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Abstract. This paper describes and evaluates an approach to combining empirical and explanation-based learning
called Induction Over the Unexplained (I0U). IOU is intended for learning concepts that can be partially ex-
plained by an overly-general domain theory. An eclectic evaluation of the method is presented which includes
results from all three major approaches: empirical, theoretical, and psychological. Empirical results show that
IOU is effective at refining overly-general domain theories and that it learns more accurate concepts from fewer
examples than a purely empirical approach. The application of theoretical results from PAC learnability theory
explains why IOU requires fewer examples. IOU is also shown to be able to model psychological data demonstrating
the effect of background knowledge on human learning.
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1. Introduction
1.1. Motivation

Recent research in machine learning has primarily consisted of work on explanation-based
or empirical (similarity-based) methods. Explanation-based methods (Mitchell, Keller, &
Kedar-Cabelli, 1986; DeJong & Mooney, 1986) can learn accurate and efficient concept
definitions from a single example; however, they require a complete and correct domain
theory. Empirical methods (Quinlan, 1986; Michalski, 1983) can learn accurate and efficient
concept definitions from large sets of examples; however, they generally fail to take adequate
advantage of existing domain knowledge. Developing a learning method that combines
explanation-based and empirical techniques has recently emerged as an important area of
research in machine learning (Segre, 1989). The goal of this work is to develop a learning
system that takes advantage of the strengths of both of these general approaches to concept
acquisition.

This paper describes and evaluates such a system called Induction Over the Unexplained
(IOU). Unlike other approaches to combining empirical and explanation-based techniques
that use one method to bias or focus the other (Lebowitz, 1986; Pazzani, 1990; Flann &
Dietterich, 1989), IOU uses each method to learn a different part of the final concept descrip-
tion. Many concepts have both explanatory and nonexplanatory aspects. For example, scripts
for events such as a birthday party or a wedding have goal-directed as well as ritualistic
actions. Concepts for artifacts such as a cup or a building have functionally important features
as well as aesthetic or conventional ones. Animals have some attributes with clear survival
value as well as more obscure features. Diseases have some symptoms that can be causally
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explained by current biological theory as well as others that are simply known to be corre-
lated with the condition. In IOU, explanation-based methods are used to learn the part
of the concept definition that can be explained by an underlying domain theory. Empirical
methods are used to learn the part of the concept definition consisting of unexplained regu-
larities in the examples. Consequently, IOU is useful for acquiring concepts that can be
partially explained by an existing overly-general domain theory. The background knowledge
supplied by the domain theory allows the system to learn accurate concepts from fewer
examples than a purely empirical approach. The empirical component of IOU allows it
to overcome the incompleteness and over-generality of the domain theory and refine its
background knowledge based on experience.

1.2. Evaluation methodology

Evaluation has become an increasingly important topic in machine learning research
(Langley, 1989; Kibler & Langley, 1988). In general, three main methodologies have arisen:

Empirical Evaluation: Implemented learning systems are run on a set of benchmark prob-
lems and data are collected on their performance. Controlled experiments are conducted
to determine the effect of independent variables such as learning algorithm, amount of train-
ing data, and amount of noise or missing values on dependent variables such as predictive
accuracy and runtime (Kibler & Langley, 1988). Prototypical examples include Quinlan
(1986), Fisher (1987), Minton (1988), and Shavlik, Mooney, and Towell (1991).

Theoretical Evaluation: Mathematical analysis is performed on learning algorithms to
determine their computational complexity and sample complexity (i.e., the number of exam-
ples required to learn an accurate concept). Early theoretical work focussed on the learning
in the limit model originated by Gold (1967). Recent research has focussed on the PAC
(probably approximately correct) framework initiated by Valiant (1984), in which it is proven
that if an algorithm is given a sufficient number of examples, with high probability it will
learn a close approximation to the target concept (Haussler, 1988; Kearns, Li, Pitt, &
Valiant, 1987).

Psychological Evaluation: Implemented learning algorithms and human subjects are given
the same learning data and their performance is compared. Work under this approach gen-
erally tries to show that the system exhibits the same relative change in performance over
different tasks or different amounts of training. Prototypical examples include Medin, Wat-
tenmaker, and Michalski (1987), Skorstad, Falkenhainer, and Genter (1987), Roenbloom
and Newell (1987), and Pazzani and Silverstein (1990).

For the most part, the researchers who pursue these different approaches to evaluation
are disjoint and attend different academic conferences, although recently there have been
a few researchers who have evaluated their work in multiple ways, such as employing both
empirical and theoretical methodologies (Flann & Dietterich, 1989; Cohen, 1990; Pazzani
& Sarrett, 1990).

This methodological division is unfortunate since the different evaluation methods are
complementary rather than conflicting. Theoretical analysis generally provides information
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on worst-case, asymptotic behavior and ignores average-case performance and constant
factors. Also, theoretical analysis generally makes simplifying assumptions that may not
be met by real problems. Empirical analysis attempts to address these issues by demonstrating
successful performance of an implemented system on actual problems. However, empirical
work is fundamentally limited by the assumption that results on specific problems are char-
acteristic of general performance on a large class of problems. Psychological analysis, on
the other hand, provides evidence that a system resembles the world’s best-known learning
system. Homo sapiens. Thousands of years of evolution have shaped the human mind to
learn effectively in real-world situations and make a successful trade-off between accuracy
and efficiency. Therefore, evidence that an algorithm exhibits aspects of human learning
is evidence that it is a successful learning strategy. Psychological evaluation can also result
in a greater understanding of human intelligence and contribute to the development of im-
proved educational methods. However, human learning may also exhibit certain biological
quirks and inefficiencies that we do not want our artificial learning systems to emulate.

Consequently, the best way to evaluate a learning system is to look at it from all of these
angles. This paper presents an eclectic evaluation of the IOU method using empirical data,
formal analysis, and the results of psychological simulation. The empirical evaluation shows
that IOU can use an overly-general theory to learn more accurate concepts from fewer ex-
amples than standard empirical learning. The formal analysis shows that IOU runs in linear
time and requires fewer examples to learn a probably approximately correct (PAC) concept
(Valiant, 1984) than a purely empirical approach. Finally, the psychological simulation dem-
onstrates that IOU can model the results of experiments demonstrating the effects of back-
ground knowledge on concept acquisition in humans.

2. The IOU method

The IOU method uses explanation-based techniques to determine as much as possible about
a concept and then uses empirical methods to detect regularities in the unexplainable aspects
of the examples. Features that can be explained by the existing domain theory are identified
and removed from all of the examples. The reduced example descriptions are passed on
to a standard empirical system, which finds additional commonalities and adds them to
the concept definition. A test example must meet the requirements of the domain theory
as well as the empirically learned definition in order to be considered a member of the
concept. This section presents detailed information about the problem IOU addresses and
the learning algorithm it uses.

2.1. Problem definition for IOU

The general problem 10U addresses is theory-based concept specialization as defined by
Flann and Dietterich (1989). The system is assumed to have a domain theory for a generaliza-
tion of the concept to be learned. A definition of the specific problem addressed by IOU
is given in Table 1. The current implementation of IOU employs a feature-based descrip-
tion language that includes binary, discrete, and real-valued attributes. A domain theory
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Table 1. The problem addressed by IOU.

Given:

¢ A set of positive and negative examples of an intended concept, C;.

® A propositional Horn-clause domain theory for an explainable concept, C,, that is a generalization of the in-
tended concept, i.e., C; = C.. An additional restriction is that the correct definition of C; must be expressible
in the form C, A C, where the features referenced in the definition of the unexplanable concept C, are disjoint
from the features referenced in the definition of C, (i.e., the features used in the domain theory).

Find:
¢ A definition for the intended concept that is consistent with the examples and a specialization of the explainable
concept.

is restricted to a set of propositional Horn-clause rules; however, propositions can include
feature value pairs (e.g., COLOR = RED) and numerical thresholds (e.g., LENGTH < 3)
as well as binary propositions (e.g., HAS-HANDLE).

Like other systems that employ overly-general theories (Flann & Dietterich, 1989; Cohen,
1990), IOU is restricted to a certain subclass of theory specialization problems. As described
in Table 1, IOU assumes that the additional features needed to specialize the concept are
disjoint from the features already explained by the domain theory. The relationship between
this restriction and those of other theory specializers is discussed in Section 6.1. We believe
this restriction is appropriate when learning concepts with separate explanatory and nonex-
planatory constraints, such as those introduced as motivation for this work in Section 1.1.
In addition, some psychological justification for this restriction is given in Section 5.

As an example of a problem suitable for IOU, consider the standard example in which
the intended concept is CUP (Winston, 1983). The domain theory is the usual one with
two exceptions. First, it has been made propositional. Second, the explainable concept has
been renamed DRINKING-VESSEL, since the theory cannot actually distinguish between
the concepts CUP, GLASS, MUG, SHOT-GLASS, etc.

STABLE A LIFTABLE A OPEN-VESSEL — DRINKING-VESSEL
HAS-BOTTOM A FLAT-BOTTOM — STABLE

GRASPABLE A LIGHTWEIGHT — LIFTABLE

HAS-HANDLE — GRASPABLE

WIDTH = SMALL A INSULATING — GRASPABLE

HAS-CONCAVITY A UPWARD-POINTING-CONCAVITY — OPEN-VESSEL

Assume the set of examples includes cups, shot-glasses, mugs and cans, as shown in Table
2. The problem is to use the domain theory to learn the explainable features of a cup (FLAT-
BOTTOM, HAS-CONCAVITY, etc.) and to use empirical techniques to learn the nonex-
planatory features (VOLUME = SMALL) that rule out shot glasses and mugs.

2.2. The IOU learning algorithm

A description of the basic IOU algorithm is shown in Table 3. Step 1 simply traverses back
through the rules in the domain theory to find all of the features that can be explained
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Table 2. Examples for learning CUP.

CUP-1 (+) CUP-2 (+) SHOT-GLASS-1 (=) MUG-! (=) CAN-1(-)

HAS-BOTTOM TRUE TRUE TRUE TRUE TRUE
FLAT-BOTTOM TRUE TRUE TRUE TRUE TRUE
HAS-CONCAVITY TRUE TRUE TRUE TRUE TRUE
UPWARD-POINTING TRUE TRUE TRUE TRUE TRUE
LIGHTWEIGHT TRUE TRUE TRUE TRUE TRUE
HAS-HANDLE TRUE FALSE FALSE TRUE FALSE
WIDTH SMALL SMALL SMALL MEDIUM SMALL
INSULATING FALSE TRUE TRUE FALSE FALSE
COLOR WHITE RED WHITE COPPER SILVER
VOLUME SMALL SMALL TINY LARGE SMALL
SHAPE CYLINDER CYLINDER CYLINDER CYLINDER CYLINDER

Table 3. The basic IOU algorithm.

(1) Examine the domain theory to determine the set of explainable features.

(2) Discard any negative examles that are not members of the explainable concept as determined by the domain
theory.

(3) Remove the explainable features from the descriptions of the remaining examples.

(4) Give the “reduced” set of examples to a standard empirical learning system to compute the unexplainable
component of the concept (C,).

(5) Output: C, A C, as the final concept description.

by the domain theory. This set includes all features that are referenced by any proof sup-
ported by the domain theory. The set of explainable features for the CUP example are:

HAS-BOTTOM, FLAT-BOTTOM, HAS-CONCAVITY, UPWARD-POINTING-
CONCAVITY, LIGHTWEIGHT, HAS-HANDLE, WIDTH, and INSULATING.

Step 2 eliminates negative examples that do not satisfy the domain theory. A standard
Horn-clause theorem prover is used to determine if an example can be proven as a member
of the explainable concept. Since the theory is assumed to be overly-general, it already
accounts for the classification of these examples. In the CUP example, the negative CAN-1
instance can be discarded. Although CAN-1 is a stable open-vessel, it is not graspable,
because it is not insulating nor does it have a handle. Therefore it cannot function as a
drinking vessel for hot liquids.

Step 3 removes the explainable features of the remaining examples to allow the empirical
component to focus on their unexplainable aspects. The resulting reduced set of data for
the sample problem is shown in Table 4. It should be noted that since IOU removes all
values of all explained features from the remaining examples, it is sensitive to how infor-
mation is encoded as features. For example, if COLOR is a multi-valued feature and COLOR
= RED is used in the domain theory, then all colors of all examples will be removed.
On the other hand, if RED and BLUE are separate binary features and only one is used
in the theory, then the other one will be treated as an unexplained feature and will be in-
cluded in the reduced data. However, standard inductive systems (e.g., [D3, AQ) are also
affected by such representational choices.
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Table 4. Reduced examples for learning CUP.

CUP-L (+) CUP-2 (+) SHOT-GLASS-1 (-) MUG-1 (-)
COLOR WHITE RED WHITE COPPER
VOLUME SMALL SMALL TINY LARGE
SHAPE CYLINDER CYLINDER CYLINDER CYLINDER

In step 4, the unexplained data are given to a standard empirical system for learning
from examples. We currently use a version of ID3 (Quinlan, 1986) as the empirical compo-
nent. ID3’s decision tree is translated into a set of Horn-clause rules so that the final con-
cept definition is in a uniform representation language. This step is similar to the transla-
tion process described by Quinlan (1987); however, IOU does not prune the resulting rules.
For the sample problem, ID3 generates the simplest description: VOLUME = SMALL.

There are two important aspects to notice about IOU’s use of the empirical component.
First, it can use any empirical system that supports the description language used by the
overall system. Even connectionist, genetic, or instance-based learning algorithms could
be used; however, in these cases, the final concept would not be represented in a uniform
language. Second, the amount of data (number of features and number of examples) given
to the empirical component is reduced by the explanation-based component. This decreases
computational complexity and helps focus the empirical component.

The final step of IOU simply combines the explanatory and nonexplanatory constraints
into a final concept definition. For the example, this produces the following definition:

DRINKING-VESSEL A VOLUME = SMALL — CUP

New examples are classified by using the domain theory to determine if they meet the ex-
planatory constraints and using the empirically learned definition to determine if they meet
the nonexplanatory constraints. It is interesting to note that when ID3 is run on the data
in Table 2, the extra negative example causes COLOR to be the most informative feature,
and the system produces the following rule:

COLOR = RED Vv (COLOR = WHITE A HAS-HANDLE) —» CUP

ID3 would clearly need many more examples to learn the correct concept.

There are two special cases that arise in step 5 of the algorithm. The first case occurs
when all of the training examples are negative. Many empirical systems, like ID3, return
the null concept in this case, i.e., all test examples are classified as negative. If the null
concept is conjunctively combined with the explanatory concept, the result is the null con-
cept. Since this would completely destroy the effectiveness of the domain theory, IOU does
not alter the concept at all in this case, i.e., the learned definition is simply the explanatory
concept. A better solution would be to use an empirical system that does not return the
null concept when given all negative examples. One alternative would be to return the nega-
tion of the most-specific conjunctive generalization of the negative examples.

The second special case is when the reduced data passed to the empirical learner is incon-
sistent, i.e., there are both positive and negative examples with the same reduced description.
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This can only happen when there is noise in the data or when the intended concept does
not satisfy the assumption that the features in C, and C, are disjoint. In order to handle
this case, the version of ID3 used in IOU includes a simple noise-handling technique. When
ID3 has partitioned the data to the point that it contains only examples with the same descrip-
tion but different classes, it creates a leaf and labels it with the most common class in
the partition. Other techniques for handling noise in ID3 could also be used (Quinlan,
1986; Mingers, 1989).

The algorithm in Table 3 is for learning a single concept definition. If the data consist
of multiple, mutually-exclusive categories, then multiple trials are run to learn a different
definition for each category. In each trial, the examples of one category are treated as positive
examples and the examples of all other categories are treated as negative. These data are
then given to the algorithm in Table 3 in order to learn a definition for the current category.
Unfortunately, this approach may learn overlapping definitions (Dietterich, London, Clark-
son, & Dromney, 1982). In IOU, this problem is resolved in the following manner. If the
learned definitions classify a test example in more than one category, then the example
is assigned to the matching category with the most examples in the training set. If an ex-
amples does not match the definition of any category, then it is assigned to the overall most
common category in the training set.

In its current implementation, IQU is a batch learning system; however, the basic algorithm
is easily made incremental if the empirical component is itself incremental. In incremental
mode, each time a new example is encountered it is either discarded as an unprovable nega-
tive example or its explainable features are removed and the remaining features are passed
along to the empirical component, which incrementally forms the unexplainable part of
the definition. For example, an incremental system like ID5 (Utgoff, 1989) could be used
as the empirical learner.

3. Theoretical analysis of IOU

This section presents a formal analysis of the sample complexity and computational com-
plexity of IOU. First, we use existing results in learnability theory to show that the lower
bound on the number of examples required to learn a PAC concept definition with JOU
is less than with a purely empirical learner. Second, we show that the computational com-
plexity of IOU is linear assuming the empirical component has linear complexity.

3.1. PAC analysis of 10U

This section presents theoretical evidence that IOU learns from fewer examples than a purely
empirical approach. The analysis uses existing results in PAC learnability, a theoretical
framework for analyzing learning algorithms originated by Valiant (1984). PAC learnability
theory is primarily concerned with determining the number of examples required by a learn-
ing algorithm to guarantee that with probability 1—4& the concept description produced by
the algorithm has an error rate of at most e. The basic approach taken in this section is to
show that since IOU can assume that it already has part of the correct concept description,
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it explores a smaller hypothesis space when learning the remaining part of the concept
and therefore can learn a PAC concept description from fewer examples.

Since we do not want our analysis to depend on any particular empirical learning algo-
rithm, we examine information-theoretic lower bounds on the number of examples required
by any empirical learning algorithm to produce an answer that is PAC. In this regard, we
use the following result:

TueoreM 1 (Ehrenfeucht, Haussler, Kearns, & Valiant, 1989). Any PAC learning algorithm
Jor a non-trivial' hypothesis space H must use sample size

Q [1 [m - VCdim(H)D .
€ b

The Vapnik-Chervonenkis dimension (VC-dimension or VCdim) is a measure of the expres-
siveness of an hypothesis space (Haussler, 1988). Specifically, we say that a set of hypotheses
H sharters a set of examples E if, for every possible way of labeling the elements of E
positive or negative, there exists an hypothesis in H that will produce that labeling. The
VC-dimension is defined to be the size |E| of the largest set of examples such that H shatters
E. It is easily shown that VCdim(H) < logy| H| (Haussler, 1988).

For the featural description language used by IOU, let H, denote the space of hypotheses
considered by the empirical learner given all of the features used to describe examples
and let ¢, represent the desired maximum error rate for the definition learned for the in-
tended concept. By simple instantiation of Theorem |, the total number of examples required
by a purely empirical learning algorithm (mgp; ) is given by

meg = 0 [Gi [m ; + VCdim(Ha)D .

With respect to IOU, let H, denote the space of hypotheses considered by the empirical
learner given only the unexplained features (i.e., features not referenced by the overly-
general domain theory) and H, denote the space of hypotheses over only the explained
features. Recall that a critical assumption of IOU is that the concept can be represented
in the form C, A C, where the explained features in C, the unexplained features in C,
are disjoint. Since the domain theory is assumed to represent a correct description of the
explanatory part C, € H,, the goal of the empirical component of IOU is to find a descrip-
tion C, € H, for the unexplained aspects such that C, A C, is a PAC description of the
intended concept. If the desired maximum error rate of C, is ¢,, then the number of exam-
ples (m,) required to learn C, is given by

m, = Q [el [m ; + VCdim(Hu):D .

Since only those examples that satisfy the explanatory component, C,, are actually
passed along to the empirical component of IOU, only a fraction of the overall examples
are available for learning C,. Let « be the fraction of examples that satisfy the explanatory
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component (i.e., the fraction of the examples that are members of the explainable concept).
Then the total number of examples required by IOU (m;oy) is given by

— mu
My = o

The overall error rate of C, A C, is given by the probability that an example is a member
of the explainable concept times the error rate for members plus the probability that an
example is nor a member of the explainable concept times the error rate for nonmembers.
Assuming the explanatory component is correct, all nonmembers are correctly, all non-
members are correctly classified as negative examples since they do not meet the func-
tional requirements. Members of the explainable concept, on the other hand, are correctly
classified when they are classified correctly by the nonexplanatory component C,. There-
fore, the overall error rate is given by

€ = e, + (1 — )0 = ae,.

Substituting for m, and ¢, in the above equation for m, and solving for my, we get

mpoy = [el |:ln ; + VCdim(H,,)}] )

This simple calculation shows that although IOU passes along only a fraction of the train-
ing examples to the empirical component, this is canceled by the fact that the error rate
for C, is only a fraction of the overall error rate. If IOU did not reduce the number of
examples used to learn C,, even these simple calculations would be unnecessary and the
result would follow directly from the fact that the empirical component of IOU explores
a smaller hypothesis space.

The above bounds on mgg; and ;5 demonstrate that the minimum number of examples
required by a purely empirical system and by IOU differ only by the VC-dimension of their
hypothesis spaces (H, for SBL and H, fo IOU). Since for any non-trivial domain theory
the hypothesis space explored by IOU uses only a subset of the features used by SBL,
VCdim(H,) < VCdim(H,) and therefore IOU requires fewer examples to learn a PAC con-
cept description.

By examining specific hypothesis spaces, we can obtain tighter results. For purely con-
junctive concepts on n binary features, VCdim(H) = n (Ehrenfeucht et al., 1989). Since
the lower-bound in Theorem 1 is also tight within a constant factor for the hypothesis space
of purely conjunctive concepts (Ehrenfeucht et al., 1989), if the number of unexplained
features is u, then

Moy _ =0 VCdlm(Hu)

Mgpr VCdlm(H )
In other words, the ratio of the number examples required by IOU to the number of exam-
ples required by SBL is proportional to the percentage of unexplained features.
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The hypothesis space kKCNF allows for a limited amount of disjunction. A kCNF expres-
sion is a conjunction of any number of clauses, where each clause is a disjunction of at
most k literals. It is important to notice that for kKCNF (as for pure conjunctions) if C, € H,
and C, € H,, then C, A C, € H,. For kCNF concepts on n features, VCdim(H) = Q(n*)
(Ehrenfeucht et al., 1989). Since the lower-bound in Theorem 1 is also tight within a con-
stant factor for kCNF (Ehrenfeucht et al., 1989),

miou _ g (VCdzm(Hu) S [[ J ]

mgpr, VCdim(H,)
Therefore, the advantage of IOU is more pronounced for KCNF. For example, even if 90%
of the features are unexplained and k = 5, (u/n)* = 0.59.

Finally, consider the case of learning simple conjunctive concepts where the number
of atoms in the conjunction is at most s, where s < n. In other words, there are a large
number of irrelevant features. For such concepts, VCdim(H) = Qs log(n/s)) (Haussler,
1988). For IOU, this means that some number e of the s relevant features are already known
and explained by the domain theory and the goal of the empirical component is to learn
the remaining s — e relevant features from the ¥ = n — e unexplained features. This is
simply a reduced instance of the problem of learning a simple conjunctive concept and
therefore:

Moy _ ¢ [VCdim(Hu) o [(s — e)log((n — e)l(s — &)
Mmgpr, VCdim(H,) s log(n/s)

If s (and therefore ¢) is held constant while n increases, then this equation reduces to
muoy!mspr, = log(n)llog(n) = O(1). In this case, the advantage of IOU is fixed and does
not scale with increasing number of features. However, consider holding s to a fixed frac-
tion of n (s = fn). This case represents scaling the entire problem instead of fixing the
size of the concept. Under this assumption,

Moy _ g (Bn — e)log((n — &)/(Bn — e))j -0 [n - e]
mspy Bn log(n/Bn) n ’

Since n — e = u, this is the same ratio obtained for pure conjunctive concepts.

3.2. Complexity analysis of 10U

This section analyzes the computational complexity of the IOU algorithm shown in Table
3. We simply demonstrate that each step in the algorithm effectively takes linear time and
therefore the overall complexity is linear. Step 1 simply searches back through the rules
in domain theory to find all of the features it references. This process is clearly linear in
the size of the domain theory. Step 2 attempts to prove that each negative example is a
member of the explanatory concept according to the domain theory. Since theorem proving
with a propositional Horn-clause theory can be done in linear time (Dowling & Gallier,
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1984), step 2 is also linear in the size of the domain theory and the number of examples.
Step 3 simply removes a subset of the features from a subset of the examples; this is clearly
linear in the size of the data set. Step 4 calls an empirical learning system (ID3) on the
reduced data set. The worst-case time complexity of ID3 is O (en?) where e is the number
of examples and n is the number of features (Utgoff, 1989). However, empirical evidence
indicates that ID3’s average-case complexity is actually linear in the number of features
rather than quadratic (Shavlik et al., 1991). Therefore, the complexity of step 4 is effectively
linear, although in general it depends on the complexity of the empirical learner. Step 5
simply combines the two parts of the final definition in constant time.

4. Empirical analysis of IOU

This section presents empirical evidence that IOU can refine overly-general domain theories
and learn from fewer examples than a purely empirical system. Two types of experiments
were conducted. First, artificial data were constructed for concepts that were specializations
of concepts defined by simple domain theories. Second, overly-general theories were gener-
ated for natural data sets by randomly deleting parts of correct theories that were generated
inductively. In both cases, learning curves were generated to compare the performance
of a purely empirical learner (ID3) to IOU given an overly-general domain theory. Since
IOU uses ID3 as its empirical component, it should be noted that this is the same as com-
paring IOU with and without an initial domain theory. The primary hypothesis being tested
in these experiments is that, when IOU is given an initial overly-general domain theory,
it learns a more accurate concept from fewer examples than a purely empirical method.

4.1, Experiments on artificial data

In this experiment, artificial data was used to test IOU’s ability to specialize the theory
of drinking vessels introduced in Section 2.1. The following specialized theory of cups
was created and used to generate examples of the intended concept:

DRINKING-VESSEL A VOLUME = SMALL A SHAPE =
(HEMISPHERICAL v CYLINDRICAL v CONICAL) — CUP

The entire instance space was generated by forming the Cartesian product of the domains
for all of the features. All of the features were binary except for WIDTH {SMALL,
MEDIUM, LARGE}, SHAPE {HEMISPHERICAL, CYLINDRICAL, CONICAL,
CUBICAL}, VOLUME {TINY, SMALL, LARGE}, and COLOR {CLEAR, WHITE,
COPPER]}. The total instance space consisted of 13,824 examples, 252 of which qualified
as DRINKING-VESSELs and 63 of which qualified as CUPs. The theory for cups was
used to separate these instances into positive and negative examples.

From this large set of examples, disjoint training and tests sets were created that con-
trolled for the percentage of positive examples (e.g., cups) as well as the percentage of
negative examples that satisfied the overly-general domain theory (e.g., drinking-vessels
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Figure 1. Learning curves for cup data.

that are not cups). Of course, the distribution was kept the same across training and test.
Learning curves were generated by performing batch training on increasingly larger frac-
tions of a set of training examples and repeatedly testing predictive accuracy on the same
disjoint test set. The final results were averaged over 30 random selections of training and
test sets.

Figure 1 shows learning curves for the cup data in which the training and test set con-
tained 50% cups and 75% drinking-vessels (i.e., 50% of the negative examples are provable
by the original theory). A test set consisted of 75 novel examples. When given zero train-
ing examples, IOU uses its initial theory and ID3 picks a class at random. The results
show that IOU starts with a 25 percentage point advantage since it always correctly classifies
the 25% of the examples that are not drinking-vessels. It maintains this advantage through-
out training, although by 30 training examples the difference has narrowed to 5 percentage
points. A separate one-tailed t-test for paired differences was run on each pair of plotted
points and indicated that all differences between pairs of points on the learning curve were
statistically significant (p < .005). The narrowing of the difference between ID3 and IOU
is to be expected, since after enough training examples, both systems should converge to
100% correct, since both maintain consistency with all training examples and the hypothesis
space is finite (Haussler, 1988). A similar experiment using an overly-general theory for
PARTY to learn the specialized concept BIRTHDAY-PARTY produced similar results
(Mooney, Ourston, & Wu, 1989).

The seemingly small (5 %) difference in accuracy after 30 examples does not adequately
reflect the difference between the results of the two systems. In one run chosen at random,
10U learned the completely correct concept after 30 training examples, while the concept
learned by ID3 was:
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(SHAPE = CYLINDRICAL A VOLUME = SMALL) VvV (HAS-CONCAVITY A
UPWARD-POINTING-CONCAVITY A SHAPE = CONICAL A VOLUME = SMALL) v
(SHAPE = HEMISPHERICAL A VOLUME = SMALL) — CUP

Although this definition had an accuracy of 92%, it fails to reference many important features
such as HAS-BOTTOM, LIGHTWEIGHT, HAS-HANDLE, INSULATING, etc., and most
of the features it does reference are strangely distributed across different disjuncts.

The distribution of classes in the training and test data has certain predictable effects
on the relative accuracy of IOU and ID3. If the percentage of examples that are drinking-
vessels is increased, the results remain qualitatively the same; however, the accuracy of
the initial theory, and therefore the gap between IOU and ID3, decreases. This is because
the initial theory is guaranteed to correctly classify non-drinking-vessels as non-cups, and
therefore decreasing the number of non-drinking-vessels decreases its accuracy. On the other
hand, if the percentage of examples that are cups is increased while holding the percentage
of drinking-vessels constant, the accuracy of the initial theory, and therefore the gap be-
tween IOU and ID3, increases. This is because the initial theory is overly-general and guar-
anteed to correctly classify all cups as positive examples.

4.2, Experiments on natural data

An ideal test of IOU would involve an actual domain theory acquired from an expert or
a text-book and a large corpus of natural data. Unfortunately, there are currently very few
natural data sets together with imperfect domain theories. The few that do exist have theories
that are overly-specific (Towell, Shavlik, & Noordeweir, 1990) or otherwise unsuitable for
10U (Flann & Dietterich, 1989; Cohen, 1990) (see Section 6.1 for a discussion of different
types of overly-general theories). Consequently, overly-general theories were created for
two existing natural data sets by using inductive learning to learn an initial set of rules
and then deleting antecedents from these rules to make them overly-general. The two data
sets are briefly described below.

The soybean data set has 17 different soybean diseases described by 50 features, such
as weather, time of year, and descriptions of leaves and stems. Each disease has 17 exam-
ples, for a total of 289 examples. This domain was popularized by Michalski and Chilausky
(1980); however, the exact data are those used by Reinke (1984). The full soybean data
set used here should not be confused with the much simpler, purely conjunctive, four-
disease data used to test clustering systems (Stepp, 1984; Fisher, 1987).

The audiology data set (Porter, Bareiss, & Holte, 1990) consists of 226 cases of hearing
disorders from the Baylor College of Medicine. There are 24 categories of hearing disorders
and 68 features involving reported symptoms and the results of various hearing tests. Most
of the features are binary and the remaining ones are discrete.

4.2.1. Experiment 1: Comparing learning rates

This first experiment tests the hypothesis that IOU learns a more accurate concept from
fewer training examples when given an overly-general theory. Overly-general theories were
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artificially created and the effect of these theories on IOU’s learning rate was determined.
ID3 was trained on the complete data sets for both the soybean and audiology domains and
the resulting trees were translated into rules. The result is a “‘completely correct domain
theory” with respect to the data. For the soybean data, this produced 116 Horn-clause rules
with an average of 6.8 rules (disjuncts) per catagory and 3.2 antecedents per rule. For the
audiology data, it produced 104 Horn-clause rules with an average of 4.3 rules (disjuncts)
per category and 5.3 antecedents per rule. The rules for each category were then generalized
by randomly deleting 20% of the features referenced in the antecedents of the rules for
that category. If a feature was selected for deletion, any antecedent that referenced any
of its values was removed. The accuracies of the resulting theories were 50% for soybean
and 39% for audiology.

An example should help clarify the theory generalization process and the form of the
final domain theory. Below are the initial rules for the audiology disorder OTITIS-MEDIA
produced by ID3 when given all 226 examples.

BONE = UNMEASURED A TYMP = C A 7 AGE-GT-60 — OTITIS-MEDIA

SPEECH = VERY-POOR A TYMP = B A 7" AGE-GT-60 — OTITIS-MEDIA

SPEECH = NORMAL A TYMP = B A 7 AGE-GT-60 — OTITIS-MEDIA

O-AR-C = ABSENT A AR-U = ELEVATED A - FLUCTUATING A AIR = MILD
A 2 NOISE A TYMP = A A = AGE-GT-60 — OTITIS-MEDIA

By randomly deleting two of the nine features appearing in the rules, TYMP and AR-U,
these rules were generalized to:

BONE = UNMEASURED A - AGE-GT-60 — OTITIS-MEDIA

SPEECH = VERY-POOR A - AGE-GT-60 — OTITIS-MEDIA

SPEECH = NORMAL A - AGE-GT-60 — OTITIS-MEDIA

O-AR-C = ABSENT A - FLUCTUATING A AIR = MILD A -NOISE
A " AGE-GT-60 — OTITIS-MEDIA

Similar generalizations are performed on the rules for all of the other categories.

Although this process is guaranteed to create an overly-general theory, it will not necessar-
ily create a theory meeting the constraint that the explainable and unexplainable features
are disjoint. For example, suppose the correct theory is:

XAY > C
Z—-C

If the feature X is deleted to produce the overly-general theory

the theory cannot be corrected by conjoining X to C,, since X occurs in only one disjunct
of the original theory. However, this problem did not prevent IOU from being able to fit
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the training data adequately. It was always able to receive 100% training accuracy on the
soybean data, and training accuracy on the audiology data averaged at least 96% for all
of the various sizes of training sets that were tested.

IOU was given the resulting overly-general theories and its performance was compared
to ID3’s. As in the experiments on artificial data, learning curves were generated by per-
forming batch training on increasingly larger fractions of a set of training examples and
repeatedly testing predictive accuracy on the same disjoint test set. Each soybean test set
contained 89 examples, while the audiology test sets contained 76 examples. The final results
were averaged over 30 random selections of training and test sets.

Figure 2 shows learning curves for the soybean and audiology data sets. In both cases,
IOU substantially increased the accuracy of the original theory and maintained its advantage
over ID3. At each point plotted on the learning curves, the difference between IOU and ID3
is highly significant according to a single-tailed t-test for paired differences (p < .0005).

On multi-category tasks like the soybean and audiology domains, there is an additional
difference between IOU and ID3 that may be important. IOU learns separate rule sets for
each category (see Section 2.2) while ID3 learns a single decision tree that discriminates
all of the categories. Quinlan (1986) speculated that learning a separate decision tree for
each category may give more accurate results. Therefore, we also tested a version called
ID3-SC (single class) that learns a separate decision tree for each category using the same
approach to multi-category data used in IOU. Figure 2 also shows the performance of this
system. On the soybean data, ID3-SC does significantly better than ID3 (p < .05 for all
points except 0) but still significantly worse than IOU (p < .0005 for all points). On the
audiology data, ID3-SC does significantly better than ID3 for smaller amounts of training
data (p < .025 for 10 and 20 examples); however, it always does significantly worse for
larger amounts (p < 025 for 80, 110, and 150 examples); however, it always does significantly
worse than IOU (p < .0005 for all points). With regard to decision-tree induction, these
results support the benefits of learning a separate decision tree for each category, at least
for small amounts of training data. It may also help explain why Shavlik et al. (1991) found
that ID3 performed worse than connectionists methods on the soybean data and on small
amounts of training data in general and suggests that ID3-SC would be more competitive
in these situations.

Another way of measuring the advantage IOU gets from its initial overly-general theory is
by examining the additional number of examples required by a purely empirical system to
obtain the same level of performance. The learning curves for the soybean data show that
10U’s accuracy after 100 examples is about the same as ID3-SC’s accuracy after 200 exam-
ples. Therefore, IOU’s initial theory is giving it a ‘100 example advantage’ at this point.
10U also shows about a 100 example advantage™ on the audiology data after 50 examples.

As an example of the refinements made by IOU, consider the unexplanatory component
learned for OTITIS-MEDIA (the audiology category discussed earlier) after 150 training
examples:

AR-U = ELEVATED A TYMP = C = C,
AR-U = NORMAL A TYMP = C —» C,
AR-U = UNMEASURED A TYMP = C - C,
TYMP = B = C,
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Figure 2. Learning curves for soybean and audiology data.

R.J. MOONEY

I0U quite nicely re-introduces the two features deleted from the original “‘correct” theory
and even uses all of the original values; however, the actual logical combination is somewhat
different. It should be noted that the only unmentioned value for AR-U is ABSENT, and
that TYMP has four other values besides B and C.
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4.2.2. Experiment 2: Varying the levels of over-generality and disjoininess

A couple of issues raised by the first experiment concern IOU’s sensitivity to aspects of
the initial theory such as the degree of overly-generality and the degree to which the dis-
jointness assumption is violated. This section presents empirical results on how these
parameters affect IOU’s predictive accuracy. The hypothesis is that IOU’s performance
degrades gracefully as the theory is made increasingly overly-general and as the disjoint-
ness assumption is increasingly violated.

First, the methodology from Experiment 1 was repeated while varying the percentage
of features randomly deleted from the complete theory generated by ID3. The fraction of
the features that are deleted is called the level of over-generality. The size of the training
and test sets were fixed at 75 and 100 examples, respectively, and the results were averaged
over 30 trials. Each trial used a different randomly-generated overly-general theory, train-
ing set, and test set.

The results are presented in Figure 3. As would be expected, IOU’s accuracy starts at
100% with the complete theory and asymptotically approaches the performance of ID3-SC
as the number of deleted features is increased. When all of the features are deleted from
the theory (over-generality level of 1.0), IOU behaves exactly like ID3-SC, since there are
no explainable features and all of the data for each category are passed along to ID3. The
slight fluctuations in the performance of ID3 and ID3-SC are due to randomly breaking
ties in the ID3 splitting criterion.

Second, the methodology from Experiment 1 was repeated while varying the amount
of overlap between the explainable and unexplainable features. As in previous experiments,
the features to be completed deleted from the theory were randomly selected given the
desired level of over-generality. However, when each occurrence of a chosen feature was
about to be deleted, with a certain probability (called the level of overlap) a random antece-
dent in the same rule was deleted instead. Consequently, when the level of overlap is 1.0,
an equivalent number of antecedents are simply deleted at random from the initial theory.
Therefore, changing this parameter allows one to measure IOU’s sensitivity to increasing
violations of the disjointness assumption. As in the experiments with level of over-generality,
the size of the training and test sets were fixed at 75 and 100 examples, respectively, and
the results were averaged over 30 trials. The level of over-generality was fixed at the inter-
mediate value of 0.2.

The results are presented in Figure 4. On the soybean data, increasing the level of overlap
only slightly degrades the performance of IOU. IOU consistently remains significantly better
than both ID3 and ID3-SC. On the audiology data, on the other hand, the performance
of IOU gradually degrades almost to the level of ID3 (it is not significantly better past
an overlap level of 0.5). The difference between the soybean and audiology results can
be explained by the fact that the soybean data have more redundant features. Results by
Shavlik et al. (1991) show that randomly dropping up to half of the features in the soybean
data does not significantly affect the performance of several inductive algorithms, while their
performance on audiology degrades approximately linearly as more features are dropped.
When there are redundant features, it is likely that any information present in the explanatory
features removed by IOU is repeated in the non-explanatory features passed along to the
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Figure 3. The effect of the level of over-generality.

inductive component. Therefore, when there are enough redundant features, IOU is ex-
tremely robust with respect to the disjointness assumption; otherwise its performance de-
grades gradually as this assumption is violated.

4.2.3. Experiment 3: Using an initial theory independent of the test data

One possible objection to the methodology in the previous experiments is that IOU is indi-
rectly getting information about the test data since it is using a corrupted version of a theory
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Figure 4. The effect of the level of feature overlap.

generated from the entire data set. Although this is true, it somewhat misses the point.
The goal of knowledge-base refinement is to take advantage of information supplied in the
form of approximate rules as well as specific data. If IOU can be shown to benefit from
overly-general rules, it is demonstrating an ability to successfully perform knowledge-base
refinement, regardless of where the rules came from. It is also important to realize that,
compared to data, rules are a very compact and efficient way to transmit information from
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one intelligent agent to another. The overly-general theory for audiology contains 428 feature-
value pairs, less than 3% of the 15,368 feature-value pairs in the audiology data set.

However, in order to gauge the effect of this methodological bias, a final experiment
similar to Experiment 1 was run with completely independent test data. The hypothesis
is that using a theory independent of the test set will not invalidate the improved learning-
rate of IOU observed in Experiment 1. In each trial, 10% of the examples were set aside
purely for testing. The remaining 90% of the examples were used to create a theory using
ID3. This theory was then randomly generalized as before using a level of over-generality
of 0.2. Consequently, as in Experiment 2, a different overly-general theory was used in
each of the 30 trials. Unfortunately, the resulting theories are not guaranteed to be overly-
general with respect to the test examples, since they are completely independent. On average,
the resulting theories were overly-specific on 5.7% of the soybean test examples and on
160% of the audiology test examples. Consequently, IOU is at a distinct disadvantage in
this experiment, since it only specializes the theory and will never be able to classify some
of the test examples correctly.

The results are presented in Figure 5. The results are qualitatively the same as before
except that the over-specificity of the initial theory decreases the size of the gap between
IOU and ID3/ID3-SC and it eventually disappears after a sufficient number of examples.
By 95 examples, IOU is no longer significantly better than ID3-SC on the soybean data,
and by 110 examples it is no longer significantly better than ID3 on the audiology data.
Overall, the quality of the results is only affected by as much as might be expected by
the degree of over-specificity of the initial theory. Consequently, this experiment verifies
that the results in Experiment 1 were not simply an artifact of the dependence of the initial
theory on the test data.

5. Psychological analysis of IOU

A number of recent psychological studies have focussed on the effect of prior knowledge
on concept learning (Murphy & Medin, 1985). In particular, a couple of recent experiments
are directly relevant to interpreting IOU as a model of human learning. First is an experi-
ment by Ahn and Brewer (1988) that motivated the development of IOU by demonstrating
that subjects learn explanatory and nonexplanatory aspects of a concept separately. Second
is an experiment by Wisniewski (1989) demonstrating that subjects learn different concepts
from the same examples depending on their background knowledge. The second part of
this section shows that IOU can successfully model the results of this experiment.

5.1. Ahn and Brewer’s Motivating Experiment

Some recent experiments by Ahn and Brewer (1988) were one of the original motivations
behind the development of IOU. These experiments were designed to follow up some pre-
vious experiments by Ahn, Mooney, Brewer, and DeJong (1988) that investigated people’s
ability to use explanation-based learning to learn a plan schema from a single instance.
The original experiments revealed that, like an explanation-based system, human subjects
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Figure 5. Learning curves with an independent initial theory.

could acquire a general plan schema from a single specific instance. The follow-up experi-
ments explored subjects’ ability to learn event schemata that contain both explainable and
unexplainable (conventional) components after receiving only a single example, and after
receiving multiple examples. For example, one of the schemata used in the experiments
is the potlatch ceremony conducted by American Indian tribes of the Northwest. If one
has the appropriate knowledge regarding the goals and customs of these Indians, many
aspects of the potlatch ceremony can be explained in terms of a plan to increase the social
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status of the host. However, there are also a number of ritualistic features of the ceremony
that cannot be explained in this manner.

The results of this experiment indicated that the explainable aspects of the potlatch cere-
mony were acquired after exposure to only a single instance, while the nonexplanatory
aspects of the ceremony were only acquired after multiple instances were presented. This
supports the view that people use different learning mechanisms to acquire these different
aspects of a concept, as in the IOU method. Subjects were also asked to rate their confi-
dence in their assertions that a component is a part of the general ceremony. The subjects
confidence ratings for explanatory components were significantly higher than for nonex-
planatory ones after both one and two instances. Also, multiple examples increases sub-
jects’ confidence and accuracy with respect to nonexplanatory components but not with
respect to explanatory ones. This suggests that, like IOU, people maintain separate explana-
tory and nonexplanatory components in their representation of concepts.

5.2. Modelling Wisniewski’s experimental results with 10U

This section demonstrates IOU’s ability to model the specific results of some additional
psychological experiments exploring the effect of background knowledge on concept learn-
ing (Wisniewski, 1989). It is important to note that IOU was not specifically designed to
simulate these results, but rather the basic method was already developed when the author
learned of the results of this experiment. In Wisniewski’s experiment, two groups of sub-
jects performed a standard learning-from-examples task. Both groups received the same
examples, but one group, the function group, was told the functions of the two categories
to be discriminated and the other, the discrimination group, was not. For example, the
function group was told that one category was used for killing bugs and the contrast category
was used for wallpapering. Examples were described by a number of features. A particular
feature value could be either predictive or nonpredictive of a particular category. In the
training set containing 15 examples of each category, all examples containing a predictive
feature value of a category were members of that category and 80% of the category members
had the predictive feature value (the other 20% were missing a value for this feature). Non-
predictive feature values occurred equally often in both categories. A feature value was
also core or superficial. A core feature value was relevant to a category’s function, while
a superficial one was not. For example, ‘“‘contains poison” was a core feature value of the
category whose function was “for killing bugs,” while “manufactured in Florida” was super-
ficial. Each category contained three superficial feature values (two predictive and one
nonpredictive) and two core feature values (one predictive the other nonpredictive). The
superficial-nonpredictive feature value of a category was the core-nonpredictive feature
value of its contrast category. Each training example also had a couple of extra features
with random values. Table 5 shows the different types of features for two contrasting cate-
gories used in the experiment.

After learning the training data, subjects were given 10 test examples of each category.
Superficial-core* test examples contained the two superficial-predictive feature values of
the category and the two core feature values of the contrast category. Core examples con-
tained just the core feature values of the category, while superficial examples contained
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Table 5. Different feature types for experimental categories.

Mornek Plapel

Function: for killing bugs Function: for wallpapering

sprayed on plants C-P

contains poison C-NP

contains a sticky substance S-NP
stored in a garage S-P
manufactured in Florida S-P

sprayed on walls C-P

contains poison S-NP

contains a sticky substance C-NP
stored in a basement S-P
manufactured in Ohio S-P

C-P: core predictive
S-P: superficial predictive

C-NP: core nonpredictive
S-NP: superficial nonpredictive

Table 6. Examples of test items for Mornek.

superficial-core*
stored in a garage S-P
manufactured in Florida S-P
contains a sticky substance C-NP*
sprayed on walls C-P*
best if used within 1 year R

superficial
stored in a garage S-P
manufactured in Florida S-P
best if used within 1 year R
came in a 16-ounce container R

core
contains poison C-NP
sprayed on plants C-P
best if used within 5 years R
came in a 32-ounce container R

superficial-core
stored in a garage S-P
manufactured in Florida S-P
contains a sticky substance S-NP
contains poison C-NP
sprayed on plants C-P
best if used within 1 year R

S-P: superficial predictive
C-P: core predictive

S-NP: superficial nonpredictive
C-NP: core nonpredictive

C-NP*: core nonpredictive (of
contrast category)

C-P*: core predictive (of contrast

category)
R: random

just the superficial-predictive feature values. Core-superficial examples contained all of
the core and superficial feature values. Each test example also had a couple of random
feature values. The test examples for the Mornek category are shown in Table 6.

Subjects in both groups were asked to rate their confidence in the category of each test
example on a scale of 1 to 7, where 1 was most confident for the “‘wrong” category and
7 most confident for the “right” category. In general, the results demonstrated that subjects
in the function group attributed more relevance to the core feature values while the discrimi-
nation group relied more heavily on superficial predictive features (see Table 7). However,
the function group also made some use of superficial-predictive features values, indicating
they were using a combination of empirical and explanation-based techniques.

In the simulation, IOU was used to model the performance of the function group and
a standard empirical algorithm was used to model the discrimination group. Simple intui-
tive domain theories were constructed for connecting core feature values to category mem-
bership. For example, IOU’s overly-general theory for Mornek is given below:
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CONTACT-BUGS A DEADLY — KILLS-BUGS
CONTAINS-POISON — DEADLY

ELECTRIC-SHOCK — DEADLY

SPRAYED-ON = PLANTS — CONTACT-BUGS

EMITS-LIGHT A LOCATION = OUTDOORS — CONTACT-BUGS

Unfortunately, ID3 is not a good algorithm for modelling human empirical learning. For
the purpose of this simulation, a particular problem is that it builds a minimum discrimi-
nant description rather than a characteristic one. Therefore, a standard most-specific-
conjunctive (MSC) learning algorithm (Haussler, 1988) was used as the empirical system
and as the empirical component of IOU. Early experiments by Bruner, Goodnow, and Austin
(1956) indicated that subjects frequently use the MSC strategy when learning concepts from
examples. This algorithm simply forms the conjunction of all feature-value pairs present
in all of the positive examples. In order to accommodate missing features, only features
that appear with different values in different positive examples are actually deleted from
the most-specific conjunctive description. This has the same effect as replacing missing
features with their most probable value given the class (Quinlan, 1986) before forming
the MSC description.

In this simulation, IOU also uses standard explanation-based techniques to operationalize
the explanatory component based on the given examples in order to make matching the
resulting description easier. For example, KILLS-BUGS is operationalized to SPRAYED-
ON = PLANTS A CONTAINS-POISON. Consequently, both IOU and MSC form the
most-specific conjunctive description for each category; however, IOU’s definition is sepa-
rated into explanatory and nonexplanatory features. For example, instances of Mornek have
each of the features shown in Table 5 or they are missing a value for these features. However,
they have differing values for the two other features. Therefore, the MSC description for
this category is (explanatory features are in bold):

SPRAYED-ON = PLANTS A CONTAINS-POISON A CONTAINS-STICKY A
STORED-IN = GARAGE A MANUFACTURED-IN = FLORIDA

The following equation was used to produce a confidence rating (1 <= C < 7) for the test
examples:

C =4+ 1.5M — M).

M, and M, are match scores (—1 < M; < 1) for the two categories computed by examin-
ing each feature-value pair in the most-specific-conjunctive description for the category
and scoring as follows: +1 if the example had the same value, O if the feature was missing,
and —1 if it had a conflicting value. The result was scaled by dividing by the maximum
possible score. For IOU, explanatory (core) features were weighted more heavily by having
them count twice as much (i.e., the match score was incremented or decremented by 2
instead of 1).

This scoring technique is a simple method for obtaining a confidence rating between
0 and 7 based on the degree to which an example matches the MSC description of each
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Table 7. Average confidence ratings for test examples.

Subjects Simulation
Item Type Function Discrimination 10U MSC
superficial-core* 4.00 5.02 3.79 4.60
core 6.16 5.93 5.07 4.60
superficial 6.04 6.36 4.86 5.20
superficial-core 6.43 6.54 5.7 5.80

of the two categories. Several other similar scoring mechanisms were tried without any
significant effect on the qualitative results. The important factor is that the score is high
when an example matches the description of the first category more than the second and
that it is low when an example matches the description of the second category more than
the first. The qualitative results are also insensitive to the exact additional weighting assigned
to the explanatory features (a weighting factor of 1.5 or 3 works as well as 2).

Table 7 shows both the original experimental results and the results of the simulation.
Although the exact confidence values of the simulation do not match the subjects, all of
the important differences mentioned by Wisniewski (1989) are present. For the superficial-
core* items, the IOU (function) scores are lower than the MSC (discrimination) scores.
Although these items have the superficial features of the given category, they have the core
features of the other category, causing the function group (and IOU) to rate them lower.
IOU (function group) scores the core items higher than the superficial items higher than
the core items. Finally, the IOU (function) scores are lower than the MSC (discrimination)
scores for the superficial items but higher for the core items.

All of these correctly modeled effects stem from IOU’s separation of concepts into explan-
atory and nonexplanatory components and its scoring procedure that weights the explanatory
features more heavily. Since IOU is unique among current integrated learning systems in
separating its concepts into explanatory and nonexplanatory components, it seems clear
that other existing systems would be unable to model these results. However, the effects
are not particularly dependent on the specific details of the IOU algorithm; and therefore
other methods that include both explanatory and nonexplanatory features in their concepts
and weight the former more heavily may also be able to model Wisniewski’s results.

6. Discussion of related research

Due to the recent interest in combining empirical and explanation-based approaches, there
is a significant amount of related research. All of these projects address slightly different
problems and have different limitations and advantages. In particular, other approaches
do not separate learned concepts into explanatory and nonexplanatory components and do
not use empirical and explanation-based methods to learn different parts of a concept. Also,
no other current system uses empirical learning as an independent sub-system. Therefore,
only IOU has the flexibility of employing any empirical learning system and of easily switch-
ing to better ones as they are developed.
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6.1. Other systems for overly-general theories

Several other existing systems attempt to use overly-general theories to aid concept learn-
ing. However, these systems handle different kinds of over-generality and cannot deal with
the specific problem addressed by IOU. This section discusses three such systems: Induc-
tion Over Explanations (IOE), Incremental Version-Space Merging (IVSM), and Abductive
Explanation-Based Learning (A-EBL).

IOE (Flann & Dietterich, 1989) assumes that a correct specialized theory may be obtained
by inducing over the explanations of specific examples. The most specific explanation that
covers all of the positive examples is constructed by pruning unmatched branches and replac-
ing each occurrence of a constant by the same variable. However, IOE does not consider
specializing by adding constraints on unexplained features, since these are assumed to be
completely irrelevant. If this method is applied to the examples of drinking vessels given
in Table 1, its inductive bias is inappropriate and it cannot produce a consistent description.
The explanations for the two positive examples are identical except for how GRASPABLE
is proved. Consequently, the resulting concept description is identical to the explanatory
component learned by IOU, which is incapable of distinguishing between the positive and
negative examples. For the same reason, IOE is incapable of handling overly-general theories
like those used in Section 4.2.

IVSM (Hirsh, 1990) is a version-space learning algorithm that accepts abstract descrip-
tions produced by explanation-based generalization as well as specific examples. IVSM
can handle overly-general theories that produce multiple explanations of which at least one
is correct. The algorithm computes the version-space of concept descriptions consistent
with at least one explanation for each example. However, like IOE, it is incapable of handling
problems suitable for IOU. If IVSM is applied to the examples in Table 1, it is also unable
to produce a consistent description since the positive examples have only one explanation
that is itself overly-general. For the same reason, IVSM is also incapable of handling overly-
general theories like those used in Section 4.2.

A-EBL (Cohen, 1990) also attempts to deal with the multiple-explanation problem by
using a greedy covering algorithm to finding a near-minimal set of explanations that covers
all of the positive examples without covering any negative ones. Like IVSM, it is incapable
of handling cases in which all explanations for an example are overly-general. Therefore,
it is also unsuitable for the type of problems used to test IOU.

IOE, IVSM, and A-EBL all assume that the theory references all relevant features. These
systems cannot specialize the theory using unexplained features. However, unlike IOU, they
can all handle first-order Horn-clause theories. Finally, it should be noted that the specializa-
tions performed by these systems naturally complement the specialization performed by
I0OU. Any of these systems can be combined with IOU to produce a more robust theory
specializer by using one of them to exclude as many negative examples as possible and
then using IOU to add constraints on unexplainable features to remove the remaining negative
examples. For IOE, this would involve first running IOE on the positive examples. If the
most specific explanation covering the positive examples still covers negative examples,
then the output theory of IOE and all of the examples can be passed to IOU for additional
specialization. Combining IVSM with IOU would require updating the version space with
all of the positive examples and then updating with any negative examples that do not cause
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the version space to become empty. Next, pick an hypothesis from the resulting version
space and give it to IOU as an initial theory together with all of the examples. IOU will
attempt to specialize the theory to remove the negative examples unaccounted for by IVSM.
One way of combining A-EBL with IOU would involve removing the constraint in A-EBL’s
greedy covering algorithm that chosen explanations be consistent with the negative examples.
It will then generate a near-minimum set of explanations that covers all of the positive ex-
amples. Next, IOU can be used to further specialize this theory to avoid covering the negative
examples. Better approaches would involve biasing A-EBL’s covering algorithm towards
explanations that cover few negatives while still covering plenty of positives.

6.2. Systems for overly-specific theories

Just as an overly-general theory is one whose concept extension is too large (a superset
of the positive examples are classified as positive), an overly-specific theory is one whose
concept extension is too small (only a subset of the positive examples are classified as posi-
tive). Missing rules or over-constrained rules are the underlying causes of over-specificity.
A number of recent systems generalize an overly-specific theory by learning new rules
that fill gaps in incomplete explanations. Unlike IOU, these systems cannot deal with overly-
general theories; however, they are complementary to IOU and could be combined with
it to produce a system that could both specialize and generalize an imperfect domain theory.
Learning by Failing to Explain (LFE) (Hall, 1988) is such a method that has been applied
to the domain of circuit design. If the system knows the function of a circuit and the func-
tion of all but one of its components, it infers what the function of the unknown component
must be in order for the overall circuit to work. ODYSSEUS (Wilkins, 1988) is a learning
apprentice in the domain of medical diagnosis that conjectures domain rules that will fill
gaps in its explanations of a doctor’s diagnostic actions. Both LFE and ODDYSSEUS learn
new rules from a single example and do not perform induction over multiple examples.
GEMINI (Danyluk, 1989), on the other hand, uses incremental conceptual clustering to
find rules that complete the explanations of multiple examples. CIGOL (Muggleton & Bun-
tine, 1988) uses a technique called inverse resolution to create a new rule that completes
the proof of a single example. CIGOL uses stored negative examples to filter out candidate
rules, but it does not directly form rules that cover multiple positive examples.

6.3. Systems for general imperfect theories

There are a number of recently developed systems that can, at least to some extent, deal
with both overly-general and overly-specific domain theories. In this sense, they are more
general than IOU. In principle, many of these systems could be run on problems suitable
for IOU; however, I believe the differences mentioned below would allow IOU to perform
better on such problems. Of course, detailed empirical studies are needed to verify this claim.

OCCAM (Pazzani, 1990) is a conceptual clustering system that combines explanation-
based and empirical techniques. If an example can be explained, its generalized explanation
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forms the basis of a new concept. If an example cannot be explained but is similar to a
previous example, the common features of the two examples are used to form a new con-
cept. In addition, empirically learned concepts can be used to help explain subsequent ex-
amples and specializations of explanation-based concepts can be empirically learned by
noticing additional similarities among their examples. This last aspect is very similar to
I0U; however, there are several differences. For one, OCCAM clusters unclassified exam-
ples rather than learning specific concepts from classified examples. Also, it cannot learn
disjunctive concepts, does not reduce example descriptions before they are processed by
empirical learning, and does not employ an independent empirical learner.

The ML-SMART system (Bergadano & Girodana, 1988) uses a possibly incomplete/in-
correct first-order domain theory to guide the search for an inductive hypothesis that covers
a set of positive examples but does not cover a set of negative examples. The system per-
forms a general to specific search through the space of hypotheses trying to find a consis-
tent operational concept description. The system prefers to specialize (operationalize) the
current hypothesis using rules from the domain theory; but when this fails, it resorts to
purely syntactic specialization rules. Unlike IOU, it does not immediately assume the rele-
vance of explained features. IOU takes advantage of the stronger assumption that the domain
theory is strictly overly-general to further focus the learning process. As illustrated by the
cup example used by Bergadano and Giordana (1988), ML-SMART does not even guarantee
that the learned concept will contain as many of the explainable aspects as consistently
possible. That is, the learned definition does not even require a cup to have an upward-
pointing concavity even though the theory can explain why having one is important and
all of the examples are consistent with this requirement.

RTLS (Reduced Theory Learning System) (Ginsberg, 1988; Ginsberg, 1990) is capable
of refining arbitrary propositional Horn-clause theories. RTLS first fully expands a theory
into a completely operational disjunctive-normal-form (DNF) expression. Next, this expres-
sion is modified by a complicated procedure to make it consistent with a set of training
examples. Finally, the resulting DNF formula is retranslated into a multi-level theory. The
real disadvantage of RTLS is the inherent exponential complexity of reducing a domain
theory and revising the resulting DNF formula.

KBANN (Knowledge-Based Artificial Neural Networks) (Towell et al., 1990) is also poten-
tially capable of revising arbitrarily incorrect theories. KBANN translates a domain theory
into an equivalent neural-network and then uses back-propagation (Rumelhart, Hinton, &
Williams, 1986) to modify the weights in this network to make it consistent with a set of
examples. Unlike a symbolic system, KBANN does not produce an easily comprehensible
rule-based result. It also suffers from all of the computational and parameter-adjusting prob-
lems of back-propagation (Blum & Rivest, 1988; Shaviik et al., 1991).

64. Systems that use empirical learning to focus explanation

One of the first systems to integrate empirical and explanation-based learning was a version
of UNIMEM (Lebowitz, 1986). Unlike other systems, UNIMEM does not attempt to deal
with imperfect domain theories but rather uses empirical techniques to focus the explana-
tion process. For example, when applied to Congressional voting records, UNIMEM’s
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clustering method detects that the members of Congress who voted for (or against) a par-
ticular bill are all similar in some respect (e.g., they are all Democrats from Southern
states). The system then attempts to construct an explanation for how these similar features
could account for their common position on the bill. The explanation is used to separate
the causally relevant features shared by the examples from those shared features that are
purely coincidental. Lebowitz claims that this approach focuses the explanation process
and makes it more efficient while preventing the system from discovering spurious correla-
tions to which a purely empirical system is susceptible.

7. Future research issues

The work reported in this paper has a number of shortcomings that need to be addressed
by future research. First, IOU should be tested on an actual domain theory created by an
expert for a realistic problem. Second, the incremental version of IOU discussed in Sec-
tion 2.2 needs to be implemented and tested. Third, improved methods for handling noisy
data and missing feature values need to be incorporated into the system. Finally, some of
the more fundamental limitations of IOU need to be addressed. Several of these are listed
below.

The current system uses a feature-based description language and needs to be extended
to handle first-order predicate calculus. Many problems require relational descriptions and/or
quantification, which the current system cannot handle. The recent development of effec-
tive inductive systems for first-order logic, such as FOIL (Quinlan, 1990), should be useful
in extending the system in this manner.

IOU is also restricted by its assumption that the features referenced in the explanatory
and nonexplanatory parts of the concept definition are disjoint. This prevents it from prop-
erly specializing certain types of overly-general theories. As discussed in Section 6.1, IOU
could potentially be combined with other theory specialization techniques like IOE, IVSM,
and A-EBL in order to handle a larger class of theory specialization problems. Another
approach is simply not to remove the explained features of the examples before passing
them along to the inductive learner (i.e., skip step 3 in the algorithm in Table 3). In this
case, the empirical system can arbitrarily specialize the theory using all of the available
features and IOU would be able to handle any overly-general theory. However, failing to
focus the empirical system on unexplained features would undoubtedly reduce its effective-
ness on problems in which explanatory and nonexplanatory features are disjoint. Also,
the theoretical results in Section 3 rely on the disjointness assumption.

I0U’s inability to handle overly-specific aspects of an imperfect domain theory is another
obvious shortcoming. As mentioned in Section 6.2, this problem could potentially be ad-
dressed by combining IOU with a system that learns rules that complete partial explana-
tions. In fact, we have recently developed a system called EITHER (Ourston & Mooney,
1990) that refines arbitrarily imperfect propositional Horn-clause theories by combining
techniques for both learning and deleting rules and rule antecedents. The process EITHER
uses to specialize existing rules by adding antecedents is derived from I0U.
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8. Conclusion

This paper has presented and evaluated a learning method called Induction Over the Unex-
plained, which uses a combination of explanation-based and empirical methods to learn
concepts with both explanatory and nonexplanatory aspects. IOU uses an overly-general
domain theory to learn the explanatory part of a concept, and a generic inductive learning
system to acquire the nonexplanatory part. Theoretical analysis was used to show that IOU
can be expected to run in linear time and that the lower-bound on the number of examples
required to learn a PAC concept definition is better for IOU than for a purely empirical
approach. Empirical analysis was used to confirm IOU’s faster learning rate by testing it
on both artificial and natural data. Empirical results also demonstrate that IOU’s perfor-
mance degrades gracefully as the over-generality of its initial theory increases and its assump-
tion of disjointness of explanatory and nonexplanatory features is violated. Simulation of
the results of a recent psychology experiment on the effect of background knowledge on
concept learning was used to demonstrate the ability of IOU to model aspects of human
learning. IOU was also shown to complement rather than directly compete with other re-
cently developed methods such as IOE, IVSM, A-EBL, GEMINI, ODDYSEUS, and Learn-
ing by Failing to Explain.

This paper has also demonstrated an eclectic approach to evaluation that combined theo-
retical, empirical, and psychological evidence to judge the effectiveness of IOU. The evidence
provided by any one of these approaches is necessarily incomplete. By drawing upon a
combination of evaluation methods, it is possible to form a more complete picture of the
strengths and weaknesses of a particular learning method.
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Notes

1. An hypothesis space is trivial if it contains only one hypothesis or two disjoint hypotheses whose union covers
the entire domain.
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