
Appears in Working Notes of the IJCAI-97 Workshop on Frontiers of Inductive 
Logic Programming, pp.7-11, Nagoya, Japan, August 1997

Applying ILP-based Techniques to Natural Language Information
Extraction: An Experiment in Relational Learning

Mary Elaine Cali� and Raymond J. Mooney
Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712

fmecali�,mooneyg@cs.utexas.edu

1 Introduction

In complex and context-rich domains, inductive
logic programming (ILP) has some advantages over
propositional, or feature-based, machine learning al-
gorithms. The feature-based systems require that
the examples be reduced to a �nite, manageable
set of features. Development of such a set of fea-
tures can require signi�cant representation engineer-
ing and may still exclude important contextual infor-
mation. A �rst order logic representation can repre-
sent a richer set of features and more easily capture
contextual information. ILP also allows the use of
background knowledge, and the resulting rules are
often more comprehensible. The comprehensibility
of symbolic rules makes it easier for the system de-
veloper to understand and verify the resulting sys-
tem and perhaps even edit the learned knowledge
[Cohen, 1996].

One domain with the complexity to make rela-
tional learning preferable to feature-based learning
is natural language processing (NLP). Detailed ex-
perimental comparisons of ILP and feature-based in-
duction have demonstrated the advantages of rela-
tional representations in two language related tasks,
text categorization [Cohen, 1995] and generating the
past tense of an English verb [Mooney and Cali�,
1995].

However, for some NLP tasks, �rst order logic rep-
resentations may be very di�cult to produce. One
such task is information extraction (IE), in which
speci�c pieces of information are extracted from nat-
ural language documents. To actually use induc-
tive logic programming to learn rules for this task,
one would have to be able to robustly produce a
�rst order representation of the original documents.
However, relational learning does not have to lim-
ited to �rst order logic representations [Blockeel and
deRaedt, 1996]. Therefore, we have chosen instead
to apply ILP-based techniques to a rule representa-

tion more suited to the task. Using only a corpus
of documents paired with �lled templates, Rapier
(Robust Automated Production of Information Ex-
traction Rules) learns unbounded Eliza-like patterns
[Weizenbaum, 1966] that utilize limited syntactic in-
formation, such as the output of a part-of-speech
tagger. Induced patterns can also easily incorporate
semantic class information, such as that provided by
WordNet [Miller et al., 1993].

The remainder of this paper is organized as fol-
lows. Section 2 presents background material on
IE and describes the speci�c ILP systems which in-
spired our algorithm. Section 3 describes Rapier's
rule representation and learning algorithm. Section
4 presents and analyzes results obtained on extract-
ing information from messages posted to the news-
group misc.jobs.offered. Section 5 presents our
conclusions.

2 Background

2.1 Information Extraction

Information extraction is the task of locating speci�c
pieces of data from a natural language document,
and has been the focus of ARPA's Message Under-
standing Conferences (MUC) [Lehnert and Sund-
heim, 1991; ARPA, 1992; 1993]. Usually the data
to be extracted is described by a template specify-
ing a list of slots to be �lled. For example, Figure 1
shows part of a job posting, and the corresponding
slots of the �lled computer-science job template.

IE can be useful in a variety of domains. The
various MUC's have focused on domains such as
Latin American terrorism, joint ventures, microelec-
tronics, and company management changes. Others
have used IE to track medical patient records [Soder-
land et al., 1995] or company mergers [Hu�mann,
1996]. The general task considered in this paper is
extracting information from postings to USENET
newsgroups, such as job announcements.



Posting from Newsgroup

Telecommunications. SOLARIS Systems
Administrator. 38-44K. Immediate need

Leading telecommunications firm in need

of an energetic individual to fill the
following position in the Atlanta

office:

SOLARIS SYSTEMS ADMINISTRATOR
Salary: 38-44K with full benefits

Location: Atlanta Georgia, no
relocation assistance provided

Filled Template

computer_science_job
title: SOLARIS Systems Administrator

salary: 38-44K
state: Georgia

city: Atlanta
platform: SOLARIS

area: telecommunications

Figure 1: Sample Message and Filled Template

2.2 Related ILP Systems

The Rapier algorithm employs a primarily bottom-
up search and was inspired by three di�erent ILP
systems. Each of these are briey described in or-
der more clearly show how we use the learning tech-
niques developed in ILP with an alternate represen-
tation.

Golem [Muggleton and Feng, 1992] employs a
bottom-up algorithm based on the construction of
relative least-general generalizations, rlggs [Plotkin,
1970]. The algorithm operates by randomly select-
ing pairs of positive examples, computing the deter-
minate rlggs of each pair, and selecting the resulting
consistent clauses with the greatest coverage of pos-
itive examples. That clause is further generalized
by computing the rlggs of the clause with new ran-
domly selected positive examples, and generalization
terminates when the coverage of the best consistent
clause stops improving.

The Chillin [Zelle and Mooney, 1994] system
combines top-down (general to speci�c) and bottom-
up ILP techniques. The algorithm starts with a
most speci�c de�nition (the set of positive exam-
ples) and introduces generalizations which make the
de�nition more compact. Generalizations are cre-
ated by selecting pairs of clauses in the de�nition
and computing LGGs. If the resulting clause covers
negative examples, it is specialized by adding an-
tecedent literals in a top-down fashion. The search
for new literals is carried out in a hill-climbing fash-

ion, using an information gain metric for evaluating
literals. This is similar to the search employed by
Foil [Quinlan, 1990]. In cases where a correct clause
cannot be learned with the existing background rela-
tions, Chillin attempts to construct new predicates
which will distinguish the covered negative examples
from the covered positives. At each step, a number
of possible generalizations are considered; the one
producing the greatest compaction of the theory is
implemented, and the process repeats. Chillin uses
the notion of empirical subsumption, which means
that as new, more general clauses are added, all of
the clauses which are not needed to prove positive
examples are removed from the de�nition.

Progol [Muggleton, 1995] also combines bottom-
up and top-down search. Using mode declarations
provided for both the background predicates and the
predicate being learned, it constructs a most speci�c
clause for a random seed example. The mode decla-
rations specify for each argument of each predicate
both the argument's type and whether it should be
a constant, a variable bound before the predicate is
called, or a variable bound by the predicate. Given
this most speci�c clause, Progol employs an A*-
like search through the set of clauses containing up
to k literals from that clause in order to �nd the
simplest consistent generalization to add to the def-
inition. Advantages of Progol are that the con-
straints on the search make it fairly e�cient, espe-
cially on some types of tasks for which top-down
approaches are particularly ine�cient, and that its
search is guaranteed to �nd the simplest consistent
generalization if such a clause exists with no more
than k literals. The primary problems with the sys-
tem are its need for the mode declarations and the
fact that too small a k may prevent Progol from
learning correct clauses while too large a k may allow
the search to explode.

3 Rapier System

3.1 Rule Representation

Rapier's rule representation uses patterns that
make use of limited syntactic and semantic informa-
tion, using freely available, robust knowledge sources
such as a part-of-speech tagger and a lexicon with se-
mantic classes, such as the hypernym links in Word-
Net [Miller et al., 1993]. The initial implementation
does not use a parser, primarily because of the dif-
�culty of producing a robust parser for unrestricted
text and because simpler patterns of the type we pro-
pose can represent useful extraction rules for at least
some domains. The extraction rules are indexed by



Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: leading 1) list: len: 2 1) word: [�rm, company]

tags: [nn, nns]

Figure 2: A Rule Extracting an Area Filler from the
Example Document

template name and slot name and consist of three
parts: 1) a pre-�ller pattern that must match the
text immediately preceding the �ller, 2) a pattern
that must match the actual slot �ller, and 3) a post-
�ller pattern that must match the text immediately
following the �ller. Each pattern is a sequence (pos-
sibly of length zero in the case of pre- and post-�ller
patterns) of pattern items or pattern lists. A pattern
item matches exactly one word or symbol from the
document that meets the item's constraints. A pat-
tern list speci�es a maximum length N and matches
0 to N words or symbols from the document that
each must match the list's constraints. Possible con-
straints are: a list of words, one of which must match
the document item; a list of part-of-speech (POS)
tags, one of which must match the document item's
POS tag; a list of semantic classes, one of which
must be a class that the document item belongs to.
Figure 2 shows a rule created by hand that extracts
the area �ller from the example document in �g-
ure reftemplate. This rule assumes that the docu-
ment has been tagged with the POS tagger of [Brill,
1994].

3.2 The Learning Algorithm

As noted above, Rapier's algorithm primarily con-
sists of a speci�c to general (bottom-up) search.
First, for each slot, most-speci�c patterns are cre-
ated for each example, specifying word and tag for
the �ller and its complete context. Thus, the pre-
�ller pattern contains an item for each word from
the beginning of the document to the word imme-
diately preceding the �ller with constraints on the
item consisting of the word and its assigned POS
tag. Likewise, the �ller pattern has one item from
each word in the �ller, and the post-�ller pattern has
one item for each word from the end of the �ller to
the end of the document.

Given this maximally speci�c rule-base, Rapier
attempts to compress and generalize the rules for
each slot. New rules are created by selecting two
existing rules and creating a generalization. The
aim is to make small generalization steps, covering
more positive examples without generating suprious
�llers, so a standard approach would be to generate
the least general generalization (LGG) of the pair

of rules. However, in this particular representation
which allows for unconstrained disjunction, the LGG
may be overly speci�c. Therefore, in cases where the
LGG of two constraints is their disjunction, we want
to create two generalizations: one would be the dis-
junction and the other the removal of the constraint.
Thus, we often want to consider multiple generaliza-
tion of a pair of items. This, combined with the fact
that patterns are of varying length, making the num-
ber of possible generalizations of two long patterns
extremely large, makes the computational cost of
producing all interesting generalizations of two com-
plete rules prohibitive. But, while we do not want
to arbitrarily limit the length of a pre-�ller or post-
�ller pattern, it is likely that the important parts of
the pattern will be close to the �ller. Therefore, we
start by computing the generalizations of the �ller
patterns of the two rules and create rules from those
generalizations. We maintain a list of the best n

rules created and specialize the rules under consid-
eration by adding pieces of the generalizations of the
pre- and post-�ller patterns of the two seed rules,
working outward from the �llers. The rules are or-
dered using an information value metric [Quinlan,
1990] weighted by the size of the rule (preferring
smaller rules). When the best rule under consider-
ation produces no negative examples, specialization
ceases; that rule is added to the rule base, and all
rules empirically subsumed by it are removed. Spe-
cialization will be abandoned if the value of the best
rule does not improve across k specialization itera-
tions. Compression of the rule base for each slot is
abandoned when the number of successive iterations
of the compression algorithm which fail to produce
a compressing rule exceed either a pre-de�ned limit
or the number of rules for that slot. An outline of
the algorithm appears in Figure 3 where RuleList is
a prioritized list of no more than Beam-Width rules.
The search is somewhat similar to a beam search in
that a limited number of rules is kept for considera-
tion, but all rules in RuleList are expanded at each
iteration, rather than only the best.

4 Evaluation

This section presents preliminary results obtained
with the current version of Rapier on computer-
related job posting domain. The template contains
17 slots, including information about the employer,
the location, the salary, and job requirements. Sev-
eral of the slots, such as the languages and platforms
used, can take multiple values. The current results
do not employ semantic categories, only words and
the results of Brill's POS tagger.



For each slot, S in the template being learned
SlotRules = most speci�c rules from documents for S
while compression has failed fewer than lim times

randomly select 2 rules, R1 and R2, from S

�nd the set L of generalizations of the �llers of
R1 and R2

create rules from L, evaluate, and initialize
RuleList

while best rule in RuleList produces spurious
�llers and the weighted information value
of the best rule is improving

specialize each rule in RuleList with general-
izations of the last n items of the pre-�ller
patterns of R1 and R2 and add
specializations to RuleList

specialize each rule in RuleList with general-
izations of the �rst n items of the post-�ller
patterns of R1 and R2 and add
specializations to RuleList

if best rule in RuleList produces only valid �llers
Add it to SlotRules and remove empirically

subsumed rules

Figure 3: Rapier Algorithm for Inducing IE Rules

The experiments presented here use a data set of
100 documents paired with �lled templates. The av-
erage docuemnt length is over 200 words. We did a
ten-fold cross-validation, dividing the data into 10
distinct testing sets and training on the remaining
90 documents. To evaluate the performance of the
system with varying amounts of training data, we
also ran tests with smaller subsets of the training
examples for each test set and produced learning
curves. Tests of machine learning systems usually
measure simple accuracy: the number of examples
that are correctly classi�ed. In this type of task,
however, since we don't have a set number of ex-
amples to be classi�ed, simple accuracy has no clear
meaning. There are really two measures which are
important: precision, which is the percentage of the
slot �llers which the system �nds which are correct,
and recall, which is the percentage of the slot �llers
in the correct templates which are found by the sys-
tem. If both precision and recall are 100%, then the
results are completely correct. Lower precision indi-
cates that the system is producing spurious �llers:
that its rules are overly general. Lower recall indi-
cates that the system is failing to �nd correct �llers:
that its rules are too speci�c. Recent MUC confer-
ences have introduced an F-measure [ARPA, 1992],
combining precision and recall in order to provide
a single number measurement for IE systems. We
report the precision, recall, and F-measure with pre-
cision and recall weighted equally. For these experi-
ments, we used the default values for all parameters

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

Training Examples

Precision
Recall

F-Measure

Figure 4: Performance on job postings

of the Rapier algorithm: a beam-width of 10, stop-
ping after 5 failures to compress, and abandoning
specialization after 3 specialization iterations fail to
produce a new best rule.

Figure 4 shows the learning curves generated.
At 90 training examples, the average precision was
83.7% and the average recall was 53.1%. These num-
bers look quite promising when compared to the
measured performance of other IE systems on var-
ious domains [Soderland et al., 1995; Rilo�, 1996;
ARPA, 1992; 1993]. These comparisons are general,
since the tasks are di�erent, but they do indicate
that Rapier is doing relatively well.

It should be noted that the precision is close to
80% even with only 15 example documents. The
\bottom-up" nature of the algorithm, coupled with
the fact that the algorithm does not allow cover-
age of negatives, encourage it to create fairly speci�c
rules, leading to this high precision. While the recall
is less encouraging, it is likely that recall with con-
tinue to improve as the number of training examples
increases.

5 Conclusion

Although ILP has advantages over propositional
learning algorithms, its representation (�rst order
logic) is not appropriate for some tasks which, be-
cause of their complexity, do require relational learn-
ing algorithm. We have developed a representation
and a relational learning algorithm for one of these
tasks, natural language information extraction. The
success of this ILP-based algorithm on an alternate
representation again demonstrates the utility of ILP
research in areas far outside logic programming.



References

[ARPA, 1992] ARPA, editor. Proceedings of the
Fourth DARPA Message Understanding Evalua-
tion and Conference, San Mateo, CA, 1992. Mor-
gan Kaufman.

[ARPA, 1993] ARPA, editor. Proceedings of the
Fifth DARPA Message Understanding Evaluation
and Conference, San Mateo, CA, 1993. Morgan
Kaufman.

[Blockeel and deRaedt, 1996] Henrik Blockeel and
Luc deRaedt. Relational knowledge discovery
in databases. In Proceedings of the Sixth Inter-
national Workshop on Inductive Logic Program-
ming", pages 1{13, 1996.

[Brill, 1994] Eric Brill. Some advances in rule-based
part of speech tagging. In Proceedings of the
Twelfth National Conference on Arti�cial Intel-
ligence, 1994.

[Cohen, 1995] W. W. Cohen. Text categoriza-
tion and relational learning. In Proceedings of
the Twelfth International Conference on Machine
Learning, pages 124{132, San Francisco, CA,
1995. Morgan Kaufman.

[Cohen, 1996] W. W. Cohen. Learning rules that
classify e-mail. In Papers from the AAAI Spring
Symposium on Machine Learning in Information
Access, pages 18{25. AAAI Press, 1996.

[Hu�mann, 1996] Scott B. Hu�mann. Learning
information extraction patterns from examples.
In Stefan Wermter, Ellen Rilo�, and Gabriele
Scheller, editors, Connectionist, Statistical, and
Symbolic Approaches to Learning for Natural Lan-
guage Processing, Lecture Notes in Arti�cial Intel-
ligence, pages 246{260. Springer, 1996.

[Lehnert and Sundheim, 1991] Wendy Lehnert and
Beth Sundheim. A performance evaluation
of text-analysis technologies. AI Magazine,
12(3):81{94, 1991.

[Miller et al., 1993] G. Miller, R. Beckwith, C. Fell-
baum, D. Gross, and K. Miller. Introduction to
WordNet: An on-line lexical database. Available
by ftp to clarity.princeton.edu, 1993.

[Mooney and Cali�, 1995] R. J. Mooney and M. E.
Cali�. Induction of �rst-order decision lists: Re-
sults on learning the past tense of English verbs.
Journal of Arti�cial Intelligence Research, 3:1{24,
1995.

[Muggleton and Feng, 1992] S. Muggleton
and C. Feng. E�cient induction of logic programs.

In S. Muggleton, editor, Inductive Logic Program-
ming, pages 281{297. Academic Press, New York,
1992.

[Muggleton, 1995] Steve Muggleton. Inverse entail-
ment and Progol. New Generation Computing
Journal, 13:245{286, 1995.

[Plotkin, 1970] G. D. Plotkin. A note on induc-
tive generalization. In B. Meltzer and D. Michie,
editors, Machine Intelligence (Vol. 5). Elsevier
North-Holland, New York, 1970.

[Quinlan, 1990] J.R. Quinlan. Learning logical
de�nitions from relations. Machine Learning,
5(3):239{266, 1990.

[Rilo�, 1996] Ellen Rilo�. Automatically generating
extraction patterns from untagged text. In Pro-
ceedings of the Thirteenth National Conference on
Arti�cial Intelligence, pages 1044{1049, 1996.

[Soderland et al., 1995] Stephen Soderland,
D. Fisher, J. Aseltine, and W. Lehnert. Crystal:
Inducing a conceptual dictionary. In Proceedings
of the Fourteenth International Joint Conference
on Arti�cial Intelligence, pages 1314{1319, 1995.

[Weizenbaum, 1966] J. Weizenbaum. ELIZA { A
computer program for the study of natural lan-
guage communications between men and ma-
chines. Communications of the Association for
Computing Machinery, 9:36{45, 1966.

[Zelle and Mooney, 1994] J. M. Zelle and R. J.
Mooney. Combining top-down and bottom-up
methods in inductive logic programming. In Pro-
ceedings of the Eleventh International Confer-
ence on Machine Learning, pages 343{351, New
Brunswick, NJ, July 1994.


