
Appears in Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92),
pp.50-55, San Jose, CA, July, 1992

Learning Relations by Pathfinding

Figure 1. The local plateau problem.

Bradley L. Richards
Dept. of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

bradley@cs.utexas.edu

Raymond J. Mooney
Dept. of Computer Sciences
University of Texas, Austin

Austin, Texas 78712
mooney@cs.utexas.edu

Abstract

First-order learning systems (e.g., FOIL, FOCL,
FORTE) generally rely on hill-climbing heuristics in
order to avoid the combinatorial explosion inherent in
learning first-order concepts. However, hill-climbing
leaves these systems vulnerable to local maxima and
local plateaus. We present a method, called relational
pathfinding, which has proven highly effective in
escaping local maxima and crossing local plateaus. We
present our algorithm and provide learning results in
two domains: family relationships and qualitative
model building.

1 Introduction
Many recent learning systems for first-order Horn clauses,
such as FOIL, FOCL, and Forte ([Quinlan, 1990], [Pazzani,
Brunk, and Silverstein, 1991], and [Richards and Mooney,
1991]) employ hill-climbing to learn clauses one literal at
a time. One of the problems faced by such hill-climbing
systems is what we call the local plateau problem (see
Figure 1). This arises when, in order to improve the
classification accuracy of a rule, we must add two or more
literals simultaneously. There may be many single
relations which do not decrease the category accuracy, but
which of these will lead to an eventual improvement?

This paper presents a new method for dealing with this
problem: relational pathfinding. This approach is based
on the assumption that, in relational domains, there usually
exists a fixed-length path of relations linking the set of
terms satisfying the goal concept. For example, in a
family domain, there is always a fixed-length path between
a grandparent and a grandchild; this path consists of two
parent relations. We present a method for finding these
paths, and we demonstrate this method in three domains:
family relationships, qualitative model building, and logic
programming.

The remainder of this paper is organized as follows:
Section 2 gives a brief background on first-order learning
systems. Section 3 describes our algorithm for relational
pathfinding, illustrating it in the domain of family
relationships. Section 4 presents results for the more
complex problem of deriving qualitative models of
dynamic systems from observed behaviors. Section 5
gives results in the domain of logic programming. Section
6 compares relational pathfinding to related work in the

field and gives our recommendations for future work.
Section 7 summarizes and concludes the paper.

2 First-Order Learning
There are several first-order learning systems capable of
pure inductive learning. Among these are FOIL [Quinlan,
1990], FOCL [Pazzani, Brunk, and Silverstein, 1991],
GOLEM [Muggleton and Feng, 1990], and Forte [Richards
and Mooney, 1991]. FOIL and GOLEM are designed as
pure inductive learners. FOCL is an enhancement of FOIL
which, if given an initial theory, uses it to provide hints to

the learning process. Forte is designed primarily as a
theory-revision system but, by revising an empty theory,
can perform pure inductive learning. All of these systems
learn first-order categorization rules, and all but GOLEM
learn "top-down" by specialization, adding a single literal
at a time to their rules. The top-down systems are
vulnerable to local plateaus and local maxima. Relational
pathfinding is designed to aid this type of system.
GOLEM works "bottom-up" by generalization, and would
not be helped by this technique.

Top-down systems work by learning Horn clauses one
at a time until all positive examples are covered. Each
clause is generated by adding one literal at a time using a

simple hill-climbing technique. At each step, instantiations

Figure 2. A portion of a family tree.
Algorithm 1. Overview of the relational pathfinding algorithm.

instantiate rule with a positive instance

find isolated sub-graphs

for each sub-graph

constants become initial end-values

end for

repeat

for each sub-graph

expand paths by one relation in all possible

ways

remove paths with previously seen

end-values

end for

until intersection or resource-bound exceeded

if we have intersections

for each intersection

add path-relations to original rule

if the new rule contains new singletons

add relations using the singletons

if we eliminated all singletons

keep the expanded rule

else

discard the rule

end if

end if

replace constants with variables

end for

select most accurate rule

end if

if negatives are still provable

use normal specialization to finish the rule

end if

of each predicate in the data are tested for their ability to
discriminate the remaining positive and negative examples,
and the best discriminator is added to the clause. When all
negative examples have been excluded, the clause is
complete. Additional clauses are formed to cover any
remaining positive examples. Of course, this hill-climbing
approach is vulnerable to local plateaus and local maxima.
Relational pathfinding is an attempt to avoid these locality
problems.

3 Relational Pathfinding
The idea of pathfinding in a relational domain is to view
the domain as a (possibly infinite) graph of constants
linked by the relations which hold between the constants.
For example, a portion of the data in Hinton's family
domain [Hinton, 1986] is shown in Figure 2. This domain
is particularly easy to visualize since all relations are
binary.

We can see the local plateau problem by trying to

define the grandparent relation using only the instances

positive: grandparent(Christopher, Colin)
negative: grandparent(Christopher, Arthur)

There is no single antecedent which will discriminate
between these instances. Both Colin and Arthur have
parents, neither has children, and neither is married1. Also,
determinate literals do not help in this example; The only
determinate literal available is married(Christopher,
Penelope), since all parents have two children and all
children have two parents. In order to create a correct
theory, we must simultaneously add both of the required
parent relations, i.e.,

grandparent(x, y) ← parent(x, z) ∧ parent(z, y).

Relational pathfinding is based on the assumption that, in
most relational domains, important concepts will be
represented by a small number of fixed paths among the
constants defining a positive instance. For example, the
grandparent relation is defined by a single fixed path
consisting of two parent relations.

Relational pathfinding can be tried anytime a clause
needs to be specialized and does not have relational paths
joining all of its variables. If, after pathfinding, the rule is
still too general, we do further specialization using a
standard FOIL-like technique. This arises, for example,
when a rule requires non-relational antecedents.

Relational pathfinding finds paths by successive
expansion around the nodes associated with the constants
in a positive example, in a manner reminiscent of
Quillian's spreading activation [Quillian, 1968]. We
arbitrarily choose a positive instance and use it to
instantiate the initial rule. The constants in the instantiated
rule are nodes in the domain graph, possibly connected by
antecedents in the rule. We then identify isolated
subgraphs among these constants; if the initial rule
contains no antecedents, then each constant forms a
singular subgraph.

We view a sub-graph as a nexus from which we
explore the surrounding portion of the domain graph. Each
exploration which leads to a new node in the domain graph
is a path, and the value of the node it has reached is the

path's end-value. Initially, constant in a sub-graph is the

Figure 3. Finding one of the uncle relations.

Figure 4. Inductive learning performance in Hinton's family
domain, averaged over 20 trials per data point.

end-value of a path of length zero.
Taking each subgraph in turn, we find all new

constants which can be reached by extending any path with
any defined relation. These constants form the new set of
path end-values for the subgraph. We check this set
against the sets of end-values for all other subgraphs,
looking for an intersection. If we do not find an
intersection, we expand the next node. This process
continues until we either find an intersection or exceed a
preset resource bound.

When we find an intersection, we add the relations in
the intersecting paths to the original instantiated rule. If
the new relations have introduced new constants that
appear only once, we complete the rule by adding relations
which hold between these singletons and other constants in
the rule. If we are unable to use all such singletons, the
rule is rejected. Finally, we replace all constants with
unique variables to produce the final, specialized theory
clause. If we simultaneously discover several intersections,
we develop clauses for all of them and choose the one
which provides the best accuracy on the training set.

While the pathfinding algorithm potentially amounts
to exhaustive exponential search, it is generally successful
for two reasons. First, by searching from all nodes
simultaneously, we greatly reduce the total number of
paths explored before we reach an intersection. Second,
most meaningful relations are defined by short paths,
which inherently limits the depth of search. However, a
practical implementation of this method includes a resource
bound.

As an example, suppose we want to learn the
relationship uncle2, given an initially empty rule and the
positive instance uncle(Arthur, Charlotte) . The process
is illustrated in Figure 3. We begin by exploring paths
from the node labelled Arthur , which leads us to the new
nodes Christopher and Penelope. We then expand from
the node labelled Charlotte , leading to the nodes Victoria
and James. At this point we still do not have an
intersection, so we lengthen all paths originating from node
Arthur . We eliminate any end-values which we have
already used (and which, therefore, do not give us an
intersection). This leaves us with only one path end-value:
Victoria . Since Victoria is also an end-value of one of
the paths originating from Charlotte , we recognize an
intersection.

There are two paths leading from Arthur to Victoria ,
but in this case they are identical (merely leading through
different grandparents). If we had found several paths, we
would select the one providing the best overall accuracy.
The final path is

uncle(x, y) ← parent(z, x), parent(z, w), parent(w, y)

The literal male(x), which is required to complete this rule,
is not a relation and is therefore added by ordinary
specialization.

To test the hypothesis that relational pathfinding
improves the accuracy of an empirical learning system, we

ran Forte [Richards and Mooney, 1991] on the family data
used in [Hinton, 1986] and [Quinlan, 1990], both with and
without relational pathfinding. Training sets were
randomly selected from a set containing all 112 positive
instances and 272 "near-miss" negative instances, with the
remainder serving as the test set. The data includes twelve
family-relation concepts, so a training set of 60 instances
includes an average of 5 instances for each concept. The

results (see Figure 4) show a significant gain in learning

Figure 5. Qualitative model of two cascaded tanks.

Table 1. Single behavior of two cascaded tanks reaching
equilibrium.

Inflow A: + + + + +
Amount A: ↑0 ↑+ + + +
Outflow A: ↑0 ↑+ + + +
Amount B: 0 ↑+ ↑+ ↑+ +
Outflow B: 0 ↑+ ↑+ ↑+ +

Time: → → → → → → → → →

performance for any size of training set. Above 120
instances, learning without relational pathfinding levels out
while relational pathfinding leads to a complete and correct
theory. By comparison, FOIL [Quinlan, 1990] achieved a
maximum accuracy of 97.5% on this data, using the
equivalent of 2400 training instances.

4 Qualitative Modelling
The family domain is ideal for demonstrating our approach
since the relations are binary and form a fairly simple
graph. However, relational pathfinding works equally well
in more complex domains, as long as concepts can be
viewed as fixed-length paths joining nodes in a graph. An
example of this is the domain of qualitative modelling.
Qualitative model building is a complex domain for two
reasons. First, not all relations are binary. Second, values
associated with new variables are not simple atoms, but
full behavioral descriptions which may be only partially
instantiated.

One limitation of systems which derive qualitative
models from behaviors is that there has been no
satisfactory method of identifying missing variables. For
example, if we seek to model the cascaded tank system
shown in Figure 6, a complete model (see Figure 5) must
include variables for inflow, outflow, amount, and net-flow
for each tank. However, an observer is likely to measure
only the externally visible variables, and to thereby omit
the net-flow variables.

We work with qualitative models as defined by QSIM
[Kuipers, 1986]. A QSIM model is a set of variables and
a conjunction of constraints on those variables. Typical
constraints (relations) include derivative (d/dt), add (+),
M+ , and M-. The constraints describe qualitative
relationships among the variables over time. For example,
the M+ constraint states that two variables are related by
a strictly monotonically increasing function.

Relational pathfinding provides a way to introduce
missing variables into a model. Qualitative constraints
impose restrictions on the values of their arguments; when
used by relational pathfinding to generate end-values of
paths, they partially instantiate the values to enforce their
restrictions. Thus, the values are partial behavioral
descriptions of hypothetical system variables. Two paths
intersect when the restrictions on their end-values are
consistent (i.e., when they can be unified). When the new
rule is generalized, the intersection value becomes a new
variable in the model.

Forte, using relational pathfinding, is able to create
correct models when one or more system variables have
been omitted from the input behavioral descriptions.
Consider a system of two cascaded tanks, A and B, where
the inflow to tank A is constant, and the outflow from tank
A provides the inflow to tank B. For this system, given
the single behavior shown in Table 13 (which omits any
mention of the net-flow variables), Forte automatically
produces the model

model(Amount_A, Amount_B, Inflow_A, Out_A, Out_B)
m_plus(Amount_B, Out_B),
m_plus(Amount_A, Out_A),
m_minus(Out_A, Net_A),
m_minus(Amount_A, Net_A),
derivative(Amount_B, Net_B),
derivative(Amount_A, Net_A),
add(Net_B, Out_B, Out_A),
add(Net_A, Out_A, Inflow_A),
constant(Inflow_A).

This model is the same as the correct model shown in
Figure 5, with the addition of two redundant M-
constraints.

5 Logic Programming
Any Horn clause theory can be viewed as a logic program.
However, in the domains of family relationships and
qualitative models, theory are not recursive. If we wish to
synthesize predicates for relations like append, reverse, or
sort, we must be able to produce recursive clauses.

The only new issue we must consider is how to
evaluate recursive calls. This is a problem because we are
in the process of modifying the very predicate we wish to
evaluate. Our answer is to use the positive instances in the
training set as an extensional definition of the predicate.
The means that, when synthesizing logic programs, we

expect the training set to contain a complete set of positive

Figure 6. Relational pathfinding of a recursive clause.

examples (e.g., our training set for list reversal contains all
instances for lists of length three or less, using up to three
distinct atoms). Using the training set to evaluate recursive
calls allows relational pathfinding to develop recursive
clauses.

Consider the predicate merge_sort. Suppose we
already have definitions for split and merge, and we have
already learned the base case. If relational pathfinding
uses the instance

merge_sort([4,3,2,1],[1,2,3,4])

it will develop the ground path shown in Figure 6. This
path contains two singleton constants: [4,2] and [2,4].
However, we are able to eliminate both singletons by
adding the relation merge_sort([4,2], [2,4]). Replacing the
constants with variables produces the final, correct rule

merge_sort(A, B) :-
split(A, C, D),
merge_sort(C, E),
merge_sort(D, F),
merge(E, F, B).

6 Related Work
Perhaps the earliest work on overcoming locality problems
in first-order learning was [Vere, 1977], which introduced
the idea of "association chains" composed of determinate
binary relations. This idea appeared ahead of its time,
since there were no first-order learning systems which
could take advantage of it, but it foreshadows both
determinate literals (see below) and relational pathfinding.

Adding determinate literals to a rule is an idea used
by Muggleton and Feng in GOLEM, and later added to
FOIL [Quinlan, 1991]. Determinate literals are literals
which, given the bindings derivable from a positive
instance and prior literals, have only one possible ground
instantiation. After adding all possible determinate literals
(up to a predefined depth limit), learning proceeds
normally. If, by adding the determinate literals, we added
all but one of the relations necessary to cross any local
plateaus or escape any local maxima, we will be able to
learn a correct rule. When learning is complete, excess
determinate literals are discarded.

In theory, any chain of determinate literals can be
found by relational pathfinding. However, in domains
where relational paths are long, using determinate literals
may be more efficient. In other domains, where we cannot
find a chain of determinate literals to cross a local plateau
or escape a local maximum, relational pathfinding will
have the advantage.

Another method for dealing with locality problems is
that of relational clichés, presented in [Silverstein and
Pazzani, 1991]. In this approach, the learning system has
a predefined set of templates describing combinations of
relations which often appear together. For example, the
predicate part-of(x, y) generally appears along with a
definition for part y. The learning system can add entire

templates rather than single relations, thus avoiding some
of the local maxima or plateaus which it might otherwise
encounter. The method of relational pathfinding is more
general than relational clichés since it does not depend on
predefined templates; however, if the predefined templates
are adequate for the learning domain, using relational
clichés will be more efficient.

A domain-specific system for building qualitative
models is MISQ, presented in [Richards, Kraan, and
Kuipers, 1992]. To date, the only general purpose learning
system applied to this problem is GOLEM [Bratko,
Muggleton, and Vars ek, 1991]. GOLEM's performance in
this domain is limited since it requires negative examples
and its definitions of qualitative constraints are incomplete
(e.g., it ignores corresponding values). Both MISQ and
Forte can build qualitative models using only positive
information. Relational pathfinding allows new model
variables to be introduced in a natural way.

7 Conclusion

In this paper we presented a new method, relational
pathfinding, which helps first-order learning systems
escape local maxima and cross local plateaus. It is similar
to the approaches of determinate literals and relational
clichés in that all of these approaches add multiple
relations to a rule. Although each of these methods
addresses the same problem of escaping local maxima,
they are useful in different circumstances. Relational
pathfinding is more general than either of these methods,
but potentially less efficient.

We presented results in three domains in which
relational pathfinding has proven useful. When learning
family relationships, it provides a substantial performance

advantage, requiring many fewer examples to learn
accurate definitions. In qualitative modelling, it allows a
system to learn an accurate model even if behavioral
information on some variables is missing. And in logic
programming, it provides an effective way to learn
recursive clauses. In all of these domains, relational
pathfinding allows the system to overcome the problem of
local maxima and local plateaus while still limiting
combinatorially explosive search.

Acknowledgements
This research was supported by the Air Force Institute of
Technology faculty preparation program, by the NASA
Ames Research Center under grant NCC 2-629, and by the
National Science Foundation under grant IRI-9102926.
Also, our thanks to Michael Pazzani for his helpful
comments on an earlier draft of this paper.

References
I. Bratko, S. Muggleton, and A. Vars ek, "Learning
Qualitative Models of Dynamic Systems," Proceedings of
the Eighth International Workshop on Machine Learning,
pp. 385-388, 1991.

G. E. Hinton, "Learning Distributed Representations of
Concepts," Proceedings of the Eighth Annual Conference
of the Cognitive Science Society, 1986.

B. Kuipers, "Qualitative Simulation," Artificial Intelligence,
29:289-338, 1986.

S. Muggleton and C. Feng, "Efficient induction of logic
programs," Proceedings of the First Conference on
Algorithmic Learning Theory, 1990.

M. J. Pazzani, C. A. Brunk, and G. Silverstein, "A
knowledge-intensive Approach to Relational Concept
Learning," Proceedings of the Eighth International
Workshop on Machine Learning, pp. 432-436, 1991.

M. R. Quillian, "Semantic Memory," Semantic Information
Processing, MIT Press, pp. 227-270, 1968.

J. R. Quinlan, "Learning Logical Definitions from
Relations," Machine Learning, 5:239-266, 1990.

J. R. Quinlan, "Determinate Literals in Inductive Logic
Programming," Proceedings of the Eighth International
Workshop on Machine Learning, pp. 442-446, 1991.

B. L. Richards, I. Kraan, and B. J. Kuipers, "Automatic
Abduction of Qualitative Models," Proceedings of the
Tenth National Conference on Artificial Intelligence (AAAI
1992), 1992.

B. L. Richards and R. J. Mooney, "First-Order Theory
Revision," Proceedings of the Eighth International
Workshop on Machine Learning, pp. 447-451, 1991.

G. Silverstein and M. J. Pazzani, "Relational clichés:
Constraining constructive induction during relational

learning," Proceedings of the Eighth International
Workshop on Machine Learning, pp. 203-207, 1991.

S. A. Vere, "Induction of Relational Productions in the
Presence of Background Information," Proceedings of the
Fifth International Joint Conference on Artificial
Intelligence (IJCAI 1977), pp. 349-355, 1977.

Notes
1For this simple example we disregard the possibility of
using negation, i.e., grandparent(x, y) ← ¬parent(x, y).
2The uncle relationship is completely defined by two paths,
one of length 3 and one of length 4. We illustrate here the
process of finding the shorter of these two paths.
3For simplicity, we show only the direction-of-change and
the sign of each variable at each time point. The complete
behavior includes qualitative magnitudes and dimensional
information. Direction-of-change can be increasing (↑),
decreasing (↓), or steady (). Sign is plus (+), minus (-),
or zero (0).

