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Abstract

This paper presents a major revision of the
EITHER propositional theory refinement sys-
tem. Two issues are discussed. First, we show
how run time efficiency can be greatly improved
by changing from a exhaustive scheme for com-
puting repairs to an iterative greedy method.
Second, we show how to extend EITHER to
refine M-of-N rules. The resulting algorithm,
NEITHER (New EITHER), is more than an or-
der of magnitude faster and produces signifi-
cantly more accurate results with theories that
fit the M-of-N format. To demonstrate the ad-
vantages of NEITHER, we present preliminary
experimental results comparing it to EITHER
and various other systems on refining the DNA
promoter domain theory.

1 Introduction

Recently, a number of machine learning systems have
been developed that use examples to revise an ap-
proximate (incomplete and/or incorrect) domain theory
[Ginsberg, 1990; Ourston and Mooney, 1990; Towell and
Shavlik, 1991; Danyluk, 1991; Whitehall et al., 1991;
Matwin and Plante, 1991]. Most of these systems
revise theories composed of strict if-then rules (Horn
clauses). However, many concepts are best represented
using some form of partial matching or evidence sum-
ming, such as M-of-N concepts, which are true if at
least M of a set of N specified features are present in
an example. There has been some work on the induc-
tion of M-of-N rules that demonstrates the advantages of
this representation [Spackman, 1988; Murphy and Paz-
zani, 1991]. Other work has focused on revising rules
that have real-valued weights [Towell and Shavlik, 1992;
Mahoney and Mooney, 1992]. However, revising theories
with simple M-of-N rules has not previously been ad-
dressed. Since M-of-N rules are more constrained than
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rules with real-valued weights, they provide a stronger
bias and are easier to comprehend.

This paper presents a major revision of the EITHER
propositional theory refinement system [Ourston and
Mooney, 1990; Ourston and Mooney, in press] that is
significantly more efficient and is also capable of revising
theories with M-of-N rules. EITHER is inefficient because
it computes a potentially exponential number of repairs
for each failing example. The new version, NEITHER
(New EITHER), computes only the single best repair for
example, and is therefore much more efficient.

Also, because it was restricted to strict Horn-clause
theories, EITHER did not produce as accurate results
as KBANN (a neural-network revision system) on the
DNA promoter problem [Towell and Shavlik, 1991;
Towell and Shavlik, 1992]. Some aspects of the promoter
concept fit the M-of-N format, since there are several
potential sites where hydrogen bonds can form between
the DNA and a protein; if enough of these bonds form,
promoter activity can occur. EITHER attempts to learn
this concept by forming a separate rule for each poten-
tial configuration by deleting different combinations of
antecedents from the initial rules. Since a combinatoric
number of such rules is needed to accurately model an
M-of-N concept, the generality of the resulting theory
is impaired. NEITHER, however, includes the ability to
generalize a rule by lowering the threshold on an M-of-
N rule. Including threshold changes as an alternative
method for covering misclassified examples was easily
incorporated within the basic EITHER framework.

To demonstrate the advantages of NEITHER, we
present experimental results comparing it to EITHER and
various other systems on refining the promoter domain
theory. NEITHER runs more than an order of magnitude
faster than EITHER and produces a significantly more
accurate theory with minor revisions that are easy to
understand.

2 Theory Revision Algorithm

2.1 The EITHER Algorithm

The original EITHER theory refinement algorithm has
been presented in various levels of detail in [Ourston
and Mooney, 1990; Ourston and Mooney, in press;
Ourston, 1991]. It was designed to repair propositional
Horn-clause theories that are either overly-general or
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overly-specific or both. An overly-general theory is one
that causes an example (called a failing negative) to be
classified in categories other than its own. EITHER spe-
cializes existing antecedents, adds new antecedents, and
retracts rules to fix these problems. An overly-specific
theory causes an example (called a failing positive) not
to be classified in its own category. EITHER retracts and
generalizes existing antecedents and learns new rules to
fix these problems. Unlike other theory revision systems
that perform hill-climbing (and are therefore subject to
local maxima), EITHER is guaranteed to fix any arbitrar-
ily incorrect propositional Horn-clause theory [Ourston,

1991].

EiTHER Main Loop

Compute all repairs for each example
While some examples remain uncovered
Add best repair to cover set

Remove examples covered by repair
end
Apply repairs in cover set to theory

NEITHER Main Loop

While some examples remain
Compute a single repair for each example
Apply best repair to theory
Remove examples fixed by repair

end

Figure 1: Comparison of EITHER and NEITHER algo-
rithms.

The algorithm used by EITHER for both generalization
and specialization is shown in the top half of Figure 1.
There are three basic steps. First, all possible repairs
for each failing example are computed. Next, EITHER
enters a loop to compute a subset of these repairs that
can be applied to the theory to fix all of the failing exam-
ples. This subset is called a cover. Repairs are ranked
according to a benefit-to-cost ratio that trades off the
number of examples covered against the size of the re-
pair and the number of new failing examples it creates.
The best repair is added to the cover on each iteration.
Lastly, the repairs in the cover are applied to the theory.
If the application of a repair over-compensates by cre-
ating new failing examples, EITHER passes the covered
examples and the new failing examples to an induction
component.! The results of the induction are added as a
new rule when generalizing or as additional antecedents
when specializing.

The time consuming part of this algorithm is the first
step where all repairs for a given failing example are
found. Figure 2 illustrates this process for theory gen-
eralization where EITHER is searching for leaf-rule? an-

'EITHER uses a version of ID3 [Quinlan, 1986] for its
induction.

2A leaf rule is a rule whose antecedents include an observ-
able or an intermediate concept that is not the consequent of
any existing rule.
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Figure 2: Partial proofs for unprovable positive example.
Unprovable antecedents are shown with dotted lines.

tecedent retractions to correct failing positive examples.
The upper half of the diagram shows an input theory
both as rules (on the left) and as an AND-OR graph.
The lower half of the diagram shows a hypothetical fail-
ing positive example and its partial proofs.> From these
proofs there are four possible repairs which will fix the
example: retract h,j,m; retract h,j,o,p; retract k,m;
retract k,o0,p. Theory specialization follows a similar
process to return sets of leaf-rule retractions which fix
individual failing negative examples.

2.2 Speeding Up EITHER

We have recently implemented a new version of EITHER
(NEITHER) that takes a different approach, as shown
in the bottom half of Figure 1. Two new algorithms
form the basis for the difference between EITHER and
NEITHER. First, calculation of repairs is now achieved in
linear time. Second, all searches through the theory (for
deduction, antecedent retraction and rule retraction) are
optimized in NEITHER to operate in linear time by mark-
ing the theory to avoid redundant subproofs. NEITHER
abandons the notion of searching for all partial proofs in
favor of a greedy approach which rapidly selects a single
best repair for each example. The three steps of the old
FEITHER algorithm can then be integrated into a single
loop (see Figure 1).

To illustrate how repairs are computed in linear time,
refer again to Figure 2. Rather than computing all par-
tial proofs, NEITHER works bottom-up, constructing a
single set of retractions. When multiple options exist,
NEITHER alternates between returning the smallest op-
tion and returning the union of the options, depending
whether the choice involves an AND or OR node. For

3 A partial proof is one in which some antecedents cannot
be satisfied.



Generalization Specialization
change resulting rule b | c | bc change resulting rule b | ¢ | bc
orig. rule a«— 2o0f (b,c) [N | N|Y orig. rule a«—1o0f (b,e) | Y|Y|Y
threshold -1 | a «+— 1 of (b,c) | Y| Y | Y || threshold +1 | a «— 2 of (b,c) | N[N | Y
delete b a«— ¢ N|Y|Y delete rule none N|N|N

Table 1: Comparison of Revisions.

generalization, retractions are unioned at AND nodes
because all unprovable antecedents must be removed to
make the rule provable. At OR nodes, only the smallest
set of retractions is kept since only one rule need be prov-
able. For specialization, these choices are reversed. Re-
sults are unioned at OR nodes to disable all rules which
fire for a faulty concept. At AND nodes, the smallest set
of rule retractions is selected since any single failure will
disable a rule.

As an example, in Figure 2 the antecedent retraction
calculations for the example would begin at the root of
the graph, recursively calling nodes b and c. Retraction
for node b then recurses on nodes d and e. When the
recursion returns back to node b a choice must be made
between the results from nodes d and e because node b is
an OR node. Since the latter requires fewer retractions,
it 1s chosen as the return value for node b. This process
continues, resulting in a final repair: retract k,m.

Note that this algorithm is linear in the size of the
theory. No node is visited more than once, and the com-
putation for choosing among potential retractions must
traverse the length of each rule at most once. The fi-
nal repair is also minimum with respect to the various
choices made along the way; 1t is not possible to find a
smaller repair that will satisfy the example. This new
algorithm thus trades the complete information available
in the partial proofs for speed in computation.

2.3 Adding M-of-N Rules to NEITHER

With M-of-N rules, there are six types of revisions that
can be made to a theory. As before, antecedents may be
deleted or rules may be added to generalize the theory,
and antecedents may be added or rules deleted to spe-
cialize the theory. The two new revisions are to increase
or decrease the threshold: decreasing generalizes a rule
and increasing specializes it.

To incorporate these two new revisions, NEITHER
must be changed in four places. First, the computation
of a repair for each failing example must take thresholds
into account. For generalization, one need only retract
enough antecedents to make the rule provable; there is
no need to retract all false antecedents if the rule has
a threshold. For example, if the rule for e in Figure 2
had a threshold of 1 there would be no need to retract
k to prove this rule. A similar accounting for thresholds
is required for computing rule deletions for specializa-
tion. Note that during generalization the threshold of
each rule from which antecedents are retracted must be
decreased by the number of antecedents retracted to ac-
count for the smaller size of the rule.

Second, NEITHER must compute threshold repairs.
Calculating threshold changes can be done in conjunc-

tion with the computation of antecedent and rule dele-
tion repairs since it is directly related to how many of
antecedents of a rule are provable. For generalization, we
change the threshold to the number of antecedents which
are provable. In specialization, we set the threshold to
one more than the number of provable antecedents.

Third, a mechanism must be provided for selecting be-
tween a threshold change and a deletion. Effectively, this
amounts to deciding which type of revision to try first.
The philosophy used in NEITHER is to try the most ag-
gressive changes initially in the hopes that the resulting
repair will cover more examples. If the repair creates new
failing examples, the less ambitious repairs are tried in
turn with induction used as a last resort. During gen-
eralization, more radical repairs are those which create
more general rules (i.e., rules which can prove more ex-
amples). In specialization, the opposite is true. As with
FITHER, if all changes result in new failing examples, the
algorithm falls back to induction to learn new rules or
add new antecedents.

Table 1 compares equivalent threshold and deletion
changes for generalization and specialization.  The
columns labeled with b, ¢ and be indicate whether the
corresponding rule will conclude a when just b, just ¢
or both b and ¢ are true. Note that in both cases, the
threshold change results in a more general rule. This
means that threshold changes should be tried before an-
tecedent deletions during generalization, but tried after
rule deletions during specialization.

Fourth and finally, the induction component of
NEITHER must be altered slightly to accommodate
threshold rules. When the application of a repair causes
new failing examples to occur, NEITHER resorts to in-
duction as did EITHER. The result of the induction
cannot, however, simply be added to the theory as be-
fore. Table 2 illustrates the problem. The original rule
shown can be used to prove both the positive and nega-
tive examples, and deleting this rule or incrementing its
threshold only prevents the positive example from being
proved. Assume that induction returns a new feature, 4,
which can be used to distinguish the two examples (i.e.,
d is true for the positive example but false for the nega-
tive example). Because the original rule has a threshold,
adding d directly will still allow both examples to prove
the rule. This problem remains even if one tries to in-
crement the threshold in addition to adding d. Instead,
the rule must be split by renaming the consequent of the
original rule, and creating a new rule with the renamed
consequent and the results of induction as the new rule’s
antecedent list.



example features pos. example | neg. example
b, ¢, d b, —¢, d b, ¢, d
ortg. rule pos. example | neg. example
a «— 1 of (b,c) Y Y
add to rule pos. example | neg. example
a «— 1 of (b,c,d) Y Y
split rule pos. example | neg. example
X «— 1 of (b,c) Y Y
a — X,d Y N

Table 2: Induced Antecedent Addition.

3 Experimental Results

3.1 Experimental Design

For the purposes of this paper, the resulting algorithm is
labeled NEITHER-MOFN. We tested both NEITHER and
NEITHER-MOFN against other classification algorithms
using the DNA promoter sequences data set [Towell et
al., 1990]. This data set involves 57 features, 106 ex-
amples, and 2 categories. The theory provided with the
data set has an initial classification accuracy of 50%. We
selected this particular data set because EITHER per-
formed poorly on data sets best modelled using M-of-N
rules. In addition to testing EITHER, NEITHER and
NEITHER-MOFN, we ran experiments using Ip3 [Quin-
lan, 1986], backpropagation [Rumelhart et al., 1986] and
RAPTURE [Mahoney and Mooney, in press] (a revision
system based on certainty factors).

The experiments proceeded as follows. Each data
set was divided into training and test sets. Training
sets were further divided into subsets, so that the algo-
rithms could be evaluated with varying amounts of train-
ing data. After training, each system’s accuracy was
recorded on the test set. To reduce statistical fluctua-
tions, the results of this process of dividing the examples,
training, and testing were averaged over 25 runs. The
random seeds for the backpropagation algorithm were
reset for each run. Training time, and test set accuracy
were recorded for each run. Statistical significance was
measured using a Student t-test for paired difference of
means at the 0.05 level of confidence (i.e., 95% certainty
that the differences are not due to random chance).

3.2 Results

The results of our experiments are shown in the three
graphs of Figures 3, 4 and 5. Figure 3 compares the
learning curves of the systems tested, showing how pre-
dictive accuracy on the test set changes as a function
of the number of training examples. As can be seen
NEITHER-MOFN’s performance was significantly better
than all other systems except RAPTURE and KBANN.?
RAPTURE out-performed NEITHER-MOFN with small
numbers of training examples but their accuracy was
comparable with larger inputs. NEITHER’s accuracy
was on par with backpropagation, but was lower than
FE1THER for small training sets and higher than EITHER

*Technically, the last difference between backpropagation
and NEITHER-MOFN was only significant at the 0.1 level.
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Figure 3: Test Set Accuracy

for large training sets. Note, that Figure 3 is not direct
comparison of NEITHER and KBANN since the results re-
ported were compiled from different subsets of the DNA
promoter sequences data set. ID3 had significantly lower
accuracy than the other systems.

Figure 4 shows a comparison of training times. Both
NEITHER-MOFN and NEITHER were more than an order
of magnitude faster than backpropagation and EITHER.
Only ID3 ran faster than NEITHER-MOFN.

We also collected data on the average complexity of
the revised theories produced by both NEITHER and
NEITHER-MOFN. Complexity was measured as the to-
tal size; i.e., the total number of all literals in the theory.
The results are shown in Figure 5. As can be seen from
this graph, NEITHER-MOFN not only produces less com-
plex resulting theories but also produces theories closer
in size to the original.

3.3 Discussion

Many of our expectations were borne out by the experi-
mental results. Both NEITHER and NEITHER-MOFN ran
more than an order of magnitude faster than EITHER
due to the optimized algorithms discussed in section 2.
NEITHER-MOFN’s increase in accuracy was also ex-
pected since the new algorithm is able to concentrate
on making M-of-N revisions directly. Also, the fact that
NEITHER-MOFN generates less complex theories is not
surprising, again because it can directly modify thresh-
old values rather than create new rules. In short, by
adding one more operator to the generalization and spe-
cialization processes, NEITHER-MOFN is able to accu-
rately revise a theory known to be difficult for sym-
bolic systems, without having to sacrifice the efficiency
of a symbolic approach. Finally, the most comparable
learning-curve results from [Towell, 1991] would indicate
that KBANN’s accuracy in the promoter domain i1s about
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the same as NEITHER-MOFN'’s.

4 Related Work

Several researchers have developed methods for inducing
M-of-N concepts from scratch. CRLS [Spackman, 1988]
learns M-of-N rules and out-performed standard rule in-
duction in several medical domains. ID-2-of-3 [Murphy
and Pazzani, 1991] incorporates M-of-N tests in decision-
tree learning and out-performed standard decision-tree
induction in a number of domains. Both projects clearly
demonstrate the advantages of M-of-N rules.

SEEK?2 [Ginsberg et al., 1988] includes operators for
refining M-of-N rules; however, its revision process is
heuristic and it is not guaranteed to produce a revised
theory that is consistent with all of the training exam-
ples. NEITHER uses a greedy covering approach to guar-
antee that it finds a set of revisions that fix all of the
misclassified examples in the training set. Also, unlike
NEITHER, SEEK?2 cannot learn new rules or add new an-
tecedents to existing rules.

KBANN [Towell and Shavlik, 1992] revises a theory by
translating it into a neural network, using backpropa-
gation to refine the weights, and then retranslating the
result back into symbolic rules. NEITHER’s symbolic re-
vision process is much more direct and, from all indica-
tions, significantly faster. Although KBANN’s results are
referred to as M-of-N rules, they actually contain real-
valued antecedent weights and therefore are not strictly
M-of-N. In addition, KBANN’s revised theories for the
promoter problem are also more complex in terms of
number of antecedents than the initial theory [Towell,
1991], while NEITHER actually produces a slight reduc-
tion. Therefore, NEITHER’s revised theories are less com-
plex and presumably easier to understand. Finally, un-
like KBANN, NEITHER is guaranteed to converge to 100%
accuracy on the training data.

RAPTURE [Mahoney and Mooney, 1992] uses a com-
bination of symbolic and neural-network learning meth-
ods to revise a certainty-factor rulebase [Buchanan and
E.H. Shortliffe, 1984].  Consequently, it lies some-
where between NEITHER and KBANN on the symbolic-
connectionist dimension. As illustrated in the results,
its accuracy on the promoter problem is only slightly su-
perior to NEITHER’s. However, its real-valued certainty
factors make its rules more complex.

5 Future Work

The current version of NEITHER needs to be enhanced
to handle a number of issues. We need to incorporate
a number of advanced features from EITHER, such as
constructive induction, modification of higher-level rules,
and the ability to handle numerical features and noisy
data. Also, we could to extend our methods to handle
negation as failure and incorporate the ability to handle
M-of-N rules into first-order theory revision [Richards
and Mooney, 1991]. Finally, we need to perform a more
comprehensive experimental evaluation of the system.



6 Conclusions

This paper has presented an efficient propositional the-
ory refinement system that is capable of revising M-of-N
rules. The basic framework is a modification of EITHER
[Ourston and Mooney, 1990]; however, the construction
of partial proofs has been reduced from exponential to
linear time and a method for revising the thresholds of
M-of-N rules has been incorporated. The resulting sys-
tem runs more than an order of magnitude faster and
produces significantly more accurate results in domains
requiring partial matching, such as the problem of rec-
ognizing promoters in DNA.
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