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Improving Shared Rulesin Multiple Category Domain TheoriesDirk OurstonDepartment of Computer SienesUniversity of TexasAustin, TX 78712dirk�s.utexas.edu Raymond J. MooneyDepartment of Computer SienesUniversity of TexasAustin, TX 78712mooney�s.utexas.eduAbstratThis paper presents an approah to improv-ing the lassi�ation performane of a mul-tiple ategory theory by orreting interme-diate rules whih are shared among the ate-gories. Using this tehnique, the performaneof a theory in one ategory an be improvedthrough training in an entirely di�erent at-egory. Examples of the tehnique are pre-sented and experimental results are given.1 IntrodutionFrequently, domain theories involve multiple oneptsthat share intermediate rules. For example, in a the-ory for a variety of animal speies, the onepts forgira�es and tigers might share knowledge about mam-mals, and the onepts for penguin and duk mightshare knowledge about birds. Improving rules for theshared onept \mammal" an inrease lassi�ationauray for both gira�es and tigers. However, re�n-ing rules for suh shared intermediate rules must bedone arefully in order to aount for the impat onall of the onepts that use them.Revising rules for shared onepts frequently has theinteresting e�et of improving performane on testdata that is drawn from a ompletely di�erent pop-ulation than the training data. For example, if thesystem is trained on ostrihes, it may improve perfor-mane when tested on penguins. We refer to this e�etas ross-ategory transfer. Standard empirial learn-ing systems are inapable of exhibiting ross-ategorytransfer. Most theoretial work in learning also as-sumes that the distribution of examples is the sameduring training and test [Valiant, 1984℄.This paper presents an implemented method for re-vising domain theories with shared intermediate rules.

We are developing a system alled EITHER that is a-pable of revising arbitrary propositional Horn-lausedomain theories. In [Ourston and Mooney, 1990℄ wedesribe an initial version of the system that re�nestheories for a single onept and has several restri-tions on modifying intermediate rules. The tehniquesdesribed in this paper extend the previous methodsto multi-ategory theories and to orretions to sharedrules. The remainder of this paper desribes our ap-proah and provides empirial results that illustratee�etive transfer to test data that is radially di�erentfrom the training data.2 Sample TheoryThe theory below is a sample domain theory foranimals that will be used as an example throughoutthe paper. This theory is an extended version ofa set of rules given in [Winston and Horn, 1989,pages 388-390℄. Leading question marks denotevariables, whih are only used to de�ne thresholds onnumerially-valued features.(mammal)  (body-overing hair)(mammal)  (feed-young milk)(mammal)  (birth live)(bird)  (body-overing feathers)(bird)  (birth egg) (y)(ungulate)  (mammal) (foot-type hoof)(ungulate)  (mammal) (ruminate)(arnivore)  (eat-meat)(arnivore)  (teeth pointed) (foot-type lawed)(gira�e)  (ungulate) (nek-length ?n) (� ?n 5)(� ?n 6) (olor tawny)(pattern spots) (pattern-olor blak)(zebra)  (ungulate) (olor white)(pattern stripes)(pattern-olor blak)(heetah)  (mammal)(arnivore)(olor tawny)(pattern spots)(pattern-olor blak)(tiger)  (mammal) (arnivore) (olor tawny)(pattern stripes)(pattern-olor blak)



(dolphin)  (mammal) (fore-appendage �n)(olor gray)(body-overing moist-skin)(body-length ?b) (� ?b 4) (� ?b 6)(whale)  (mammal) (fore-appendage �n)(olor gray) (body-overing moist-skin)(body-length ?b) (� ?b 10) (� ?b 60)(bat)  (mammal) (olor blak) (pattern none)(pattern-olor none) (y)(platypus)  (mammal) (birth egg)(foot-type webbed)(ostrih)  (bird) (not (y)) (nek-length ?n)(� ?n 3)(� ?n 4) (olor white)(pattern path) (pattern-olor blak)(penguin)  (bird) (olor white)(pattern path) (pattern-olor blak)(foot-type webbed) (not (y))(duk)  (bird) (foot-type webbed) (y)(grakle)  (bird) (olor blak) (pattern none)(pattern-olor none) (y)Observable Features: feed-young body-overing birtheat-meat y teeth fore-appendage foot-type nek-lengthbody-length olor pattern pattern-olor ruminateCategories: gira�e zebra heetah tiger dolphin whale batplatypus penguin ostrih duk graklePropositions that are used to desribe the examples(for example, (foot-type webbed)) are alled observ-ables. Propositions that represent the �nal oneptsin whih examples are to be lassi�ed (for example,penguin) are alled ategories. It is urrently assumedthat the ategories are disjoint. Propositions in thetheory that are neither observables nor ategories (forexample, bird, mammal) are alled intermediate on-epts. A failing positive is an example that should beprovable as an example of its ategory, but fails to beprovable. A failing negative is an example provable ina ategory other than its own.3 Revision ApproahEITHER responds to failing negative examples (indi-ating an overly general theory) by performing rulespeialization. Similarly, the response to failing pos-itive examples is rule generalization. EITHER deter-mines the proper loation for the rule orretion basedon a syntati simpliity measure, subjet to a or-retability onstraint (as will be shown below, somerules responsible for the error annot be hanged to �xthe problem). EITHER also uses onstrutive indu-tion methods in order to e�etive utilize intermediateonepts in the existing theory and to reate new in-termediate onepts [Mooney and Ourston, 1991℄. Theresulting approah tends to fous orretions on ruleswhih are used by multiple ategories.

3.1 Rule GeneralizationRule generalization is performed in response to spe-ialization errors in the existing theory, whih are in-diated by failing positive examples. EITHER initiallyassoiates the errors with leaf-level rules1. This isdone in a bath fashion, and the minimum set of suhrules whih aount for all of the failing positive ex-amples is identi�ed. For eah rule EITHER identi�esanteedents whih, if retrated, would allow proofs ofthe failing positive examples assoiated with the rule.However, simply removing anteedents from the rulemay prove to be too muh of a generalization (that is,doing so may ause additional failing negatives). If thisis the ase, EITHER uses the failing positive examplesfor the rule, and the negative examples whih beomeprovable when the onsequent of the rule is assumedtrue, to indutively2 form a new rule whih orretlylassi�es the positive and negative examples. If theproposed orretion results in all of the anteedentsfor a partiular rule being removed, EITHER simplyremoves the onsequent of the rule as an anteedentfrom all of its parent rules.The orretion proess may ultimately result in theorretion being plaed at a higher level in the theory,as disussed below, but in eah ase, the generalizationalgorithm will �rst attempt to generalize the seletedrule by modifying anteedents, and will only indu-tively learn new rules if this is unsuessful.3.2 Rule SpeializationFor theory speialization, EITHER �rst identi�es theminimum set of leaf-level rules whih, if removed fromthe theory, would ause all of the failing negative ex-amples to no longer be proven in inorret ategories.As with generalization, this initially-suggested hangeto the theory may be an over-orretion, resulting inexamples not being provable in their own ategories.If this is the ase, then speialized rules are indu-tively learned whih disriminate between the positiveexamples for the ategory and the erroneously provennegative examples. If the orretion is to be made toa higher level rule, as disussed below, a new rule willbe indutively learned.1A \leaf-level" rule is a rule whih inludes observablesamong its anteedents.2EITHER uses the ID3 [Quinlan, 1986℄ as its indutiveomponent.



3.3 The Corretability ProblemIn multi-ategory theories, it may not be possible tomake a theory onsistent with a set of examples bymodifying leaf-level rules. For example, onsider thefollowing theory in whih the ategory rules rely onthe same leaf-level rule.C1  RC2  RR A ^BThis is an extremely pathologial theory in whih anyexample will either be provable in both ategories orneither, and the same remarks apply when any hangeis made to the leaf-level rule. What this means isthat the \R" rule annot be hanged to orret theproblem. In the animal domain, this type of problemould orrespond to trying to �x onfusions betweengrakles and duks through modi�ations to the\bird" rules. In general, the problem is deteting thatsuh a ondition exists (either diretly or indiretly),and then making a orretion that auses examplesto be lassi�ed only in their own ategories. For apartiular rule, this problem an be deteted duringspeialization when removing the rule from the theoryauses a partiular example to fail to be proven in itsown ategory, and yet leaving the rule in auses theexample to be provable in at least one other ategory.In this ase, the same rule is being used in anerroneous proof of the example and also in its orretproof in its own ategory. Hene any hange to therule whih auses the example not to be erroneouslyprovable will also ause it not to be provable in itsown ategory. For generalization, the problem an bedeteted when assuming the onsequent of a rule tobe true auses a partiular example to be provable inat least one other ategory, yet in the original theorythe same example is not provable in its own ategory.In order to assoiate the problem with a single rule,the generalization algorithm requires that all failingnegatives be removed from the input, and the spe-ialization algorithm requires a stritly overly generaltheory (that is, it uses the output of the generalizationalgorithm).The solution to the orretability problem (the samerule being responsible for proofs of examples in multi-ple ategories), is to make the orretions to rules athigher levels in the theory. This is done by onsider-ing the parents3 of the rule in question and determin-3Here, parent means a rule whih used the given rule inthe proof of an anteedent. For speialization, this oursduring the proof of a negative example, whereas for gener-

ing if a orretability problem exists for the parentsof the rule, and so on reursively, until a set of rulesare obtained for whih no orretability problem ex-ists. Clearly, there exists suh a set of rules, sinein the limit the orretions an be made to the ate-gory rules. Sine eah suh rule implies membership ina partiular ategory, retrating suh a rule an onlyause examples to be unprovable in the assoiated at-egory, and no other, and no orretability problem anour.In the implemented EITHER program, for eÆienyreasons the orretability algorithm has only been in-orporated into the speialization algorithm. However,doing this still guarantees that the output will be on-sistent with the training set.3.4 Finding the Simplest CorretionOne a onsistent set of rules has been obtained, EI-THER begins the proess of seleting the syntatiallysimplest set of rule orretions. For eah rule in theurrent orretion set, EITHER ompares the hangeto the rule with the hange whih would be requiredby the rule's parents. If the hange to the parent rulesis simpler than the hange to the urrent rule, the pro-ess is ontinued with the urrent rule replaed by itsparent rules. This proess terminates when the hangeto the parent rule is more omplex than the hange tothe urrent rule.As an example of a situation whih would result in ahigher level rule being hosen, onsider the followingtheory:w  xx ax bx :and assume that the �rst rule should orretly be:w  x ^ d ^ e:If EITHER was given examples orresponding to theorret theory, and was fored to make the orretionsto the theory at the leaf level, than EITHER wouldobtain the orreted theory (whih would be onsistentwith the input examples):w  xx a ^ d ^ ex b ^ d ^ ex  ^ d ^ e:Clearly, hanging the theory at the higher level wouldresult in a muh simpler syntati hange to the theory.On the other hand, onsider the theory:alization, this ours during the partial proof of a positiveexample.



w  xy  xz  xx a;and assume that the orret version of the last rule is:x a ^ b ^ :If the orretion is made at the higher level, then eahof the rules \w" \y" and \z" would have to have theanteedents b and  added. In this ase, beause ofsyntati simpliity, EITHER will make the orretionto the \x" rule.Beause of these onsiderations, EITHER tends tomake orretions at or below the level of the �rstshared rule enountered. This implies that the seletedrule will be likely to partiipate in multiple oneptde�nitions, whih will allow the orretion to enhanethe performane in other, related, ategories. For eÆ-ieny reasons, in the implemented version of EITHERthe syntati simpliity hek is always terminated atthe �rst shared rule (that is, a rule having multipleparents).4 Experimental ResultsEITHER has been tested on two multi-ategory do-main theories with shared intermediate rules. Thissetion presents results showing that EITHER an su-essfully revise shared rules and that suh revisionsresult in positive transfer to test data that is very dif-ferent from the training data.Arti�ial data was automatially generated for the an-imal theory and a similar theory for lassifying dif-ferent types of omputers based on their appearane(ategories: p, ma, maII, sun, hp, explorer, symbol-is; intermediate onepts: workstation, miro, lisp-mahine, unix-workstation, maintosh). Thirty exam-ples of eah ategory were generated by �rst forming\ore" examples, whih ontain just the observablesneeded to omplete a proof. For linear features, a valueis hosen randomly from the range required for a proof.Next, random values for the remaining observable fea-tures were added to the ore examples to reate fullexamples. However, adding random values an some-times make an example provable in another ategoryas well. Consequently, eah example was heked tomake sure it was provable in only one ategory beforeadding it to the �nal data set. A total of 360 exam-ples of animals and 210 examples of omputers werereated in this manner.Imperfet versions of the animal and omputertheories were also onstruted. In eah ase, the rulesfor some of the intermediate onepts were orrupted

in order to allow for ross-ategory transfer. Therules orrupted in the animal theory are shown below.Items shown in boldfae were added to the theorywhereas items shown in italis were deleted fromthe theory. The faults introdued inlude missingrules, additional anteedents, and missing anteedents.(mammal)  (body-overing hair)(fore-appendage leg)(mammal)  (feed-young milk)(fore-appendage leg)(mammal)  (birth live) (fore-appendage leg)(bird)  (body-overing feathers)(bird)  (birth egg) (y)(duk)  (bird) (foot-type webbed) (y)(ostrih)  : : : (not (y))(penguin)  : : : (not (y))In order to demonstrate ross-ategory transfer, thesystem was trained on examples from some of the at-egories and tested an examples of the remaining ate-gories. In the animal domain, the system was trainedon gira�es, heetahs, dolphins, bats, platypuses, os-trihes, and duks and tested on zebras, tigers, whales,penguins, and grakles. In the omputer domain, EI-THER was trained on Mas, Suns, and Explorers, andtested on MaII's, HP's, and Symbolis. Learningurves were generated by performing bath trainingon inreasingly larger frations of a set of training ex-amples and repeatedly testing preditive auray onthe same disjoint test set. The �nal results were av-eraged over 20 random seletions of training and testsets.The results are shown in Figure 1. EITHER greatlyimproves its performane despite the fat that thetraining and test data are drawn from ompletely dif-ferent populations. This is beause it revises rulesfor shared intermediate onepts. For example, whentrained on ostrihes, bats, and dolphins it disoversthat ying is neither neessary nor suÆient for bird-hood and that mammals don't have to possess legs.It uses the data to make the orret revisions to theserules whih allow it to aurately lassify penguins andwhales during testing. Performane in the animal do-main levels out at 85% sine some of the faults arein non-shared rules and are only deteted when thetraining set ontains examples from all of the ate-gories. In the omputer domain, the orret theoryis fully reonstruted by 40 training examples in mosttrials. Notie that a normal indutive learning systemwould remain at 0% auray for this sort of test. If itnever enounters any examples of penguins or whalesin the training set, it will never lassify a test exampleas a penguin or a whale.If EITHER is trained on random examples of all ate-



gories, it eventually reonstruts the original theoriesfor both domains. About 100 examples are generallysuÆient to �x the animal theory, while 60 examplesare suÆient for the omputer theory. When initial-ized with the imperfet theories, EITHER's learningrate is signi�antly better than without an initial the-ory (in whih ase it is the same as ID3).
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Figure 1: Cross-Category Transfer Results5 Related WorkAs disussed in [Ourston and Mooney, 1990℄, mostsystems that use imperfet domain theories in learn-ing an only handle ertain types of overly general oroverly spei� theories [Wilkins, 1988; Flann and Di-

etterih, 1989; Pazzani, 1989℄). Finally, none of thesesystems expliitly deal with multi-ategory theories.Ginsberg has reently developed a version of RTLSthat produes a revised multi-ategory theory [Gins-berg, 1990℄; however, he expliitly mentions that itannot revise rules for shared onepts (whih he allsnon-eigen-terms). However, as illustrated in this pa-per, revising shared rules is extremely important sineit allows for ross-ategory transfer. KBANN [Tow-ell et al., 1990℄, whih onverts a theory into a neuralnet and then re�nes it using bakpropagation, ouldpotentially demonstrate ross-ategory transfer by re-�ning the weights on shared hidden units. However,KBANN produes a neural-net lassi�er rather than arevised theory.6 ConlusionsThe ability to improve shared rules allows the orre-tions to a theory to be foussed on ertain key rules,whih may play a part in the de�nition of several on-epts within the theory. Learning of this kind permitsross-ategory transfer, where training in a one at-egory produes performane improvements in relatedategories.Multiple ategory theories also introdue orretabilityproblems whih are not present in single ategory the-ories, aused by a single rule being used in the proofsof several ategories for the same example. EITHERaddresses these problems with multiple ategory the-ories, while still obtaining rule orretions whih aresyntatially simple and whih apply to shared ruleswhenever possible.AknowledgementsThis researh was supported by the NASA Ames Re-searh Center under grant NCC 2-629. Equipment wasdonated by the Texas Instruments Corporation.Referenes[Flann and Dietterih, 1989℄ N. S. Flann and T. G.Dietterih. A study of explanation-based methodsfor indutive learning. Mahine Learning, 4(2):187{226, 1989.[Ginsberg, 1990℄ A. Ginsberg. Theory redution, the-ory revision, and retranslation. In Proeedings ofthe Eighth National Conferene on Arti�ial Intel-ligene, pages 777{782, Detroit, MI, July 1990.[Mooney and Ourston, 1991℄ R. Mooney andD. Ourston. Construtive indution in theory
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