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Improving Shared Rulesin Multiple Category Domain TheoriesDirk OurstonDepartment of Computer S
ien
esUniversity of TexasAustin, TX 78712dirk�
s.utexas.edu Raymond J. MooneyDepartment of Computer S
ien
esUniversity of TexasAustin, TX 78712mooney�
s.utexas.eduAbstra
tThis paper presents an approa
h to improv-ing the 
lassi�
ation performan
e of a mul-tiple 
ategory theory by 
orre
ting interme-diate rules whi
h are shared among the 
ate-gories. Using this te
hnique, the performan
eof a theory in one 
ategory 
an be improvedthrough training in an entirely di�erent 
at-egory. Examples of the te
hnique are pre-sented and experimental results are given.1 Introdu
tionFrequently, domain theories involve multiple 
on
eptsthat share intermediate rules. For example, in a the-ory for a variety of animal spe
ies, the 
on
epts forgira�es and tigers might share knowledge about mam-mals, and the 
on
epts for penguin and du
k mightshare knowledge about birds. Improving rules for theshared 
on
ept \mammal" 
an in
rease 
lassi�
ationa

ura
y for both gira�es and tigers. However, re�n-ing rules for su
h shared intermediate rules must bedone 
arefully in order to a

ount for the impa
t onall of the 
on
epts that use them.Revising rules for shared 
on
epts frequently has theinteresting e�e
t of improving performan
e on testdata that is drawn from a 
ompletely di�erent pop-ulation than the training data. For example, if thesystem is trained on ostri
hes, it may improve perfor-man
e when tested on penguins. We refer to this e�e
tas 
ross-
ategory transfer. Standard empiri
al learn-ing systems are in
apable of exhibiting 
ross-
ategorytransfer. Most theoreti
al work in learning also as-sumes that the distribution of examples is the sameduring training and test [Valiant, 1984℄.This paper presents an implemented method for re-vising domain theories with shared intermediate rules.

We are developing a system 
alled EITHER that is 
a-pable of revising arbitrary propositional Horn-
lausedomain theories. In [Ourston and Mooney, 1990℄ wedes
ribe an initial version of the system that re�nestheories for a single 
on
ept and has several restri
-tions on modifying intermediate rules. The te
hniquesdes
ribed in this paper extend the previous methodsto multi-
ategory theories and to 
orre
tions to sharedrules. The remainder of this paper des
ribes our ap-proa
h and provides empiri
al results that illustratee�e
tive transfer to test data that is radi
ally di�erentfrom the training data.2 Sample TheoryThe theory below is a sample domain theory foranimals that will be used as an example throughoutthe paper. This theory is an extended version ofa set of rules given in [Winston and Horn, 1989,pages 388-390℄. Leading question marks denotevariables, whi
h are only used to de�ne thresholds onnumeri
ally-valued features.(mammal)  (body-
overing hair)(mammal)  (feed-young milk)(mammal)  (birth live)(bird)  (body-
overing feathers)(bird)  (birth egg) (
y)(ungulate)  (mammal) (foot-type hoof)(ungulate)  (mammal) (ruminate)(
arnivore)  (eat-meat)(
arnivore)  (teeth pointed) (foot-type 
lawed)(gira�e)  (ungulate) (ne
k-length ?n) (� ?n 5)(� ?n 6) (
olor tawny)(pattern spots) (pattern-
olor bla
k)(zebra)  (ungulate) (
olor white)(pattern stripes)(pattern-
olor bla
k)(
heetah)  (mammal)(
arnivore)(
olor tawny)(pattern spots)(pattern-
olor bla
k)(tiger)  (mammal) (
arnivore) (
olor tawny)(pattern stripes)(pattern-
olor bla
k)



(dolphin)  (mammal) (fore-appendage �n)(
olor gray)(body-
overing moist-skin)(body-length ?b) (� ?b 4) (� ?b 6)(whale)  (mammal) (fore-appendage �n)(
olor gray) (body-
overing moist-skin)(body-length ?b) (� ?b 10) (� ?b 60)(bat)  (mammal) (
olor bla
k) (pattern none)(pattern-
olor none) (
y)(platypus)  (mammal) (birth egg)(foot-type webbed)(ostri
h)  (bird) (not (
y)) (ne
k-length ?n)(� ?n 3)(� ?n 4) (
olor white)(pattern pat
h) (pattern-
olor bla
k)(penguin)  (bird) (
olor white)(pattern pat
h) (pattern-
olor bla
k)(foot-type webbed) (not (
y))(du
k)  (bird) (foot-type webbed) (
y)(gra
kle)  (bird) (
olor bla
k) (pattern none)(pattern-
olor none) (
y)Observable Features: feed-young body-
overing birtheat-meat 
y teeth fore-appendage foot-type ne
k-lengthbody-length 
olor pattern pattern-
olor ruminateCategories: gira�e zebra 
heetah tiger dolphin whale batplatypus penguin ostri
h du
k gra
klePropositions that are used to des
ribe the examples(for example, (foot-type webbed)) are 
alled observ-ables. Propositions that represent the �nal 
on
eptsin whi
h examples are to be 
lassi�ed (for example,penguin) are 
alled 
ategories. It is 
urrently assumedthat the 
ategories are disjoint. Propositions in thetheory that are neither observables nor 
ategories (forexample, bird, mammal) are 
alled intermediate 
on-
epts. A failing positive is an example that should beprovable as an example of its 
ategory, but fails to beprovable. A failing negative is an example provable ina 
ategory other than its own.3 Revision Approa
hEITHER responds to failing negative examples (indi-
ating an overly general theory) by performing rulespe
ialization. Similarly, the response to failing pos-itive examples is rule generalization. EITHER deter-mines the proper lo
ation for the rule 
orre
tion basedon a synta
ti
 simpli
ity measure, subje
t to a 
or-re
tability 
onstraint (as will be shown below, somerules responsible for the error 
annot be 
hanged to �xthe problem). EITHER also uses 
onstru
tive indu
-tion methods in order to e�e
tive utilize intermediate
on
epts in the existing theory and to 
reate new in-termediate 
on
epts [Mooney and Ourston, 1991℄. Theresulting approa
h tends to fo
us 
orre
tions on ruleswhi
h are used by multiple 
ategories.

3.1 Rule GeneralizationRule generalization is performed in response to spe-
ialization errors in the existing theory, whi
h are in-di
ated by failing positive examples. EITHER initiallyasso
iates the errors with leaf-level rules1. This isdone in a bat
h fashion, and the minimum set of su
hrules whi
h a

ount for all of the failing positive ex-amples is identi�ed. For ea
h rule EITHER identi�esante
edents whi
h, if retra
ted, would allow proofs ofthe failing positive examples asso
iated with the rule.However, simply removing ante
edents from the rulemay prove to be too mu
h of a generalization (that is,doing so may 
ause additional failing negatives). If thisis the 
ase, EITHER uses the failing positive examplesfor the rule, and the negative examples whi
h be
omeprovable when the 
onsequent of the rule is assumedtrue, to indu
tively2 form a new rule whi
h 
orre
tly
lassi�es the positive and negative examples. If theproposed 
orre
tion results in all of the ante
edentsfor a parti
ular rule being removed, EITHER simplyremoves the 
onsequent of the rule as an ante
edentfrom all of its parent rules.The 
orre
tion pro
ess may ultimately result in the
orre
tion being pla
ed at a higher level in the theory,as dis
ussed below, but in ea
h 
ase, the generalizationalgorithm will �rst attempt to generalize the sele
tedrule by modifying ante
edents, and will only indu
-tively learn new rules if this is unsu

essful.3.2 Rule Spe
ializationFor theory spe
ialization, EITHER �rst identi�es theminimum set of leaf-level rules whi
h, if removed fromthe theory, would 
ause all of the failing negative ex-amples to no longer be proven in in
orre
t 
ategories.As with generalization, this initially-suggested 
hangeto the theory may be an over-
orre
tion, resulting inexamples not being provable in their own 
ategories.If this is the 
ase, then spe
ialized rules are indu
-tively learned whi
h dis
riminate between the positiveexamples for the 
ategory and the erroneously provennegative examples. If the 
orre
tion is to be made toa higher level rule, as dis
ussed below, a new rule willbe indu
tively learned.1A \leaf-level" rule is a rule whi
h in
ludes observablesamong its ante
edents.2EITHER uses the ID3 [Quinlan, 1986℄ as its indu
tive
omponent.



3.3 The Corre
tability ProblemIn multi-
ategory theories, it may not be possible tomake a theory 
onsistent with a set of examples bymodifying leaf-level rules. For example, 
onsider thefollowing theory in whi
h the 
ategory rules rely onthe same leaf-level rule.C1  RC2  RR A ^BThis is an extremely pathologi
al theory in whi
h anyexample will either be provable in both 
ategories orneither, and the same remarks apply when any 
hangeis made to the leaf-level rule. What this means isthat the \R" rule 
annot be 
hanged to 
orre
t theproblem. In the animal domain, this type of problem
ould 
orrespond to trying to �x 
onfusions betweengra
kles and du
ks through modi�
ations to the\bird" rules. In general, the problem is dete
ting thatsu
h a 
ondition exists (either dire
tly or indire
tly),and then making a 
orre
tion that 
auses examplesto be 
lassi�ed only in their own 
ategories. For aparti
ular rule, this problem 
an be dete
ted duringspe
ialization when removing the rule from the theory
auses a parti
ular example to fail to be proven in itsown 
ategory, and yet leaving the rule in 
auses theexample to be provable in at least one other 
ategory.In this 
ase, the same rule is being used in anerroneous proof of the example and also in its 
orre
tproof in its own 
ategory. Hen
e any 
hange to therule whi
h 
auses the example not to be erroneouslyprovable will also 
ause it not to be provable in itsown 
ategory. For generalization, the problem 
an bedete
ted when assuming the 
onsequent of a rule tobe true 
auses a parti
ular example to be provable inat least one other 
ategory, yet in the original theorythe same example is not provable in its own 
ategory.In order to asso
iate the problem with a single rule,the generalization algorithm requires that all failingnegatives be removed from the input, and the spe-
ialization algorithm requires a stri
tly overly generaltheory (that is, it uses the output of the generalizationalgorithm).The solution to the 
orre
tability problem (the samerule being responsible for proofs of examples in multi-ple 
ategories), is to make the 
orre
tions to rules athigher levels in the theory. This is done by 
onsider-ing the parents3 of the rule in question and determin-3Here, parent means a rule whi
h used the given rule inthe proof of an ante
edent. For spe
ialization, this o

ursduring the proof of a negative example, whereas for gener-

ing if a 
orre
tability problem exists for the parentsof the rule, and so on re
ursively, until a set of rulesare obtained for whi
h no 
orre
tability problem ex-ists. Clearly, there exists su
h a set of rules, sin
ein the limit the 
orre
tions 
an be made to the 
ate-gory rules. Sin
e ea
h su
h rule implies membership ina parti
ular 
ategory, retra
ting su
h a rule 
an only
ause examples to be unprovable in the asso
iated 
at-egory, and no other, and no 
orre
tability problem 
ano

ur.In the implemented EITHER program, for eÆ
ien
yreasons the 
orre
tability algorithm has only been in-
orporated into the spe
ialization algorithm. However,doing this still guarantees that the output will be 
on-sistent with the training set.3.4 Finding the Simplest Corre
tionOn
e a 
onsistent set of rules has been obtained, EI-THER begins the pro
ess of sele
ting the synta
ti
allysimplest set of rule 
orre
tions. For ea
h rule in the
urrent 
orre
tion set, EITHER 
ompares the 
hangeto the rule with the 
hange whi
h would be requiredby the rule's parents. If the 
hange to the parent rulesis simpler than the 
hange to the 
urrent rule, the pro-
ess is 
ontinued with the 
urrent rule repla
ed by itsparent rules. This pro
ess terminates when the 
hangeto the parent rule is more 
omplex than the 
hange tothe 
urrent rule.As an example of a situation whi
h would result in ahigher level rule being 
hosen, 
onsider the followingtheory:w  xx ax bx 
:and assume that the �rst rule should 
orre
tly be:w  x ^ d ^ e:If EITHER was given examples 
orresponding to the
orre
t theory, and was for
ed to make the 
orre
tionsto the theory at the leaf level, than EITHER wouldobtain the 
orre
ted theory (whi
h would be 
onsistentwith the input examples):w  xx a ^ d ^ ex b ^ d ^ ex 
 ^ d ^ e:Clearly, 
hanging the theory at the higher level wouldresult in a mu
h simpler synta
ti
 
hange to the theory.On the other hand, 
onsider the theory:alization, this o

urs during the partial proof of a positiveexample.



w  xy  xz  xx a;and assume that the 
orre
t version of the last rule is:x a ^ b ^ 
:If the 
orre
tion is made at the higher level, then ea
hof the rules \w" \y" and \z" would have to have theante
edents b and 
 added. In this 
ase, be
ause ofsynta
ti
 simpli
ity, EITHER will make the 
orre
tionto the \x" rule.Be
ause of these 
onsiderations, EITHER tends tomake 
orre
tions at or below the level of the �rstshared rule en
ountered. This implies that the sele
tedrule will be likely to parti
ipate in multiple 
on
eptde�nitions, whi
h will allow the 
orre
tion to enhan
ethe performan
e in other, related, 
ategories. For eÆ-
ien
y reasons, in the implemented version of EITHERthe synta
ti
 simpli
ity 
he
k is always terminated atthe �rst shared rule (that is, a rule having multipleparents).4 Experimental ResultsEITHER has been tested on two multi-
ategory do-main theories with shared intermediate rules. Thisse
tion presents results showing that EITHER 
an su
-
essfully revise shared rules and that su
h revisionsresult in positive transfer to test data that is very dif-ferent from the training data.Arti�
ial data was automati
ally generated for the an-imal theory and a similar theory for 
lassifying dif-ferent types of 
omputers based on their appearan
e(
ategories: p
, ma
, ma
II, sun, hp, explorer, symbol-i
s; intermediate 
on
epts: workstation, mi
ro, lisp-ma
hine, unix-workstation, ma
intosh). Thirty exam-ples of ea
h 
ategory were generated by �rst forming\
ore" examples, whi
h 
ontain just the observablesneeded to 
omplete a proof. For linear features, a valueis 
hosen randomly from the range required for a proof.Next, random values for the remaining observable fea-tures were added to the 
ore examples to 
reate fullexamples. However, adding random values 
an some-times make an example provable in another 
ategoryas well. Consequently, ea
h example was 
he
ked tomake sure it was provable in only one 
ategory beforeadding it to the �nal data set. A total of 360 exam-ples of animals and 210 examples of 
omputers were
reated in this manner.Imperfe
t versions of the animal and 
omputertheories were also 
onstru
ted. In ea
h 
ase, the rulesfor some of the intermediate 
on
epts were 
orrupted

in order to allow for 
ross-
ategory transfer. Therules 
orrupted in the animal theory are shown below.Items shown in boldfa
e were added to the theorywhereas items shown in itali
s were deleted fromthe theory. The faults introdu
ed in
lude missingrules, additional ante
edents, and missing ante
edents.(mammal)  (body-
overing hair)(fore-appendage leg)(mammal)  (feed-young milk)(fore-appendage leg)(mammal)  (birth live) (fore-appendage leg)(bird)  (body-
overing feathers)(bird)  (birth egg) (
y)(du
k)  (bird) (foot-type webbed) (
y)(ostri
h)  : : : (not (
y))(penguin)  : : : (not (
y))In order to demonstrate 
ross-
ategory transfer, thesystem was trained on examples from some of the 
at-egories and tested an examples of the remaining 
ate-gories. In the animal domain, the system was trainedon gira�es, 
heetahs, dolphins, bats, platypuses, os-tri
hes, and du
ks and tested on zebras, tigers, whales,penguins, and gra
kles. In the 
omputer domain, EI-THER was trained on Ma
s, Suns, and Explorers, andtested on Ma
II's, HP's, and Symboli
s. Learning
urves were generated by performing bat
h trainingon in
reasingly larger fra
tions of a set of training ex-amples and repeatedly testing predi
tive a

ura
y onthe same disjoint test set. The �nal results were av-eraged over 20 random sele
tions of training and testsets.The results are shown in Figure 1. EITHER greatlyimproves its performan
e despite the fa
t that thetraining and test data are drawn from 
ompletely dif-ferent populations. This is be
ause it revises rulesfor shared intermediate 
on
epts. For example, whentrained on ostri
hes, bats, and dolphins it dis
oversthat 
ying is neither ne
essary nor suÆ
ient for bird-hood and that mammals don't have to possess legs.It uses the data to make the 
orre
t revisions to theserules whi
h allow it to a

urately 
lassify penguins andwhales during testing. Performan
e in the animal do-main levels out at 85% sin
e some of the faults arein non-shared rules and are only dete
ted when thetraining set 
ontains examples from all of the 
ate-gories. In the 
omputer domain, the 
orre
t theoryis fully re
onstru
ted by 40 training examples in mosttrials. Noti
e that a normal indu
tive learning systemwould remain at 0% a

ura
y for this sort of test. If itnever en
ounters any examples of penguins or whalesin the training set, it will never 
lassify a test exampleas a penguin or a whale.If EITHER is trained on random examples of all 
ate-



gories, it eventually re
onstru
ts the original theoriesfor both domains. About 100 examples are generallysuÆ
ient to �x the animal theory, while 60 examplesare suÆ
ient for the 
omputer theory. When initial-ized with the imperfe
t theories, EITHER's learningrate is signi�
antly better than without an initial the-ory (in whi
h 
ase it is the same as ID3).
Appears in Proceedings of the Eighth International Machine Learning Workshop,
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Figure 1: Cross-Category Transfer Results5 Related WorkAs dis
ussed in [Ourston and Mooney, 1990℄, mostsystems that use imperfe
t domain theories in learn-ing 
an only handle 
ertain types of overly general oroverly spe
i�
 theories [Wilkins, 1988; Flann and Di-

etteri
h, 1989; Pazzani, 1989℄). Finally, none of thesesystems expli
itly deal with multi-
ategory theories.Ginsberg has re
ently developed a version of RTLSthat produ
es a revised multi-
ategory theory [Gins-berg, 1990℄; however, he expli
itly mentions that it
annot revise rules for shared 
on
epts (whi
h he 
allsnon-eigen-terms). However, as illustrated in this pa-per, revising shared rules is extremely important sin
eit allows for 
ross-
ategory transfer. KBANN [Tow-ell et al., 1990℄, whi
h 
onverts a theory into a neuralnet and then re�nes it using ba
kpropagation, 
ouldpotentially demonstrate 
ross-
ategory transfer by re-�ning the weights on shared hidden units. However,KBANN produ
es a neural-net 
lassi�er rather than arevised theory.6 Con
lusionsThe ability to improve shared rules allows the 
orre
-tions to a theory to be fo
ussed on 
ertain key rules,whi
h may play a part in the de�nition of several 
on-
epts within the theory. Learning of this kind permits
ross-
ategory transfer, where training in a one 
at-egory produ
es performan
e improvements in related
ategories.Multiple 
ategory theories also introdu
e 
orre
tabilityproblems whi
h are not present in single 
ategory the-ories, 
aused by a single rule being used in the proofsof several 
ategories for the same example. EITHERaddresses these problems with multiple 
ategory the-ories, while still obtaining rule 
orre
tions whi
h aresynta
ti
ally simple and whi
h apply to shared ruleswhenever possible.A
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