Appear s i n Proceedings of the Eighth International Machine Learning Workshop,

pp. 534-538, Evanston, IL, June 1991.

Improving Shared Rules
in Multiple Category Domain Theories

Dirk Ourston
Department of Computer Sciences
University of Texas
Austin, TX 78712
dirk@cs.utexas.edu

Abstract

This paper presents an approach to improv-
ing the classification performance of a mul-
tiple category theory by correcting interme-
diate rules which are shared among the cate-
gories. Using this technique, the performance
of a theory in one category can be improved
through training in an entirely different cat-
egory. Examples of the technique are pre-
sented and experimental results are given.

1 Introduction

Frequently, domain theories involve multiple concepts
that share intermediate rules. For example, in a the-
ory for a variety of animal species, the concepts for
giraffes and tigers might share knowledge about mam-
mals, and the concepts for penguin and duck might
share knowledge about birds. Improving rules for the
shared concept “mammal” can increase classification
accuracy for both giraffes and tigers. However, refin-
ing rules for such shared intermediate rules must be
done carefully in order to account for the impact on
all of the concepts that use them.

Revising rules for shared concepts frequently has the
interesting effect of improving performance on test
data that is drawn from a completely different pop-
ulation than the training data. For example, if the
system is trained on ostriches, it may improve perfor-
mance when tested on penguins. We refer to this effect
as cross-category transfer. Standard empirical learn-
ing systems are incapable of exhibiting cross-category
transfer. Most theoretical work in learning also as-
sumes that the distribution of examples is the same
during training and test [Valiant, 1984].

This paper presents an implemented method for re-
vising domain theories with shared intermediate rules.

Raymond J. Mooney
Department of Computer Sciences
University of Texas
Austin, TX 78712
mooney@cs.utexas.edu

We are developing a system called EITHER that is ca-
pable of revising arbitrary propositional Horn-clause
domain theories. In [Ourston and Mooney, 1990] we
describe an initial version of the system that refines
theories for a single concept and has several restric-
tions on modifying intermediate rules. The techniques
described in this paper extend the previous methods
to multi-category theories and to corrections to shared
rules. The remainder of this paper describes our ap-
proach and provides empirical results that illustrate
effective transfer to test data that is radically different
from the training data.

2 Sample Theory

The theory below is a sample domain theory for
animals that will be used as an example throughout
the paper. This theory is an extended version of
a set of rules given in [Winston and Horn, 1989,
pages 388-390]. Leading question marks denote
variables, which are only used to define thresholds on
numerically-valued features.

(mammal) <+ (body-covering hair)
(mammal) < (feed-young milk)
(mammal) <+ (birth live)
(bird) + (body-covering feathers)
(bird) <« (birth egg) (fy)
(ungulate) <+ (mammal) (foot-type hoof)
(ungulate) <+ (mammal) (ruminate)
(carnivore) <« (eat-meat)
(carnivore) <+ (teeth pointed) (foot-type clawed)
(giraffe) <« Eungulgt);eg (Illeck—lengt)h n) (> n 5)
<7n color tawny
(sebra) Epattelrn s)p(()ts% (pai}terl)l—color black)
zebra — ungulate) (color white
(pattern stripes)(pattern-color black)
(cheetah) < (mammal)(carnivore)(color tawny)
(pattern spots)(pattern-color black)
(tiger) <« (mammal) (carnivore) (color tawny)

(pattern stripes)(pattern-color black)

(dolphin) <+ (mammal) (fore-appendage fin)

(color gray)(body-covering moist-skin)
(body-length ?b) (> ?b 4) (< 7b 6)
(mammal) (fore-appendage fin)

(color gray) (body-covering moist-skin)
(body-length 7b) (> 7b 10) (< 7b 60)
(mammal) (color black) (pattern none)
(pattern-color none) (fly)

(mammal) (birth egg)

(foot-type webbed)
(
(=
(
(
(
(
(
(

(whale) «+

(bat) <«

(platypus) <«

(ostrich) <+ (bird) (not (fly)) (neck-length 7n)

> ™n 3)(< 7n 4) (color white)
pattern patch) (pattern-color black)
bird) (color white)
pattern patch) (pattern-color black)
foot-type webbed) (not (fly))
bird) (foot-type webbed) (fly)
bird) (color black) (pattern none)
(pattern-color none) (fly)
Observable Features: feed-young body-covering birth

(penguin) «+

(duck) <«
(grackle) «+

eat-meat fly teeth fore-appendage foot-type neck-length
body-length color pattern pattern-color ruminate
Categories: giraffe zebra cheetah tiger dolphin whale bat
platypus penguin ostrich duck grackle

Propositions that are used to describe the examples
(for example, (foot-type webbed)) are called observ-
ables. Propositions that represent the final concepts
in which examples are to be classified (for example,
penguin) are called categories. It is currently assumed
that the categories are disjoint. Propositions in the
theory that are neither observables nor categories (for
example, bird, mammal) are called intermediate con-
cepts. A failing positive is an example that should be
provable as an example of its category, but fails to be
provable. A failing negative is an example provable in
a category other than its own.

3 Revision Approach

EITHER responds to failing negative examples (indi-
cating an overly general theory) by performing rule
specialization. Similarly, the response to failing pos-
itive examples is rule generalization. EITHER deter-
mines the proper location for the rule correction based
on a syntactic simplicity measure, subject to a cor-
rectability constraint (as will be shown below, some
rules responsible for the error cannot be changed to fix
the problem). EITHER also uses constructive induc-
tion methods in order to effective utilize intermediate
concepts in the existing theory and to create new in-
termediate concepts [Mooney and Ourston, 1991]. The
resulting approach tends to focus corrections on rules
which are used by multiple categories.

3.1 Rule Generalization

Rule generalization is performed in response to spe-
cialization errors in the existing theory, which are in-
dicated by failing positive examples. EITHER initially
associates the errors with leaf-level rules!. This is
done in a batch fashion, and the minimum set of such
rules which account for all of the failing positive ex-
amples is identified. For each rule EITHER identifies
antecedents which, if retracted, would allow proofs of
the failing positive examples associated with the rule.

However, simply removing antecedents from the rule
may prove to be too much of a generalization (that is,
doing so may cause additional failing negatives). If this
is the case, EITHER uses the failing positive examples
for the rule, and the negative examples which become
provable when the consequent of the rule is assumed
true, to inductively? form a new rule which correctly
classifies the positive and negative examples. If the
proposed correction results in all of the antecedents
for a particular rule being removed, EITHER simply
removes the consequent of the rule as an antecedent
from all of its parent rules.

The correction process may ultimately result in the
correction being placed at a higher level in the theory,
as discussed below, but in each case, the generalization
algorithm will first attempt to generalize the selected
rule by modifying antecedents, and will only induc-
tively learn new rules if this is unsuccessful.

3.2 Rule Specialization

For theory specialization, EITHER first identifies the
minimum set of leaf-level rules which, if removed from
the theory, would cause all of the failing negative ex-
amples to no longer be proven in incorrect categories.
As with generalization, this initially-suggested change
to the theory may be an over-correction, resulting in
examples not being provable in their own categories.
If this is the case, then specialized rules are induc-
tively learned which discriminate between the positive
examples for the category and the erroneously proven
negative examples. If the correction is to be made to
a higher level rule, as discussed below, a new rule will
be inductively learned.

! A “leaf-level” rule is a rule which includes observables
among its antecedents.

2EITHER uses the ID3 [Quinlan, 1986] as its inductive
component.

3.3 The Correctability Problem

In multi-category theories, it may not be possible to
make a theory consistent with a set of examples by
modifying leaf-level rules. For example, consider the
following theory in which the category rules rely on
the same leaf-level rule.

Cl%R
CQ%R
R+~ AANB

This is an extremely pathological theory in which any
example will either be provable in both categories or
neither, and the same remarks apply when any change
is made to the leaf-level rule. What this means is
that the “R” rule cannot be changed to correct the
problem. In the animal domain, this type of problem
could correspond to trying to fix confusions between
grackles and ducks through modifications to the
“bird” rules. In general, the problem is detecting that
such a condition exists (either directly or indirectly),
and then making a correction that causes examples
to be classified only in their own categories. For a
particular rule, this problem can be detected during
specialization when removing the rule from the theory
causes a particular example to fail to be proven in its
own category, and yet leaving the rule in causes the
example to be provable in at least one other category.
In this case, the same rule is being used in an
erroneous proof of the example and also in its correct
proof in its own category. Hence any change to the
rule which causes the example not to be erroneously
provable will also cause it not to be provable in its
own category. For generalization, the problem can be
detected when assuming the consequent of a rule to
be true causes a particular example to be provable in
at least one other category, yet in the original theory
the same example is not provable in its own category.

In order to associate the problem with a single rule,
the generalization algorithm requires that all failing
negatives be removed from the input, and the spe-
cialization algorithm requires a strictly overly general
theory (that is, it uses the output of the generalization
algorithm).

The solution to the correctability problem (the same
rule being responsible for proofs of examples in multi-
ple categories), is to make the corrections to rules at
higher levels in the theory. This is done by consider-
ing the parents® of the rule in question and determin-

®Here, parent means a rule which used the given rule in
the proof of an antecedent. For specialization, this occurs
during the proof of a negative example, whereas for gener-

ing if a correctability problem exists for the parents
of the rule, and so on recursively, until a set of rules
are obtained for which no correctability problem ex-
ists. Clearly, there exists such a set of rules, since
in the limit the corrections can be made to the cate-
gory rules. Since each such rule implies membership in
a particular category, retracting such a rule can only
cause examples to be unprovable in the associated cat-
egory, and no other, and no correctability problem can
occur.

In the implemented EITHER program, for efficiency
reasons the correctability algorithm has only been in-
corporated into the specialization algorithm. However,
doing this still guarantees that the output will be con-
sistent with the training set.

3.4 Finding the Simplest Correction

Once a consistent set of rules has been obtained, EI-
THER begins the process of selecting the syntactically
simplest set of rule corrections. For each rule in the
current correction set, EITHER compares the change
to the rule with the change which would be required
by the rule’s parents. If the change to the parent rules
is simpler than the change to the current rule, the pro-
cess is continued with the current rule replaced by its
parent rules. This process terminates when the change
to the parent rule is more complex than the change to
the current rule.

As an example of a situation which would result in a
higher level rule being chosen, consider the following
theory:

W T

T a

x b

T ¢ c.

and assume that the first rule should correctly be:
w—zxAdAe.

If EITHER was given examples corresponding to the
correct theory, and was forced to make the corrections
to the theory at the leaf level, than EITHER would
obtain the corrected theory (which would be consistent
with the input examples):

W T

z+—alNdAe

x+bAdAe

x+cANdAe.

Clearly, changing the theory at the higher level would
result in a much simpler syntactic change to the theory.

On the other hand, consider the theory:

alization, this occurs during the partial proof of a positive
example.

w4 T

Yy x

Ze T

T < a,

and assume that the correct version of the last rule is:
r—alAbAec

If the correction is made at the higher level, then each
of the rules “w” “y” and “z” would have to have the
antecedents b and ¢ added. In this case, because of
syntactic simplicity, EITHER will make the correction
to the “x” rule.

Because of these considerations, EITHER tends to
make corrections at or below the level of the first
shared rule encountered. This implies that the selected
rule will be likely to participate in multiple concept
definitions, which will allow the correction to enhance
the performance in other, related, categories. For effi-
ciency reasons, in the implemented version of EITHER
the syntactic simplicity check is always terminated at
the first shared rule (that is, a rule having multiple
parents).

4 Experimental Results

EITHER has been tested on two multi-category do-
main theories with shared intermediate rules. This
section presents results showing that EITHER can suc-
cessfully revise shared rules and that such revisions
result in positive transfer to test data that is very dif-
ferent from the training data.

Artificial data was automatically generated for the an-
imal theory and a similar theory for classifying dif-
ferent types of computers based on their appearance
(categories: pc, mac, macll, sun, hp, explorer, symbol-
ics; intermediate concepts: workstation, micro, lisp-
machine, unix-workstation, macintosh). Thirty exam-
ples of each category were generated by first forming
“core” examples, which contain just the observables
needed to complete a proof. For linear features, a value
is chosen randomly from the range required for a proof.
Next, random values for the remaining observable fea-
tures were added to the core examples to create full
examples. However, adding random values can some-
times make an example provable in another category
as well. Consequently, each example was checked to
make sure it was provable in only one category before
adding it to the final data set. A total of 360 exam-
ples of animals and 210 examples of computers were
created in this manner.

Imperfect versions of the animal and computer
theories were also constructed. In each case, the rules
for some of the intermediate concepts were corrupted

in order to allow for cross-category transfer. The
rules corrupted in the animal theory are shown below.
Items shown in boldface were added to the theory
whereas items shown in italics were deleted from
the theory. The faults introduced include missing
rules, additional antecedents, and missing antecedents.

(body-covering hair)
(fore-appendage leg)

(mammal) «+

(mammal) <+ (feed-young milk)
(fore-appendage leg)
(mammal) <+ (birth live) (fore-appendage leg)
(bird) <+ (body-covering feathers)
(bird) <« (birth egg) (fly)
(duck) <+ (bird) (foot-type webbed) (fly)
(ostrich) <« ... (not (fly))
(penguin) <+ ... (not (fly))

In order to demonstrate cross-category transfer, the
system was trained on examples from some of the cat-
egories and tested an examples of the remaining cate-
gories. In the animal domain, the system was trained
on giraffes, cheetahs, dolphins, bats, platypuses, os-
triches, and ducks and tested on zebras, tigers, whales,
penguins, and grackles. In the computer domain, EI-
THER was trained on Macs, Suns, and Explorers, and
tested on MacIl’s, HP’s, and Symbolics. Learning
curves were generated by performing batch training
on increasingly larger fractions of a set of training ex-
amples and repeatedly testing predictive accuracy on
the same disjoint test set. The final results were av-
eraged over 20 random selections of training and test
sets.

The results are shown in Figure 1. EITHER greatly
improves its performance despite the fact that the
training and test data are drawn from completely dif-
ferent populations. This is because it revises rules
for shared intermediate concepts. For example, when
trained on ostriches, bats, and dolphins it discovers
that flying is neither necessary nor sufficient for bird-
hood and that mammals don’t have to possess legs.
It uses the data to make the correct revisions to these
rules which allow it to accurately classify penguins and
whales during testing. Performance in the animal do-
main levels out at 85% since some of the faults are
in non-shared rules and are only detected when the
training set contains examples from all of the cate-
gories. In the computer domain, the correct theory
is fully reconstructed by 40 training examples in most
trials. Notice that a normal inductive learning system
would remain at 0% accuracy for this sort of test. If it
never encounters any examples of penguins or whales
in the training set, it will never classify a test example
as a penguin or a whale.

If EITHER is trained on random examples of all cate-

Appears i n Proceedings of the Eighth International Machine Learning Workshop,

pp. 534-538, Evanston, IL, June 1991.

gories, it eventually reconstructs the original theories
for both domains. About 100 examples are generally
sufficient to fix the animal theory, while 60 examples
are sufficient for the computer theory. When initial-
ized with the imperfect theories, EITHER’s learning
rate is significantly better than without an initial the-
ory (in which case it is the same as ID3).

100.00.

8
3]

\
|
|
|

3
8

3
8

g
8

3
3]

8
8

% Correct on Categories Not in Training Data

8
8

5
3

o
8

0.00 20.00 40.00 60.00 80.00 100.00
Number of Animal Training Examples

100.00.

e

8
3

3
8

3
8

-

&
8

<]
8

8
8

% Correct on Categories Not in Training Data

8
3

5
3

o
Q
=]

0.00 10.00 20.00 30.00 40.00 50.00 60.00
Number of Computer Training Examples

Figure 1: Cross-Category Transfer Results

5 Related Work

As discussed in [Ourston and Mooney, 1990], most
systems that use imperfect domain theories in learn-
ing can only handle certain types of overly general or
overly specific theories [Wilkins, 1988; Flann and Di-

etterich, 1989; Pazzani, 1989]). Finally, none of these
systems explicitly deal with multi-category theories.
Ginsberg has recently developed a version of RTLS
that produces a revised multi-category theory [Gins-
berg, 1990]; however, he explicitly mentions that it
cannot revise rules for shared concepts (which he calls
non-eigen-terms). However, as illustrated in this pa-
per, revising shared rules is extremely important since
it allows for cross-category transfer. KBANN [Tow-
ell et al., 1990], which converts a theory into a neural
net and then refines it using backpropagation, could
potentially demonstrate cross-category transfer by re-
fining the weights on shared hidden units. However,
KBANN produces a neural-net classifier rather than a
revised theory.

6 Conclusions

The ability to improve shared rules allows the correc-
tions to a theory to be focussed on certain key rules,
which may play a part in the definition of several con-
cepts within the theory. Learning of this kind permits
cross-category transfer, where training in a one cat-
egory produces performance improvements in related
categories.

Multiple category theories also introduce correctability
problems which are not present in single category the-
ories, caused by a single rule being used in the proofs
of several categories for the same example. EITHER
addresses these problems with multiple category the-
ories, while still obtaining rule corrections which are
syntactically simple and which apply to shared rules
whenever possible.

Acknowledgements

This research was supported by the NASA Ames Re-
search Center under grant NCC 2-629. Equipment was
donated by the Texas Instruments Corporation.

References

[Flann and Dietterich, 1989] N. S. Flann and T. G.
Dietterich. A study of explanation-based methods
for inductive learning. Machine Learning, 4(2):187—
226, 1989.

[Ginsberg, 1990] A. Ginsberg. Theory reduction, the-
ory revision, and retranslation. In Proceedings of
the Eighth National Conference on Artificial Intel-
ligence, pages 777-782, Detroit, MI, July 1990.

[Mooney and Ourston, 1991] R.
D. Ourston.

Mooney and
Constructive induction in theory

refinement. In Proceedings of the FEighth Inter-
national Workshop on Machine Learning, pages
178-182, Evanston, IL, June 1991.

[Ourston and Mooney, 1990] D. Ourston and
R. Mooney. Changing the rules: a comprehensive
approach to theory refinement. In Proceedings
of the Eighth National Conference on Artificial
Intelligence, pages 815-820, Detroit, MI, July 1990.

[Pazzani, 1989] M. J. Pazzani. Detecting and correct-
ing errors of omission after explanation-based learn-
ing. In Proceedings of the Eleventh International
Joint conference on Artificial intelligence, pages
713-718, Detroit, MI, Aug 1989.

[Quinlan, 1986] J. R. Quinlan. Induction of decision
trees. Machine Learning, 1(1):81-106, 1986.

[Towell et al., 1990] G. G. Towell, J. W. Shavlik, and
Michiel O. Noordewier. Refinement of approximate
domain theories by knowledge-based artificial neu-
ral networks. In Proceedings of the Fighth National
Conference on Artificial Intelligence, pages 861-866,
Boston, MA, July 1990.

[Valiant, 1984] L. G. Valiant. A theory of the learn-
able. Communications of the Association for Com-
puting Machinery, 27(11):1134-1142, 1984.

[Wilkins, 1988] D. C. Wilkins. Knowlege base refine-
ment using apprenticeship learning techniques. In
Proceedings of the Seventh National Conference on
Artificial Intelligence, pages 646—651, St. Paul, MN,
August 1988.

[Winston and Horn, 1989] P. H. Winston and B. K. P.
Horn. Lisp. Addison-Wesley, Reading, MA, 1989.

