
Appears in Informatica, 17, pp. 387-397, 1993

Informatica 17 page xxx{yyy 1

Extending Theory Re�nement to M-of-N Rules

Paul T. Ba�es and Raymond J. Mooney
Department of Computer Sciences
University of Texas
Austin, Texas 78712-1188 USA

Keywords: arti�cial intelligence, multistrategy learning, theory re�nement

Edited by: Gheorghe Tecuci

Received: May 26, 1993 Revised: October 15, 1993 Accepted: October 15, 1993

In recent years, machine learning research has started addressing a problem known as theory
re�nement. The goal of a theory re�nement learner is to modify an incomplete or incorrect rule
base, representing a domain theory, to make it consistent with a set of input training examples.
This paper presents a major revision of the Either propositional theory re�nement system. Two
issues are discussed. First, we show how run time e�ciency can be greatly improved by changing
from a exhaustive scheme for computing repairs to an iterative greedy method. Second, we show
how to extend Either to re�ne M-of-N rules. The resulting algorithm,Neither (New Either),
is more than an order of magnitude faster and produces signi�cantly more accurate results with
theories that �t the M-of-N format. To demonstrate the advantages of Neither, we present
experimental results from two real-world domains.

1 Introduction

Recently, a number of machine learning systems have
been developed that use examples to revise an approx-
imate (incomplete and/or incorrect) domain theory
[4, 11, 18, 3, 21, 7]. Most of these systems revise the-
ories composed of strict if-then rules (Horn clauses).
However, many concepts are best represented using
some form of partial matching or evidence summing,
such as M-of-N concepts, which are true if at least M
of a set of N speci�ed features are present in an ex-
ample. There has been some work on the induction of
M-of-N rules demonstrating the advantages of this rep-
resentation [17, 9]. Other work has focused on revising
rules that have real-valued weights [19, 6]. However,
revising theories with simple M-of-N rules has not pre-
viously been addressed. Since M-of-N rules are more
constrained than rules with real-valued weights, they
provide a stronger bias and are easier to comprehend.

This paper presents a major revision of the Either
propositional theory re�nement system [11, 12] that
is signi�cantly more e�cient and is also capable of
revising theories with M-of-N rules. Either is inef-
�cient because it computes a potentially exponential
number of repairs for each failing example. The new
version, Neither (New Either), computes only the
single best repair for each example, and is therefore
much more e�cient.

Also, because it was restricted to strict Horn-clause
theories, the old Either algorithm could not produce
as accurate results as a neural-network revision sys-

tem called Kbann on a domain known as the DNA
promoter problem [18, 19]. Essentially, this is because
some aspects of the promoter concept �t the M-of-N
format. Speci�cally, there are several potential sites
where hydrogen bonds can form between the DNA
and a protein; if enough of these bonds form, pro-
moter activity can occur. Either attempts to learn
this concept by forming a separate rule for each poten-
tial con�guration by deleting di�erent combinations
of antecedents from the initial rules. Since a combi-
natoric number of such rules is needed to accurately
model an M-of-N concept, the generality of the result-
ing theory is impaired. The new Neither algorithm,
however, includes the ability to modify a theory by
changing thresholds of M-of-N rules. Including thresh-
old changes as an alternative method for covering mis-
classi�ed examples was easily incorporated within the
basic Either framework.

To demonstrate the advantages of Neither, we
present experimental results comparing it to Either
and various other systems on re�ning the DNA pro-
moter domain theory. Neither runs more than an
order of magnitude faster than Either and produces
a signi�cantly more accurate theory with minor revi-
sions that are easy to understand. We also present
results showing Neither's ability to repair faults in a
theory used to teach the diagnosis of shock to novice
nursing students. We show that Neither is able to
restore signi�cantly damaged theories to near perfect
accuracy.

2 Informatica 17 page xxx{yyy Ba�es and Mooney

m & nf

k & le

h & i & jd

a

b c

d e f g

h i j k l m n o p q

example: i, l, n, q true; h, j, k, m, o, p false.

a

b c

d f

i

a

b c

d

i

g

q

a

b c

f

l

e

a

b c

l q

e g

n nh j m h j o p k km o p

b & ca

b d

b e

c f

g

o & p & q

c

g

Figure 1: Partial proofs for unprovable positive exam-
ple. Unprovable antecedents are shown with dotted
lines.

2 Theory Revision Algorithm

2.1 The Either Algorithm

The original Either theory re�nement algorithm has
been presented in various levels of detail in [11, 12, 10].
It was designed to revise propositional Horn-clause
theories. For Either, a theory is a set of propositional
Horn-clause rules such as those shown in the top half
of Figure 1. Each theory is assumed to function as a
classi�cation system whereby examples are labeled as
belonging to one of a given set of categories. Exam-
ples are vectors of feature-value pairs listing the value
corresponding to each feature, as well as the category
into which the example should be classi�ed. As an il-
lustration, one might imagine a diagnostic theory for
determining whether or not a given product coming o�
an assembly line passes inspection. The categories for
such a rule base might be \pass" and \fail" and the ex-
amples would consist of whatever measurements could
be made on the product as part of the inspection test.

In revising an incorrect theory, note that Either
can �x either overly-general or overly-speci�c rules
through a combination of deductive, abductive and
inductive techniques as shown in Figure 2. An overly-
general theory is one that causes an example (called
a failing negative) to be classi�ed in categories other
than its own. Either specializes existing antecedents,
adds new antecedents, and retracts rules to �x these
problems. An overly-speci�c theory causes an example
(called a failing positive) not to be classi�ed in its own
category. Either retracts and generalizes existing an-
tecedents and learns new rules to �x these problems.

DEDUCE

ExamplesInitial Theory

Unprovable
Positive
Examples

ABDUCE

Proofs of
Negative
Examples

Minimal Cover
and

Rule Retractor

Minimal Cover
and

Antecedent Retractor

Partial
Proofs

INDUCE

Undeletable
Rules

Ungener-
alizable
Rules

Generalized
Rules

Deleted
Rules

New
Rules

Specialized
Rules

Figure 2: Block diagram of Either.

Unlike other theory revision systems that perform hill-
climbing (and are therefore subject to local maxima),
Either is guaranteed to �x any arbitrarily incorrect
propositional Horn-clause theory [10].

The basic algorithm used by Either for both gen-
eralization and specialization is shown in the top half
of Figure 3. There are three steps. First, all possible
repairs for each failing example are computed. Next,
Either enters a loop to compute a subset of these re-
pairs that can be applied to the theory to �x all of
the failing examples. This subset is called a cover.
Repairs are ranked according to a bene�t-to-cost ra-
tio that trades o� the number of examples covered
against the size of the repair and the number of new
failing examples it creates. The best repair is added
to the cover on each iteration. Lastly, the repairs in
the cover are applied to the theory. If the application
of a repair over-compensates by creating new failing
examples, Either passes the covered examples and
the new failing examples to an induction component.1

The results of the induction are added as a new rule
when generalizing or as additional antecedents when
specializing.

The time consuming part of this algorithm is the
�rst step where all repairs for a given failing example
are found. Figure 1 illustrates this process for theory
generalization where Either is searching for leaf-rule
antecedent deletions to correct failing positive exam-
ples. A leaf rule is a rule whose antecedents include
an observable or an intermediate concept that is not

1
Either uses a version of Id3 [13] for its induction.

Extending Theory Re�nement to M-of-N Rules Informatica 17 page xxx{yyy 3

Either Main Loop

Compute all repairs for each example

While some examples remain uncovered

Add best repair to cover set

Remove examples covered by repair

end

Apply repairs in cover set to theory

Neither Main Loop

While some examples remain

Compute a single repair for each example

Apply best repair to theory

Remove examples fixed by repair

end

Figure 3: Comparison of Either and Neither algo-
rithms.

the consequent of any existing rule. The upper half
of the diagram shows an input theory both as rules
(on the left) and as an AND-OR graph. The lower
half of the diagram shows a hypothetical failing pos-
itive example and its partial proofs. A partial proof
is one in which some antecedents cannot be satis�ed.
From these proofs there are four possible repairs which
will �x the example, corresponding to the four par-
tial proofs. In each repair, the dotted lines represent
antecedents which cannot be proved and must there-
fore be removed from the given rule(s). Thus, for the
leftmost partial proof, h and j cannot be proved in
the rule d h & i & j, and m cannot be proved for
rule f m & n, so the repair for this partial proof is:
delete (h,j,m) from their respective rules. Likewise,
the three other repairs are: delete (h,j,o,p), delete
(k,m) and delete (k,o,p). Theory specialization fol-
lows a similar process to return sets of leaf-rule rule

deletions which �x individual failing negative exam-
ples.

2.2 Speeding Up Either

We have recently implemented a new version of
Either (Neither) that takes a di�erent approach,
as shown in the bottom half of Figure 3. Two new
algorithms form the basis for the di�erence between
Either and Neither. First, calculation of repairs
is now achieved in linear time. Second, all searches
through the theory (for deduction, antecedent dele-
tion and rule deletion) are optimized in Neither to
operate in linear time by marking the theory to avoid
redundant subproofs. Neither abandons the notion
of searching for all partial proofs in favor of a greedy
approach which rapidly selects a single best repair for
each example. The three steps of the old Either al-

gorithm can then be integrated into a single loop (see
Figure 3).

Rather than computing all partial proofs, Neither
works bottom-up, constructing a single set of dele-
tions. When multiple options exist, Neither alter-
nates between returning the smallest option and re-
turning the union of the options, depending whether
the choice involves an AND or OR node. For general-
ization, deletions are unioned at AND nodes because
all unprovable antecedents must be removed to make
the rule provable. At OR nodes, only the smallest set
of deletions is kept since only one rule need be prov-
able. For specialization, these choices are reversed.
Results are unioned at OR nodes to disable all rules
which �re for a faulty concept. At AND nodes, the
smallest set of rule deletions is selected since any sin-
gle failure will disable a rule.

To illustrate how repairs are computed in linear
time, refer again to Figure 1. The antecedent deletion
calculations for this example would begin at the root
of the graph, recursively calling nodes b and c. Dele-
tion for node b would then recurse on nodes d and e.
Since h, j and k are false, node d returns (h,j) and
node e returns (k). When the recursion returns back
to node b a choice must be made between the results
from nodes d and e because the theory is being gener-
alized and node b is an OR node. Since node e requires
fewer deletions, its deletions are chosen as the return
value for node b. Recursion for node c follows a simi-
lar pattern: node f returns (m), node g returns (o,p)
and node c chooses the smaller results from node f as
its return value. Finally, nodes b and c return their
values to node a. Now, since node a is an AND node
and the theory is being generalized, the results from
b and c are combined. The �nal repair returned from
node a is delete (k,m). Thus the rule e k & l

is generalized to e l, and the rule f m & n is
generalized to f n.

Note that this algorithm is linear in the size of the
theory. No node is visited more than once, and the
computation for choosing among potential deletions
must traverse the length of each rule at most once. The
�nal repair is also minimumwith respect to the various
choices made along the way; it is not possible to �nd
a smaller repair that will satisfy the example with the
given set of rules. Of course, once a repair is applied to
the theory it will e�ect subsequent repair calculations
because the theory will change. Thus although each
repair is minimum with respect to the state of the
theory from which is was calculated, the total sum
of all repairs may not be minimum due to ordering
e�ects. The only way to reach such a global minimum
is to do an exhaustive search which is exponential in
the size of the theory. This new algorithm trades the
complete information available in the partial proofs for
speed in computation.

4 Informatica 17 page xxx{yyy Ba�es and Mooney

Generalization Specialization
change resulting rule b c bc change resulting rule b c bc

orig. rule a 2 of (b,c) N N Y orig. rule a 1 of (b,c) Y Y Y
threshold -1 a 1 of (b,c) Y Y Y threshold +1 a 2 of (b,c) N N Y
delete b a c N Y Y delete rule none N N N

Table 1: Comparison of Revisions.

2.3 Adding M-of-N Rules to Neither

Expanding Neither to handle M-of-N rules involves
both a change in the syntax and interpretation of rules
as well as a modi�cation to the types of revisions which
can be made to a given theory. With M-of-N rules,
there are six types of revisions. As before, antecedents
may be deleted or rules may be added to generalize
the theory, and antecedents may be added or rules
deleted to specialize the theory. The two new revisions
are to increase or decrease the threshold: decreasing
generalizes a rule and increasing specializes it.

To incorporate these two new revisions, Neither
must be changed in four places. First, the compu-
tation of a repair for each failing example must take
thresholds into account. For generalization, one need
only delete enough antecedents to make the rule prov-
able; there is no need to delete all false antecedents if
the rule has a threshold. For example, if the rule for
e in Figure 1 had a threshold of 1 there would be no
need to delete k to prove this rule. A similar account-
ing for thresholds is required for computing rule dele-
tions for specialization. Note that during generaliza-
tion the threshold of each rule from which antecedents
are deleted must be decreased by the number of an-
tecedents deleted to account for the smaller size of the
rule.

Second, Neither must compute threshold repairs.
Calculating threshold changes can be done in conjunc-
tion with the computation of antecedent and rule dele-
tion repairs since it is directly related to how many
of antecedents of a rule are provable. For generaliza-
tion, we change the threshold to the number of an-
tecedents which are provable. In specialization, we set
the threshold to one more than the number of provable
antecedents.

Third, a mechanism must be provided for selecting
between a threshold change and a deletion. E�ectively,
this amounts to deciding which type of revision to try
�rst. The philosophy used in Neither is to try the
most aggressive changes initially in the hopes that the
resulting repair will cover more examples. If the repair
creates new failing examples, the less ambitious repairs
are tried in turn with induction used as a last resort.
During generalization, more radical repairs are those
which create more general rules (i.e., rules which can
prove more examples). In specialization, the opposite
is true. As with Either, if all changes result in new
failing examples, the algorithm falls back to induction

to learn new rules or add new antecedents.

Table 1 compares equivalent threshold and dele-
tion changes for generalization and specialization. The
columns labeled with b, c and bc indicate whether the
corresponding rule will conclude a when just b, just
c or both b and c are true. Note that in both cases,
the threshold change results in a more general rule.
This means that threshold changes should be tried
before antecedent deletions during generalization, but
tried after rule deletions during specialization. This
is because during generalization, the most aggressive
changes are those which generalize the most, but dur-
ing specialization, the most aggressive changes are
those which generalize the least.

Fourth and �nally, the induction component of
Neither must be altered slightly to accommodate
threshold rules. When the application of a repair
causes new failing examples to occur, Neither resorts
to induction as did Either. The result of the induc-
tion cannot, however, simply be added to the theory
as before. Table 2 illustrates the problem. The origi-
nal rule shown can be used to prove both the positive
and negative examples, and deleting this rule or incre-
menting its threshold only prevents the positive exam-
ple from being proved. Assume that induction returns
a new feature, d, which can be used to distinguish the
two examples (i.e., d is true for the positive example
but false for the negative example). Because the orig-
inal rule has a threshold, adding d directly will still
allow both examples to prove the rule. This problem
remains even if one tries to increment the threshold in
addition to adding d. Instead, the rule must be split

by renaming the consequent of the original rule, and
creating a new rule with the renamed consequent and
the results of induction as the new rule's antecedent
list.

3 Experimental Results

In the experiments which follow, there are two ver-
sions of the Neither algorithm. The �rst has only
the speedup changes and is termed simply Neither.
The second includes M-of-N re�nements and is termed
Neither-MofN.

Extending Theory Re�nement to M-of-N Rules Informatica 17 page xxx{yyy 5

example features pos. example neg. example

b, c, d b, :c, d b, c, :d

orig. rule pos. example neg. example

a 1 of (b,c) Y Y

add to rule pos. example neg. example

a 1 of (b,c,d) Y Y

split rule pos. example neg. example

X 1 of (b,c) Y Y
a X,d Y N

Table 2: Induced Antecedent Addition.

3.1 The DNA Promoter Domain

3.1.1 Experimental Design

We tested both Neither and Neither-MofN

against other classi�cation algorithms using the DNA
promoter sequences data set [20]. This data set in-
volves 57 features, 106 examples, and 2 categories.
The theory provided with the data set is supposed to
recognize promoters in strings of nucleotides. A pro-
moter is a genetic region which initiates the �rst step
in the expression of an adjacent gene transcription.
However, the original theory has an initial classi�ca-
tion accuracy of only 50%. We selected this particular
data set because the original Either algorithm was
outperformed by other systems on this data due to
the M-of-N qualities required to reason correctly in
this domain. In addition to testing Either, Neither
and Neither-MofN, we ran experiments using Id3

[13], backpropagation [16] and Rapture [6] (a revision
system based on certainty factors). We also included
data on the performance of Kbann on this data set as
reported in [20].
The experiments proceeded as follows. Each data

set was divided into training and test sets. Training
sets were further divided into subsets, so that the al-
gorithms could be evaluated with varying amounts of
training data. After training, each system's accuracy
was recorded on the test set. To reduce statistical
uctuations, the results of this process of dividing the
examples, training, and testing were averaged over 25
runs. The random seeds for the backpropagation al-
gorithm were reset for each run. Training time, and
test set accuracy were recorded for each run. Statis-
tical signi�cance was measured using a Student t-test
for paired di�erence of means at the 0.05 level of con-
�dence (i.e., 95% certainty that the di�erences are not
due to random chance).

3.1.2 Results

The results of our experiments are shown in the three
graphs of Figures 4, 5 and 6. Figure 4 compares the
learning curves of the systems tested, showing how
predictive accuracy on the test set changes as a func-

Test Accuracy

RAPTURE
NEITHER−MofN
KBANN
BACKPROP

NEITHER

EITHER

ID3

% Correct

Train Exs45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

0.00 20.00 40.00 60.00 80.00

Figure 4: DNA Test Set Accuracy.

tion of the number of training examples. As can be
seen Neither-MofN's performance was signi�cantly
better than all other systems except Rapture and
Kbann.2 Rapture out-performed Neither-MofN

with small numbers of training examples but their ac-
curacy was comparable with larger inputs. Neither's
accuracy was on par with backpropagation, but was
lower than Either for small training sets and higher
than Either for large training sets. Note, that Fig-
ure 4 is not direct comparison ofNeither andKbann
since the results reported were compiled from di�erent
subsets of the DNA promoter sequences data set. Id3
had signi�cantly lower accuracy than the other sys-
tems.
Figure 5 shows a comparison of training times. Both

Neither-MofN and Neither were more than an
order of magnitude faster than backpropagation and
Either. Only Id3 ran faster than Neither-MofN.
We also collected data on the average complexity of

the revised theories produced by both Neither and
Neither-MofN. Complexity was measured as the
total size; i.e., the total number of all literals in the
theory. The results are shown in Figure 6. As can be
seen from this graph, Neither-MofN not only pro-
duces less complex resulting theories but also produces
theories closer in size to the original.

3.1.3 Discussion

Many of our expectations were borne out by the exper-
imental results. Both Neither and Neither-MofN

ran more than an order of magnitude faster than
Either due to the optimized algorithms discussed in

2Technically, the last di�erence between backpropagation
and Neither-MofN was only signi�cant at the 0.1 level.

6 Informatica 17 page xxx{yyy Ba�es and Mooney

Seconds

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Backprop Either Rapture Neither ID3

Training Time (90 examples)

298.7

156.2

20.1
8.7 5.5 2.2

Neither−MofN

Figure 5: DNA Training Time Comparison.

section 2. Neither-MofN's increase in accuracy was
also expected since the new algorithm is able to con-
centrate on making M-of-N revisions directly. Also,
the fact that Neither-MofN generates less complex
theories is not surprising, again because it can directly
modify threshold values rather than create new rules.
In short, by adding one more operator to the general-
ization and specialization processes, Neither-MofN

is able to accurately revise a theory known to be dif-
�cult for symbolic systems, without having to sacri-
�ce the e�ciency of a symbolic approach. Finally,
the most comparable learning-curve results from [20]
would indicate thatKbann's accuracy in the promoter
domain is about the same as Neither-MofN's.

The most surprising result of the experiments was
the di�erence in accuracy between the originalEither
algorithm and Neither. As stated above, Either
was more accurate with fewer training examples, but
its accuracy dropped o� relative to Neither as the
number of examples increased. One possible explana-
tion for this behavior lies in the di�erence between how
the two systems compare potential revisions (see Fig-
ure 3). Recall that Either computes multiple repairs
for each example, but does so only once. Neither,
by contrast, computes one repair per example each
time through its main loop. As a result, with fewer
training examples, Either has more potential revi-
sions to examine, apparently giving it an edge over
Neither. Even though Neither computes new re-
pairs each time it iterates, there may not be enough
iterations to generate as rich a set of deletions as is
done in one step by Either. On the other hand, as
the number of training examples grows, Neither un-
dergoes many more iterations, each computing new

Concept Complexity

NEITHER

NEITHER-MofN

Literals

Train Exs
70.00

75.00

80.00

85.00

90.00

95.00

100.00

105.00

110.00

115.00

120.00

125.00

130.00

135.00

140.00

145.00

150.00

0.00 20.00 40.00 60.00 80.00

Figure 6: DNA Concept Complexity.

repairs in light of any previous revisions. By con-
trast, Either computes its repairs for each example
independently, missing out on any interactions which
might occur when the revisions are applied to the the-
ory in a particular order. Capturing these interactions
may be one reason Neither out-performs Either

with large numbers of examples.

3.2 The Shock Diagnosis Domain

A second set of experiments was run to test Neither's
ability to repair faulty theories. The data for this
experiment was borrowed from a separate research
project designed to test nursing students retention of
concepts for determining if a patient is su�ering from
shock [8]. Each patient can be labeled in one of four
ways: as su�ering from hypovolemic, cardiogenic, or
vascular tone shock, or as not in shock. A theory for
diagnosing shock was written using the de�nitions and
examples presented to the students and consultations
with a medical expert. The �nal theory is shown in
Figure 7.

This data set was chosen for two reasons. First,
it represents another real-world domain which has
an M-of-N avor (the \shock" concept in the the-
ory is represented using a threshold rule). Second,
Neither's ability to re�ne theories in this domain is
the centerpiece of another of our research e�orts in
student modeling [1]. In short, a student modeling al-
gorithm must be able to recover from a variety of de-
viations from the correct theory in order to be useful
to a variety of students.

Extending Theory Re�nement to M-of-N Rules Informatica 17 page xxx{yyy 7

hypovolemic shock disrupted-blood-volume
cardiogenic shock ine�ective-pumping-action
vascular-tone shock disrupted-vascular-tone
shock 3 of ((pulse rising) (respiration rising)

(blood-pressure falling) (urine-output low)
(mental-status strained) skin-abnormal)

shock (patient pregnant) (symptoms blood-loss)
(mental-status strained) skin-abnormal

skin-abnormal (skin cool-clamy)
skin-abnormal (skin hot-ushed)
disrupted-blood-volume (symptoms uid-loss)
disrupted-blood-volume (symptoms blood-loss)
ine�ective-pumping-action (symptoms cardiac)
disrupted-vascular-tone (symptoms infection)
disrupted-vascular-tone (symptoms allergy)
disrupted-vascular-tone (symptoms neural)

Figure 7: Shock Domain Theory.

3.2.1 Experimental Design

The basic design of this experiment was to introduce
faults into the correct shock theory and test how well
Neither-MofN could re�ne the result. The follow-
ing �ve alterations were injected into the theory with
equal probability: antecedent deletions, antecedent
additions, rule deletions, rule additions, and thresh-
old changes. A modi�cation factor was passed to the
algorithm which made the alterations indicating the
percentage of antecedents in the theory to be changed.
Consequently, a modi�cation factor of 0:1 indicated
that roughly 10% of the antecedents in the theory
would be modi�ed.

Data for training and testing was drawn from a pool
of 150 examples equally representative of the three cat-
egories of shock. These 150 examples were randomly
generated using the correct theory. For each category,
40 positive examples and 10 near-miss negative exam-
ples were created. Thus, of the 150 total cases, 120
examples belonged to one of the three categories of
shock and 30 were non-shock examples.

A three-phased experiment was run. In each ex-
periment, the 150 examples were �rst split randomly
into 100 training examples and 50 test examples. The
original theory was then subjected to three indepen-
dent modi�cations of 0:1, 0:2 and 0:3. Each resulting
theory was re�ned by Neither-MofN using the same
100 training examples. The theories were tested both
before and after re�nement using the same 50 test ex-
amples. This entire process was repeated 10 times,
and the results averaged. For comparison purposes,
we also ran the same training data through a propo-
sitional version of the Foil inductive learner [14] and
tested the results using the same test data, averaging
the results of the 10 trials.

3.2.2 Results

Table 3 shows the results of the recovery experi-
ments. Note that the results for Foil are identical
for each experiment since induction does not make
use of an input theory. In each of the three experi-
ments, Neither-MofN was able to reconstruct a the-
ory to perfect or near perfect accuracy on the test data.
Neither-MofN was also able to create more accu-
rate theories than induction alone. Tests were also
run using the non-threshold version of Neither but
the results were nearly identical to those reported for
Neither-MofN (there was no statistically signi�cant
di�erence between Neither and Neither-MofN on
this data).

3.2.3 Discussion

The results of Table 3 are largely what one would
expect for a good theory re�nement algorithm. As
the theory deviated more and more from the orig-
inal, the performance of the altered theory on the
test data continued to decline. Likewise, the abil-
ity of Neither-MofN to repair the theory declined
with increasingly altered theories, though only slightly.
Yet in all cases, Neither-MofN was able to re-
�ne a wide variety of damaged theories to a high
level of performance on novel test data. Addition-
ally,Neither-MofN was able to create more accurate
theories than induction alone by taking advantage of
input theories which were at least partly correct. Fi-
nally, though Neither-MofN was unable to exactly
duplicate the original theory in all cases, the re�ne-
ments made seemed reasonable in light of the alter-
ations made in the modi�ed theories.

4 Related Work

Several researchers have developed methods for induc-
ing M-of-N concepts from scratch. CRLS [17] learns
M-of-N rules and out-performed standard rule induc-
tion in several medical domains. ID-2-of-3 [9] incorpo-
rates M-of-N tests in decision-tree learning and out-
performed standard decision-tree induction in a num-
ber of domains. Both projects clearly demonstrate the
advantages of M-of-N rules.
Seek2 [5] includes operators for re�ning M-of-N

rules; however, its revision process is heuristic and it
is not guaranteed to produce a revised theory that is
consistent with all of the training examples. Neither
uses a greedy covering approach to guarantee that it
�nds a set of revisions that �x all of the misclassi�ed
examples in the training set. Also, unlike Neither,
Seek2 cannot learn new rules or add new antecedents
to existing rules.
Kbann [19] revises a theory by translating it into

a neural network, using backpropagation to re�ne the

8 Informatica 17 page xxx{yyy Ba�es and Mooney

0.1 modi�ed theory 0.2 modi�ed theory 0.3 modi�ed theory

before re�nement 68.25 50.25 43.5
after re�nement 100.0 94.0 94.0
induction 80.4 80.4 80.4

Table 3: Shock Test Set Accuracy.

weights, and then retranslating the result back into
symbolic rules. Neither's symbolic revision process
is much more direct and, from all indications, signi�-
cantly faster. Although Kbann's results are referred
to as M-of-N rules, they actually contain real-valued
antecedent weights and therefore are not strictly M-
of-N. In addition, Kbann's revised theories for the
promoter problem are also more complex in terms of
number of antecedents than the initial theory [20],
while Neither actually produces a slight reduction.
Therefore, Neither's revised theories are less com-
plex and presumably easier to understand. Finally,
unlike Kbann, Neither is guaranteed to converge to
100% accuracy on the training data.
Rapture [6] uses a combination of symbolic and

neural-network learning methods to revise a certainty-
factor rule base [2]. Consequently, it lies some-
where between Neither and Kbann on the symbolic-
connectionist dimension. As illustrated in the results,
its accuracy on the promoter problem is only slightly
superior to Neither's. However, its real-valued cer-
tainty factors make its rules more complex.

5 Future Work

The current version of Neither needs to be enhanced
to handle a number of issues. We need to incorporate a
number of advanced features from the originalEither
algorithm, such as constructive induction, modi�ca-
tion of higher-level rules, and the ability to handle nu-
merical features and noisy data. Also, we could extend
our methods to handle negation as failure and incor-
porate the ability to handle M-of-N rules into �rst-
order theory revision [15]. The inductive component
of Neither should be modi�ed to produce threshold
rules directly, rather than symbolic rules. Finally, we
need to perform a more comprehensive experimental
evaluation of the system.

6 Conclusions

This paper has presented an e�cient propositional the-
ory re�nement system that is capable of revising M-
of-N rules. The basic framework is a modi�cation
of Either [11]; however, the construction of partial
proofs has been reduced from exponential to linear
time and a method for revising the thresholds of M-of-
N rules has been incorporated. The resulting system

runs more than an order of magnitude faster and pro-
duces signi�cantly more accurate results in domains
requiring partial matching, such as the problem of rec-
ognizing promoters in DNA.

Acknowledgments

This research was supported by the NASA Gradu-
ate Student Researchers Program under grant number
NGT-50732, the National Science Foundation under
grant IRI-9102926, and a grant from the Texas Ad-
vanced Research Program under grant 003658144. We
would like to thank Jude Shavlik, Geo� Towell, and
Marylin Murphy for generously providing the DNA
and Shock data sets. Special thanks also to Chris
Whatley for his help implementing Neither and to
Dr. Thomas Ba�es for his invaluable help in develop-
ing the rules for the shock domain.

References

[1] P. Ba�es and R. J. Mooney. Using theory re-
vision to model students and acquire stereotypi-
cal errors. In Proceedings of the Thirteenth An-

nual Conference of the Cognitive Science Society,
pages 617{622, Bloomington, IN, 1992.

[2] G.G. Buchanan and eds. E.H. Shortli�e. Rule-

Based Expert Systems:The MYCIN Experiments

of the Stanford Heuristic Programming Project.
Addison-Wesley Publishing Co., Reading, MA,
1984.

[3] A. D. Danyluk. Gemini: An integration of analyt-
ical and empirical learning. In Proceedings of the

International Workshop on Multistrategy Learn-

ing, pages 191{206, Harper's Ferry, W.Va., Nov.
1991.

[4] A. Ginsberg. Theory reduction, theory revi-
sion, and retranslation. In Proceedings of the

Eighth National Conference on Arti�cial Intelli-

gence, pages 777{782, Detroit, MI, July 1990.

[5] A. Ginsberg, S. M. Weiss, and P. Politakis. Auto-
matic knowledge based re�nement for classi�ca-
tion systems. Arti�cial Intelligence, 35:197{226,
1988.

[6] J. J. Mahoney and R. J. Mooney. Combining
neural and symbolic learning to revise probabilis-
tic rule bases. In S.J. Hanson, J.C. Cowan, and

Extending Theory Re�nement to M-of-N Rules Informatica 17 page xxx{yyy 9

C.L. Giles, editors, Advances in Neural Informa-

tion Processing Systems, Vol. 5, pages 107{114,
San Mateo, CA, 1993. Morgan Kaufman.

[7] S. Matwin and B. Plante. A deductive-inductive
method for theory revision. In Proceedings of the

International Workshop on Multistrategy Learn-

ing, pages 160{174, Harper's Ferry, W.Va., Nov.
1991.

[8] Marilyn A. Murphy and Gayle V. Davidson.
Computer-based adaptive instruction: E�ects of
learner control on concept learning. Journal of

Computer-Based Instruction, 18(2):51{56, 1991.

[9] P. M. Murphy and M. J. Pazzani. ID2-of-3: Con-
structive induction of M-of-N concepts for dis-
criminators in decision trees. In Proceedings of

the Eighth International Workshop on Machine

Learning, pages 183{187, Evanston, IL, June
1991.

[10] D. Ourston. Using Explanation-Based and Em-

pirical Methods in Theory Revision. PhD thesis,
University of Texas, Austin, TX, August 1991.
Also appears as Arti�cial Intelligence Laboratory
Technical Report AI 91-164.

[11] D. Ourston and R. Mooney. Changing the rules:
A comprehensive approach to theory re�nement.
In Proceedings of the Eighth National Conference

on Arti�cial Intelligence, pages 815{820, Detroit,
MI, July 1990.

[12] D. Ourston and R. J. Mooney. Theory re�nement
combining analytical and empirical methods. Ar-
ti�cial Intelligence, in press.

[13] J. R. Quinlan. Induction of decision trees. Ma-

chine Learning, 1(1):81{106, 1986.

[14] J.R. Quinlan. Learning logical de�nitions from
relations. Machine Learning, 5(3):239{266, 1990.

[15] B. Richards and R.Mooney. First-order theory re-
vision. In Proceedings of the Eighth International

Workshop on Machine Learning, pages 447{451,
Evanston, IL, June 1991.

[16] D. E. Rumelhart, G. E. Hinton, and J. R.
Williams. Learning internal representations by
error propagation. In D. E. Rumelhart and J. L.
McClelland, editors, Parallel Distributed Process-
ing, Vol. I, pages 318{362. MIT Press, Cam-
bridge, MA, 1986.

[17] K. A. Spackman. Learning categorical decision
criteria in biomedical domains. In Proceedings

of the Fifth International Conference on Machine

Learning, pages 36{46, Ann Arbor, MI, June
1988.

[18] G. Towell and J. Shavlik. Re�ning symbolic
knowledge using neural networks. In Proceedings

of the International Workshop on Multistrategy

Learning, pages 257{272, Harper's Ferry, W.Va.,
Nov. 1991.

[19] G. Towell and J. Shavlik. Interpretation of arti�-
cial neural networks: Mapping knowledge-based
neural networks into rules. In R. Lippmann,
J. Moody, and D. Touretzky, editors, Advances
in Neural Information Processing Systems, vol-
ume 4. Morgan Kaufmann, 1992.

[20] G. G. Towell. Symbolic Knowledge and Neural

Networks: Insertion, Re�nement, and Extraction.
PhD thesis, University of Wisconsin, Madison,
WI, 1991.

[21] B. L. Whitehall, S. C. Lu, and R. E. Stepp. The-
ory completion using knowledge-based learning.
In Proceedings of the International Workshop on

Multistrategy Learning, pages 144{159, Harper's
Ferry, W.Va., Nov. 1991.

