x) =

� Q
i(1� ci�iX) if x = 0

1�
Q

i(1� ci�iX) if x = 1

where �iX is the degree of belief in the truth of the i-th parent of X. Thus, the number of parameters that
have to be speci�ed for a noisy-or node is linear in its fan-in.

A noisy-and node is the dual of a noisy-or node. It is a generalisation of a logical and. Due to space
limitations, we will not elaborate this further except to mention that each causal link between Ci and E has
associated with it a parameter ci that speci�es the degree to which disproving the event Ci disproves E. The
belief measure of a noisy-and node X, given some evidence, the ci associated with each link in the network
and the belief measures of all the parents of the node, is given by

Bel(x) =

�
1�

Q
i(1� ci(1� �iX)) if x = 0Q

i(1� ci(1� �iX)) if x = 1

where �iX is the degree of belief in the truth of the i-th parent of X. Here again, the assumption is that all
the evidence in the network is causally upstream of the node.

3. Neural Network Mapping

The structure of the ANN is identical to the structure of the given Bayesian network. Noisy-or and noisy-
and nodes in the Bayesian network are respectively mapped onto noisy-or and noisy-and units in the neural

network. The causal links between the nodes of the network are mapped onto connections between the
corresponding units in the ANN. The weight on each link corresponds to the ci associated with the link in
the corresponding Bayesian network (previous section). Such a direct mapping facilitates the recovery of the
Bayesian network from a trained ANN.

X

A

B C D

(noisy−and)

(noisy−or)

q q

q

ab ac

xd

(noisy−and)

(noisy−or)

O

H

I I I

1

1

1 2 3

w =1−q w =1−q

W

11 ab 12 ac

13
=1−q

xd

b. Neural network mapped from a.a. Bayesian network

q
xa

q
xaW = 1−11

Fig. 1: Mapping from a Bayesian network into a neural network

Thus, the Bayesian network shown in Figure 1a is mapped on to an ANN shown in Figure 1b. The
output of the noisy-or and noisy-and units are computed using the following functions:

activation(Uniti) =

�
1�

Q
j(1�wijOj) (Noisy-or)Q

j(1� wij(1�Oj)) (Noisy-and)

where Oj is the activation of the jth unit feeding into unit i, and wij is the weight of the link between
unit i and the jth unit feeding into it.

This function computes the degree of belief in the truth of the variable represented by the unit. Note
that, since the only evidence placed in the network is on the input variables, the assumption that all evidence
in the network is causally upstream of all the hidden and output variables holds.

4. The Training Phase

Once the Bayesian network is transformed into an ANN as described in the previous section, the problem
of learning the parameters (the ci's) for the Bayesian network is transformed into a problem of learning the
weights in the ANN. This is achieved by initialising the weights randomly and training them using standard
backpropagation techniques.

The data used for training the network should consist of a set of patterns that specify the value for the
input and the output variables in the network. In a Bayesian network, input variables are the sources in the
DAG representing the network (i.e those variables that have no incoming links). The sinks in the DAG are
the output variables. The values for the hidden variables do not have to be speci�ed in the data.

To train the network, the gradient descent algorithm requires a learning rule. The learning rules for the
noisy-or and noisy-and units are given by the following functions:

�wij =

�
��iOj

Q
k 6=j(1� wikOk) (Noisy-or)

���i(1�Oj)
Q

k 6=j(1� wik(1�Ok)) (Noisy-and)

where � is the learning rate, �i is the error propagated back from the output units to unit i, Oj is the
activation of the jth unit feeding into i, and wij is the weight of the link between unit i and the jth unit
feeding into it.

Once the network has been trained to a desired accuracy, it can be mapped back into a Bayesian network.

5. Experimental Evaluation

We have evaluated Banner on two classi�cation problems: DNA promoter recognition [6] and Gene Splice
Junction recognition [6]. Each of these has associated with it an initial domain theory that does not have a
good prediction accuracy on the data and therefore has to be revised.

For each problem, we created several random splits of the data into training and test sets. One of these
data splits was used to determine the stopping point for training. The network was trained until further
training did not decrease the root mean square error of the network on the training set. The networks for
the remaining splits were trained for the same number of epochs as the �rst one.

In the following subsections, we present the results of the experiments. We also compare the performance
of Banner with the performances of other inductive learning and theory-revision systems like Kbann, Id3,
Either, Rapture and Backprop. Id3 [10] is a system for inducing decision trees. Either [7] learns and
revises propositional Horn-clause theories. Rapture [4] is a system for revising certainty-factor rule bases
using neural networks. Kbann [13, 6] revises a logical theory using a hybrid of symbolic and connectionist
learning methods.

DNA Promoter Recognition Figure 2 shows the initial logical theory for recognising a DNA promoter
sequence. There are 57 input features called nucleotides, each of which can take on one of four values, A, G,
T and C. The target class, promoter, predicts whether or not the input DNA sequence indicates the start of
a new gene. The logical theory was converted into a Bayesian network such that all the logical ands in the
domain theory were mapped onto noisy-and nodes and all the logical ors were mapped onto noisy-or nodes.
Each 4-valued input feature was converted into four binary-valued features1. This network was translated
into a neural network as described earlier. The initial weights were all set to random values close to 1:0 to
mimic the initial logical theory.

promotor <− contact, conformation

contact <− minus_35, minus_10

minus_35 <− (P−36 T), (P−35 T), (P−34 G), (P−33 A), (P−32 C).

minus_35 <− (P−36 T), (P−35 T), (P−34 G), (P−32 C), (P−31 A).

minus_10 <− (P−14 T), (P−13 A), (P−12 T), (P−11 A), (P−10 A), (P−9 T).

minus_10 <− (P−13 T), (P−12 A), (P−10 A), (P−8 T).

minus_10 <− (P−12 T), (P−11 A), (P−7 T).

conformation <− (P−47 C), (P−46 A), P(−45 A), (P−43 T), (P−42 T), (P−40 A)
 (P−39 C), (P−22 G).

conformation <− (P−45 A), (P−44 A), (P−41 A).

conformation <− (P−49 A), (P−44 T), (P−27 T), (P−22 A), (P−18 T), (P−16 T),
 (P−15 G), (P−1 A).

conformation <− (P−45 A), (P−41 A), (P−28 T), (P−27 T), (P−23 T), (P−21 A),
 (P−17 T), (P−4 T).

Fig. 2: DNA Promoter Recognition - Initial Domain Theory

The data consisted of 106 patterns (53 positive and 53 negative examples). Figure 3 shows the learning
curve determined from this experiment. This graph is a plot of the average accuracy of the network at
classifying DNA strings over 25 di�erent random splits. It clearly demonstrates that our technique is
successful in improving the accuracy of the network substantially (by about 40 percentage points). The
graph also shows the performance of some of the inductive learning algorithms (Id3 and Backprop) and
theory revision algorithms (Either, Rapture and Kbann) on the same task. The theory revision systems
started out with the same initial theory as Banner(Figure 2), which they subsequently revised to �t the
data. Our technique shows a performance that is better than Either and comparable to both Rapture

and Kbann, although its learning curve is not as steep.

Splice Junction We also evaluated Banner on the task of learning to recognise the splice junctions in
a given DNA sequence [6]. There are two kinds of splice junctions: IE sites and EI sites. These form the
two output categories. There are 60 input features, each of which can take on the values A, C, G or T. The
initial logical domain theory was converted into Bayesian network and subsequently into a neural network

1We use binary-valued nodes because the noisy-or and noisy-and nodes are binary-valued. However, there have been recent

extensions that allow multi-valued noisy-or nodes. We will extend our technique to accommodate multi-valued features in the

future.

DNA-PROMOTER Test Accuracy

RAPTURE

KBANN

BANNER

BACKPROP

EITHER

C4.5

% Correct

#Train Exs45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

0.00 20.00 40.00 60.00 80.00

Fig. 3: DNA Promoter Recognition - Prediction Accuracy

as described in the previous subsection. The weights in the neural network were initialised to random values
close to 1.0 to mimic the logical theory.

The data consisted of 2190 patterns, of which we randomly selected 900 patterns which were then divided
into training and test sets. Figure 4 shows the learning curves for Banner and some of the other inductive
learning algorithms. The graph shows that Banner performs as well as KBANN and Backprop. Although
Rapture performs better than Banner it should be noted that Rapture modi�es the structure of the
domain theory as well, which Banner is not yet equipped to do.

6. Conclusion and Extensions

We have proposed a method for learning the conditional probabilities on a Bayesian network inductively
by mapping them onto a neural network and using standard backpropagation techniques to �t the data.
Since general Bayesian networks lead to exponentially large neural networks, we have focussed on simpler
networks with only noisy-or and noisy-and nodes. Experimental evaluation of our technique on the DNA
promoter recognition problem shows that it is comparable to some of the other induction and theory revision
methods such as Backprop and Kbann. However, since the networks learned by Banner map directly
onto Bayesian networks, their structure and their parameters have more clearly de�ned semantics than the
networks learned by Backprop and Kbann.

References

[1] W. Buntine. Theory re�nement on Bayesian networks. In Proceedings of the Conference on Uncertainty
in Arti�cial Intelligence, pages 52{60, 1991.

[2] G. G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from
data. Machine Learning, 9:309{347, 1992.

[3] David Heckerman, Dan Geiger, and David M. Chikering. Learning Bayesian networks: The combination
of knowledge and statistical data. In Proceedings of the Tenth Conference on Uncertainty in Arti�cial
Intelligence, pages 293{301, Seattle, WA, July 1994.

[4] J. J. Mahoney and R. J. Mooney. Combining connectionist and symbolic learning to re�ne certainty-
factor rule-bases. Connection Science, 5:339{364, 1993.

SPLICE-JUNCTION Test Accuracy

RAPTURE

KBANN

BACKPROP

BANNER

% Correct

Train Exs
30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

0.00 200.00 400.00 600.00 800.00

Fig. 4: Splice Junction - Prediction Accuracy

[5] James L. McClelland and David E. Rumelhart. Explorations in Parallel Distributed Processing: A
Handbook of Models, Programs, and Exercises. The MIT Press, Cambridge, MA, 1988.

[6] M. O. Noordewier, G. G. Towell, and J. W. Shavlik. Training knowledge-based neural networks to
recognize genes in DNA sequences. In Advances in Neural Information Processing Systems, volume 3,
San Mateo, CA, 1991. Morgan Kaufman.

[7] D. Ourston and R. J. Mooney. Theory re�nement combining analytical and empirical methods. Arti�cial
Intelligence, 66:311{344, 1994.

[8] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, Inc., San Mateo,CA, 1988.

[9] Gregory M. Provan and Moninder Singh. Learning Bayesian networks using feature selection. In
Proceedings of the Workshop on Arti�cial Intelligence and Statistics, 1994.

[10] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81{106, 1986.
[11] B. L. Richards and R. J. Mooney. Automated re�nement of �rst-order Horn-clause domain theories.

Machine Learning, 19(2):95{131, 1995.
[12] E. Schwalb. CompilingBayesian networks into neural networks. In Proceedings of the Tenth International

Conference on Machine Learning, pages 291{297, Amherst, MA, June 1993.
[13] G. G. Towell, J. W. Shavlik, and Michiel O. Noordewier. Re�nement of approximate domain theories

by knowledge-based arti�cial neural networks. In Proceedings of the Eighth National Conference on
Arti�cial Intelligence, pages 861{866, Boston, MA, July 1990.

