
Combining Symbolic and Connectionist Learning Methods to

Re�ne Certainty-Factor Rule-Bases

by

J. Je�rey Mahoney, MS, MM, BA

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May, 1996

To all the great people who have been such tremendous sources of inspiration, and have so

signi�cantly enriched my life. These include Mariah Carey, John Coltrane, Edsgar Dijkstra,

Albert Einstein, Annette Funicello, Judy Garland, Anatoly Karpov, Stan Kenton, David

Letterman, Robert Mahoney, John Newcombe, Arnold Palmer, Charlie Parker, Dave Pelz, Harvey

Penick, Oscar Peterson, Monica Seles, Tracy York, Je� Vandiver, Pepper Von, Zig Ziglar, as well

as all of the beautiful women of Austin aerobics! To you this work is dedicated...

Acknowledgments

I am indebted to many people for helping me with the research presented here, as well as with the

completion of this document. I must �rst acknowledge Ray Mooney for his assistance, insights,

persistence, and unending patience in guiding me through this most trying process. Thanks also go

to Geo� Towell of Seimens Corporate Research, Jude Shavlik, Mark Cravens, and David Opitz of

The University of Wisconsin for their help with the DNA datasets, as well as with Kbann results.

Also thanks to Yong Ma of The University of Illinois for supplying the Mycin rule base. Finally,

I must thank many of my colleagues for their support, proofreading, as well as keeping my spirits

high when things appeared low. Special thanks go out to Paul Ba�es, John Zelle, Dan Clancy, Cindi

Thompson, Dave Moriarty, Siddarth Subramanian, Xiang-Seng Lee, Hiow-Tong See, Mike Hewett,

Tara Estlin, Sowmya Ramachandran, and Bert Kay. I owe each of them a round of golf! This

research was supported in part by the National Science Foundation under grant IRI-9102926, the

NASA Ames Research Center under grant NCC 2-629, and the Texas Advanced Research Program

under grant 003658114.

J. Jeffrey Mahoney

The University of Texas at Austin

May 1996

iii

Combining Symbolic and Connectionist Learning Methods to

Re�ne Certainty-Factor Rule-Bases

Publication No.

J. Je�rey Mahoney, Ph.D.

The University of Texas at Austin, 1996

Supervisor: Raymond J. Mooney

This research describes the systemRapture, which is designed to revise rule bases expressed

in certainty-factor format. Recent studies have shown that learning is facilitated when biased with

domain-speci�c expertise, and have also shown that many real-world domains require some form of

probabilistic or uncertain reasoning in order to successfully represent target concepts. Rapture

was designed to take advantage of both of these results.

Beginning with a set of certainty-factor rules, along with accurately-labelled training ex-

amples, Rapture makes use of both symbolic and connectionist learning techniques for revising

the rules, in order that they correctly classify all of the training examples. A modi�ed version of

backpropagation is used to adjust the certainty factors of the rules, ID3's information-gain heuristic

is used to add new rules, and the Upstart algorithm is used to create new hidden terms in the rule

base.

Results on re�ning four real-world rule bases are presented that demonstrate the e�ectiveness

of this combined approach. Two of these rule bases were designed to identify particular areas in

strands of DNA, one is for identifying infectious diseases, and the fourth attempts to diagnose

soybean diseases. The results of Rapture are compared with those of backpropagation, C4.5,

Kbann, and other learning systems. Rapture generally produces sets of rules that are more

accurate than these other systems, often creating smaller sets of rules and using less training time.

iv

Contents

Acknowledgments iii

Abstract iv

Chapter 1 Introduction 1

1.1 The Knowledge-Acquisition Bottleneck . 1

1.2 Rule-Base Revision . 2

1.3 Our Solution to the Bottleneck . 4

1.4 Thesis Statement . 5

1.5 Overview of Experimental Results . 5

1.6 Thesis Outline . 6

Chapter 2 Background 7

2.1 Human Decision-Making as Reasoning

under Uncertainty . 7

2.2 The Certainty-Factor Formalism . 8

2.3 A Case For Certainty Factors . 11

2.4 Backpropagation . 12

2.5 Previous Rule-Base Re�nement Systems . 12

2.5.1 EITHER . 12

2.5.2 NEITHER . 13

2.5.3 KBANN . 13

2.6 Symbolic vs. Connectionist Debate . 14

Chapter 3 The Re�nement Algorithm 15

3.1 Overview of the Algorithm . 15

3.2 Pre-processing the Rule-Base . 17

3.2.1 Special Rule Handling . 18

3.2.2 Preparing to Construct the Network . 19

3.3 Converting the Rule Base into a Network . 19

3.3.1 Domains with a Default Category . 19

3.4 Pre-processing the Data . 21

3.5 Processing the Training Examples . 21

3.6 Certainty-Factor Backpropagation . 22

v

3.6.1 Standard Backpropagation . 23

3.6.2 CFBP . 23

3.7 Feature Addition . 25

3.7.1 Choosing the Best Feature to Add . 25

3.7.2 Avoiding Over�tting During Feature-Addition 28

3.8 The UPSTART Algorithm . 28

3.9 Post-Processing . 30

Chapter 4 Experimental Results in Real-World Domains 31

4.1 The Train and Test Methodology . 31

4.2 Versions of Rapture used in Testing . 32

4.3 Experimental Hypotheses . 33

4.4 DNA Primer . 34

4.5 DNA Promoter Experiments . 34

4.5.1 The 106-example Promoter Data Set . 36

4.5.2 The 468-example Promoter Data Set . 43

4.6 Splice-Junction Results . 48

4.7 Mycin Diagnosis Results . 55

4.8 Soybean Diagnosis Results . 61

4.8.1 Examination of a Revised Rule Base . 64

4.9 Summary of the Results . 66

4.9.1 Concept Drift . 67

Chapter 5 Related Work 68

5.1 Symbolic and Weight Adjustment Systems . 68

5.2 Connectionist Systems . 69

5.3 Bayesian Approaches . 70

Chapter 6 Future Work 72

Chapter 7 Conclusions 74

Appendix A Derivation of the CFBP Formulae 76

Appendix B The Initial Rule-Bases in Original and Certainty-Factor Format 79

B.1 The Promoter Recognition Rule-Base . 79

B.1.1 The Original Rules . 79

B.1.2 The Certainty-Factor Rules . 79

B.2 The Splice-Junction Rule-Base . 80

B.2.1 The Original Rules . 80

B.2.2 The Certainty-Factor Rules . 81

B.3 The Mycin Certainty-Factor Rules . 82

B.4 The Soybean Diagnosis Rule-Base . 92

B.4.1 The Original Rules . 92

B.4.2 The Initial Certainty-Factor Rule-Base . 95

vi

B.4.3 A Revised Certainty-Factor Rule-Base . 98

Bibliography 104

vii

Chapter 1

Introduction

In nearly all walks of life, there exist problems that require some degree of expertise in order to

solve. This includes things from as simple as how to e�ectively remove a spot from the living room

carpet or which college courses to take during the freshman year, to more complex problems such

as how to repair a malfunctioning automobile or which medication to take to remedy an ailment.

When problems such as these occur, a good strategy is to consult with an expert in the particular

problem area (domain). This expert will generally have a great deal of experience in solving the

problem at hand, and will ideally be able to o�er an e�ective solution.

Unfortunately, for many complex domain areas, such experts are often either in short supply,

very expensive, or non-existent. One obvious solution is to attempt to automate the expertise, and

make it readily available. The ability to precisely specify necessary problem-solving expertise, and

put it \in a bottle" would be of signi�cant value (both economic and social) to everyone.

This desire has led to a great deal of research into developing expert systems(Buchanan &

Shortli�e, 1984), which are simply automated systems that aid, enhance, or replace the human

expert. The use of expert systems has had a signi�cant impact upon everyday society for a number

of years, and is helping many corporations achieve higher pro�ts and productivity (Feigenbaum,

McCorduck, & Nii, 1988).

The major di�culty in creating such systems, however, is in properly extracting the neces-

sary information from the expert. Not only is it di�cult for experts to translate their reasoning

abilities into concrete sets of rules, but once done, the result is usually inaccurate and inconsistent.

This is no reection on the expert, but rather on the di�culty of the rule-base construction prob-

lem. This di�culty has become prevalent enough to have been named the knowledge-acquisition

bottleneck (Feigenbaum & McCorduck, 1983). This name refers to the fact that the bottleneck in

creating an e�ective expert-system lies in the acquisition and speci�cation of the knowledge.

1.1 The Knowledge-Acquisition Bottleneck

A real-world example of this bottleneck comes from the IRS. Out of an ongoing attempt to automate

the task of processing tax-returns as much as possible, a team of �ve was given the duty of precisely

specifying the rules that were currently in place for identifying tax returns that needed to be

audited. In other words, given a tax return, speci�ed by key entries on the form, decide whether

or not the return should be audited. Once created, this set of rules would enable an automated

1

Figure 1.1: Rule Base Revision Overview

system to quickly and accurately process these returns and decide which ones needed more careful

examination.

The team members individually had little di�culty in determining the proper classi�cation

of each return (i.e., audit or non-audit), and there was little disagreement. Much to their surprise,

however, the task of writing down the rules that coincided with their decision-making process

proved quite di�cult. It took them slightly more than two years to complete the task, and they

admitted that the resulting rules were still not perfect, though they were able to correctly classi�ed

returns over 90% of the time (Davis, 1995).

Out of an attempt to alleviate this bottleneck, researchers (Ginsberg, 1988; Mooney &

Ourston, 1991; Towell, Shavlik, & Noordewier, 1990; Pazzani & Kibler, 1992) have sought ways

of automating the process of �ne-tuning a rule base. Throughout this document, I refer to this

process as rule-base revision, though other authors have called it theory revision (Mitchell, Keller,

& Kedar-Cabelli, 1986; Ba�es & Mooney, 1992; Cain, 1991; Ginsberg, 1990), or theory re�nement

(Buntine, 1991; Ourston & Mooney, 1994). I prefer the former in an attempt to avoid any confusion

with the scienti�c usage of the word theory.

Given a set of rules, the rule-base revision task is to rapidly revise these rules in a way

that improves their performance on a given domain. By automating this task, orders-of-magnitude

gains in completion time are expected, greatly relieving the bottleneck.

This process is applicable to any sets of rules that are capable of reaching conclusions.

Possible examples include rules for picking football winners, forecasting the weather, buying a car,

or diagnosing diseases. Rule bases can come from any domain where expert knowledge is of use in

the decision making process.

1.2 Rule-Base Revision

Research in the area of rule-base revision has grown out of the related areas of inductive learning

(Quinlan, 1993; Langley & Simon, 1995) and explanation-based learning (DeJong & Mooney, 1986;

Mitchell et al., 1986). Induction attempts to build decision-making systems from scratch, using a

set of examples of target concepts to guide the process. There is no use of background knowledge

in solving the problem. Research has shown, however, that biasing learning with expert-supplied

2

knowledge leads to better performance on novel examples (Ginsberg, 1990; Pazzani & Kibler, 1992;

Ourston & Mooney, 1994; Towell & Shavlik, 1994). This is especially true in complex domains

where training data is limited. Though, as has been noted, experts have di�culty in precisely

specifying their expertise, they are very e�ective at identifying essential bits and pieces of their

domain knowledge. Because of this, many revision systems attempt to modify the expert supplied

knowledge as little as possible, only modifying rules when they fail to properly classify an example.

Recently, both connectionist and symbolic methods have been developed for providing learn-

ing systems with this knowledge bias (Towell & Shavlik, 1994; Fu, 1989; Ourston & Mooney, 1994;

Pazzani & Kibler, 1992; Cohen, 1992). Many of these methods revise an imperfect rule base to �t

a set of empirical data. Some of these methods have been successfully applied to real-world tasks,

such as recognizing promoter sequences in DNA (Towell et al., 1990; Ourston & Mooney, 1990;

Thompson, Langley, & Iba, 1991). These results demonstrate that revising an expert-given rule

base produces more accurate results than learning from training data alone.

This process of rule-base re�nement to correctly classify a set of training examples has

proven to be an important task that lends itself to integrating analytical methods, that is methods

that rely on theory, and empirical learning methods, that is methods that have demonstrated their

e�ectiveness through example. Though several re�nement systems have been successfully applied

to real-world problems (Ginsberg, 1990; Ourston & Mooney, 1994; Towell & Shavlik, 1994), to

date these have focused largely on revising logical Horn-clause theories. Many real-world domains,

however, require some type of probabilistic or uncertain reasoning (Shafer & Pearl, 1990). The

primary advantage of these methods is their ability to combine evidence from several di�erent

sources and draw conclusions based on the total combined evidence for each possible decision.

Consider the following hypothetical rule, expressed in standard logical notation

a ^ b^ c ^ d! C1

for classifying an instance into category C1. An expert looking at the same problem might, however,

still be inclined to categorize a given instance into C1 despite lack of evidence for d, provided

su�cient evidence existed for a ^ b ^ c. This is particularly true in cases where instances do not

exactly �t into any prede�ned category. An automated classi�cation system using pure Horn-

clause logic can not easily reason in this manner, since lack of evidence for d results in falsifying the

antecedent condition, and no conclusion can be drawn (from this rule). In order for a Horn-clause

based system to model this kind of reasoning, allowing one or more antecedents to be false, and

still providing evidence for the conclusion, would require an exponential number of Horn-clauses.

In this way, each Horn-clause would represent one of the possible combinations of true antecedents.

This is clearly an undesirable solution since it greatly increases the size of the rule base, makes it

more di�cult to revise, as well as less understandable for the human.

Flexible matching methods, which have been used successfully in inductive rule-learning

(Michalski & Chilausky, 1980; Michalksi, Mozetic, Hong, & Lavrac, 1986) and rule-base revision

(Mooney & Ourston, 1991), are one way of dealing with this problem. In this approach, a score is

calculated measuring how well an example matches each symbolic rule, and the rule with the great-

est score is invoked. Another approach is to use M-of-N rules (Towell & Shavlik, 1991; Ginsberg,

1988), which �re if at least M of their N antecedents are satis�ed, e.g. 3-of a; b; c; d! C1. Unfor-

tunately, this approach does not consider the relative strengths of each of the antecedents. Neural

3

networks on the other hand, use connection weights to encode relative strengths. By representing

rules as a neural network, standard backpropagation (Rumelhart, Hinton, & Williams, 1986) can be

used to modify the weights representing rule strengths (Fu, 1989; Towell & Shavlik, 1994; Lacher,

1992). Since a unit's activation-level depends upon a linear sum of all incoming activations, this is

an e�ective approach to combining evidence.

1.3 Our Solution to the Bottleneck

In this dissertation, the system Rapture is described, which is an acronym for Revising Approxi-

mate Probabilistic Theories Using Repositories of Examples. This system combines both symbolic

and neural learning methods. Rapture begins by converting a symbolic rule-base into a con-

nectionist network. Rapture requires that rules be initially expressed using certainty factors

(Buchanan & Shortli�e, 1984). Literals in the rules map to units in the network, and the certainty

factors become the weights on the connections between units. Unlike standard neural networks,

in which the total input to a node is determined by a linear sum of all incoming activations, for

a certainty-factor network, the total input is the probabilistic sum of incoming activations. This

is calculated using the formula x + y � xy for pairs of values. This is the standard formula for

calculating the probability that either of two events will occur, given their individual probabilities.

The two probabilities are added, and then the cross-product term is subtracted, since it has been

added twice. No thresholding output function is needed for units in the certainty-factor network,

since the probabilistic sum already provides the required non-linearity.

Next, the network is modi�ed to correctly classify a set of training examples. Network train-

ing is performed in three phases. First, a modi�ed version of backpropagation (Rumelhart et al.,

1986) is used to adjust the certainty-factors on existing rules. The normal backpropagation equa-

tions are modi�ed in order to perform gradient descent for certainty-factor combining functions

(e.g., probabilistic sum, min, and max). This is similar to methods employed in Fu (1989) and

Lacher (1992), and throughout this text I refer to this technique as Certainty-Factor Backpropaga-

tion (CFBP), though others have called it expert-network backpropagation (Lacher, 1992). Once

all of the training examples are classi�ed correctly, the network is considered trained, and learning

is complete.

It is often the case, however, that CFBP plateaus before achieving 100% accuracy on the

training data. When this occurs, architecture modi�cation routines are called. These routines

borrow from both symbolic and connectionist methods common to machine learning. The �rst of

these is the feature-addition routine. Speci�cally, features are added into the network that best

discriminate between incorrectly handled examples using ID3's information gain (Quinlan, 1986).

Backpropagation and feature addition continue in a cycle until either all of the training examples

are correctly classi�ed, or training accuracy again reaches a plateau.

In the latter case, a call to the �nal Rapture routine is made. This is a call to the Upstart

algorithm (Frean, 1990). Upstart is a connectionist technique for building new hidden nodes in a

neural network, and can be thought of as creating new hidden features for the rule-base. For each

output unit that is incorrectly classifying examples, two new hidden units are created. One of these

is designed to learn the false-negative examples, and the other the false-positives examples. These

new units are trained using the Rapture algorithm recursively, and linked appropriately to their

4

corresponding output units.

One elegant feature of the Rapture algorithm is that once a network is trained, the revised

rules can be read directly o� of the network. Unlike the Kbann system (Towell & Shavlik, 1992)

(see section 2:5:3), where revised networks are mapped back into rules to improve the compre-

hensibility of the �nal result, no retranslation in necessary for Rapture. This is because of the

direct correspondence between weighted links and probabilistic rules which removes any distinction

between the symbolic and connectionist representations. They are equivalent ways of looking at

the same information. This approach therefore combines the e�ectiveness of connectionist learn-

ing methods with the interpretability of rules. Comprehensibility is important since it has been

found that users will generally not accept a system's conclusions unless it can present meaningful

explanations for them (Swartout, 1981).

Rapture has been tested on revising several real-world knowledge bases with encouraging

results. In particular, we present results for revising rule bases for recognizing promoter sequences

in strands of DNA (Towell et al., 1990), identifying splice-junction sites in DNA (Towell & Shav-

lik, 1994), diagnosing diseased soybeans (Michalski & Chilausky, 1980), and diagnosing bacterial

infections in humans (Buchanan & Shortli�e, 1984). This last domain is based on a version of

the Mycin knowledge-base, which Rapture has successfully revised. We compare our results

to those obtained for purely inductive methods (C4.5 (Quinlan, 1993), standard backpropagation,

and Rapture given no initial knowledge), a purely connectionist method for knowledge-base re-

�nement (Kbann), a purely symbolic method for knowledge-base re�nement (Either (Ourston &

Mooney, 1994)), as well as various Rapture ablations which demonstrate the e�ects of each of the

components. Results demonstrate that Rapture generally produces more accurate results from

fewer training examples than competing approaches, as well as producing less complex sets of rules.

1.4 Thesis Statement

We have created the rule-base revision system, Rapture, as an aid towards the development of

successful expert systems. In order for an expert system to be successful, however, it must meet

certain criteria. Without the criteria listed here, it may be of only limited use.

First and foremost, successful expert-systems must perform at a very high level. If they are

unable to perform the task as well as, or nearly as well as an expert, and certainly better than a

non-expert, they will be of little value.

Second, they must be readily available for use. If an expert system remains in the develop-

ment and debugging stages for long periods of time, its usefulness will undoubtedly be limited.

Third, a successful expert-system should be reasonably understandable. If the system is �lled

with rules that make little or no sense, rules that are clearly relying on insigni�cant observations,

or rules that are di�cult to comprehend, there will be little con�dence in any results that are

produced.

Finally, an expert system should be as simple as possible. This does not mean that all

expert systems should be trivial, but rather that they should not be needlessly complex. If rules

can be represented in an e�cient manner, a more understandable system results.

The claim of this thesis is that by using the described method, such expert systems will

result. By carefully making use of symbolic and connectionist machine-learning techniques, such

5

expert systems can be created much more rapidly and more accurately than can be done manually.

Beginning with \crude" expertise, using an uncertain-reasoning framework, and attempting to

modify the original expertise only as dictated by training examples, a rule-base system can be

developed that is more accurate, less complex, more easily understood, and more quickly obtained

than other approaches.

1.5 Overview of Experimental Results

One of the strengths of the research presented here is the thoroughness of testing. Whereas other

systems may be content to present results from one or two \toy" domains, we present in Chapter 4

extensive results from four real-world domains. These are all rule bases designed by domain experts

in an attempt to solve real problems. Results demonstrate that Rapture performs at least as well,

and usually better than any other current system.

Rapture was tested in two domains involving DNA sequencing. One of these is designed

to recognize promoter sequences, and the other to recognize splice-junction sites. In both of these

domains, Rapture outperforms all of the other systems, with the possible exception of Kbann.

Results suggest, however, that Rapture is producing signi�cantly smaller rule bases, and likely

requires less time to train.

In the experiments involving the Mycin rule-base, which is designed to diagnose infectious

diseases, Rapture outperforms all other systems. This is clear evidence of the advantage given by

the background knowledge. Training time is somewhat slowed down in this domain by the extensive

usage of the Upstart algorithm, which results in slightly larger rule bases than Rapture without

Upstart.

In the soybean disease-diagnosis experiments, Rapture performs signi�cantly better than

other systems when there are fewer numbers of training examples. This advantage is the result

of the background knowledge. With large numbers of training examples, however, most systems

perform at nearly equivalent levels.

1.6 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents relevant background information,

and Chapter 3 discusses the details of the Rapture algorithm. Chapter 4 presents results on

revising several real-world knowledge bases, Chapter 5 discusses related work, Chapter 6 discusses

future work, and Chapter 7 presents the conclusions.

6

Chapter 2

Background

This chapter presents some of the background information that is assumed throughout the re-

mainder of this document. This includes insight into human decision-making, reasoning under

uncertainty, and the certainty-factor formalism upon which Rapture is based. Also presented is

an overview of Backpropagation, and two recent revision systems|Kbann and Either.

2.1 Human Decision-Making as Reasoning

under Uncertainty

One of the assumptions of this research is that reasoning under uncertainty is the method by

which humans most commonly make everyday decisions. It is rare when one makes a decision with

100% certainty that no error has been made. Though it is possible to become quite con�dent of

a decision after careful analysis of the various options, there will usually remain some doubt that

perhaps another course of action would have produced better results. Examples include a physician

diagnosing a patient, a young couple deciding on a new house, or a jury determining the guilt or

innocence of O.J. Simpson. Typically such decisions begin by examining all of the available evidence.

Evidence supporting or refuting each particular conclusion is collected, examined, and weighed

against all evidence supporting or refuting other possible conclusions. Whenever a preponderance

of evidence supporting one particular conclusion exists, a decision can be made with a great deal

of con�dence. Less preponderance of evidence results in less con�dence in any given conclusion.

Looking at the above examples, it is noted that the doctor must carefully examine each

patient, and observe symptoms as they present themselves. Each observed symptom will cause

certain classes of diseases to be considered, and others to be ruled out. The doctor's diagnosis is

further aided by background knowledge, which should include a medical history of the patient and

immediate family, as well as a working knowledge of diseases that may be currently prevalent in

the community. As more evidence is gathered, certain patterns should begin to present themselves,

and ideally a successful diagnosis can be made.

This is very similar to the way a young couple decides on the purchase of their �rst house.

Each house they consider will have features that they like, as well as those that they dislike. These

pros and cons must be carefully weighed in order to come to a successful decision.

Finally, the decision-making process used by the jury deciding the fate of O.J. Simpson is

7

Figure 2.1: Weighing all of the evidence

considered. This case was 1995's \trial of the century," and due to the extensive publicity of this

case, I will assume that all readers are familiar with the basic decision that had to be made by

the jury. Much of their time was spent hearing evidence presented by trial lawyers. The evidence

presented by the prosecution was designed to increase belief that Mr. Simpson did in fact commit

the crimes in question. It was their goal to demonstrate that the accumulation of evidence removes

reasonable doubt as to the guilt of the accused. The defense, on the other hand, presented evidence

that either refuted the claims of the prosecution (which decreases belief in the guilt of the accused),

or presented their own evidence that is designed to increase belief that the accused is innocent.

The di�cult task of the jury was to weigh all of this evidence, and make their own determination

as to which evidence was the strongest.
It is worth noting that in each of these examples, there have been no hard and fast rules for

reaching a conclusion. A rule such as

(has-motive OJ) ^ (has-opportunity OJ) ^ (has-weak-alibi OJ) ^

(has-history-of-abuse OJ) ^ (physical-evidence-linking OJ) ^

(witness-saw OJ) ! (GUILTY OJ)

may seem reasonable at �rst glance, but is actually far too inexible to be of any value. The

antecedent condition is far too speci�c, and will fail to be true if any one the conjuncts is false. If

for example, there were no witnesses, the �nal condition is false, and the rule fails to provide any

evidence towards a verdict. If this were this the only rule for determining guilt, the accused must

go free, despite any other evidence linking him to the crime scene. This does not seem to coincide

well with the manner that a human comes to a conclusion.

Finally, it should be noted that there has been no mention of probability. In each of the

above scenarios, there is no apparent concern over the probability that a correct decision has been

made. The only important factor is the weighing of the evidence. Whenever the weight of evidence

for one conclusion outweighs all others, this conclusion is deemed to be the best one.

8

2.2 The Certainty-Factor Formalism

Certainty-factors are one approach to modeling the uncertain-reasoning method described above,

and is the approach used in the Rapture system. Certainty-factors grew out ofMycin|an expert

system for diagnosing infectious diseases, which was a part of the Stanford Heuristic Programming

Project (Buchanan & Shortli�e, 1984).

All Mycin rules are of the form A
0:8
! D, indicating that belief in proposition A gives

additional reason for believing in proposition D. Unlike Horn-clause rules where antecedents prove

consequents, certainty-factor rules work towards increasing or decreasing the level of belief in a

particular proposition. The amount of increase or decrease of this belief is indicated by the certainty-

factor (number) associated with each rule.

These certainty-factors are real-valued numbers that range from �1:0 to +1:0, and indicate

the degree to which belief in the antecedent propositions e�ects belief in the consequent proposition.

The greater the magnitude of the certainty-factor, the greater the e�ect. A certainty-factor of +1:0

indicates that the consequent is de�nitely true given its antecedents, whereas one of �1:0 indicates

that the consequent is de�nitely false. A certainty-factor of 0:0 indicates that the antecedents have

no bearing upon belief in the consequent. Examples include:

Age> 21
+1:0
! Of-Drinking-Age Age< 18

�1:0
! Of-Drinking-Age

Hair-Blonde
0:0
!Of-Drinking-Age

The last example indicates that the color of one's hair has no bearing on being of drinking age (and

is therefore a superuous rule).

Certainty-factor rules allow incremental updating of beliefs based upon newly acquired evi-

dence. As an example, assume that there is currently no evidence for a belief in proposition D (e.g.,

has certainty-factor 0:0). Observing A to be true, along with the rule A
0:8
! D, changes belief in D

to 0:8. This is calculated by multiplying the certainty-factor of A (1:0) by the certainty-factor of

the rule (0:8). If A is observed to be only partially true, lesser belief in D results. If, for example,

A's certainty-factor is 0:5, the rule gives D a measure of belief of 0:4 (= 0:5� 0:8).

Furthermore, several rules can independently o�er evidence for D, allowing evidence to

accumulate. Assume that D currently has a 0:4 certainty-factor, along with the existence of a

second rule, B
0:6
! D. If B is observed true, this rule gives an increased belief in D of 0:6. Evidence

from separate rules combine using probabilistic sum, which is de�ned (for positive evidence) as

a � b � a + b � ab. Therefore, the original certainty-factor of 0:4 combines with the increased

belief of 0:6 resulting in a new certainty-factor of 0:76 (= 0:4 + 0:6 � 0:4 � 0:6). Another way

of thinking about this is that the new evidence (0:6) takes the original certainty-factor (0:4) 60%

towards certainty (1:0).

Certainty-factors can also be negative, providing evidence that tends to decrease belief in a

proposition. Negative certainty-factors combine using a�b � a+b+ab. Therefore a certainty-factor

of �0:4 combines with a certainty-factor of �0:5 to give a certainty-factor of �0:7.

Thus far, the words belief and certainty-factor have been used interchangeably, but they

are in fact distinct concepts. The measure of belief of a proposition is the (probabilistic) sum of

all positive evidence. Similarly, the measure of disbelief of a proposition is the sum of all negative

9

evidence. In order to compute a propositions certainty- factor, the formula

CF =
(MB +MD)

(1�min(MB;MD))

is utilized. Using this formula, it can be seen that any proposition with equal measures of belief

and disbelief will have a resulting certainty-factor of 0:0. This coincides with intuition. The careful

reader may want to convince themselves that this equation is independent of the order in which

beliefs and disbeliefs are accumulated.

Certainty-factor rules may also contain multiple antecedents, as in A ^ B ^ C
:7
! D. Con-

junction is handled using the min function. The minimum certainty-factor from among A, B, and

C combines with the 0:7 to determine D's measure of belief. Similarly, the max function is used

with antecedent disjunction.

It should be noted that propositions with negative certainty-factors o�er no evidence (pos-

itive or negative) for rules using this proposition as an antecedent. To see this, consider the rule

Has-Phd
0:6
!Intelligent. This rule is meant to o�er positive evidence for someone's intelligence if it

is known that this person has obtained a Ph.D. degree. If nothing is known about the person's

academic background, this rule will have no e�ect. If, however, it is known for certain that the

person does not have a Ph.D. (certainty-factor -1.0), this should not be used as negative evidence

that the person is intelligent. It is simply no evidence that they are intelligent by this rule. The

distinction between the two rules:

Has-Phd
0:6
!Intelligent NOT(Has-Phd)

�0:6
! Intelligent

is signi�cant, and needs to be carefully understood. The former makes an inference about someone

who has a Ph.D., whereas the latter applies only to those that do not. Because of this distinction,

the exact rule for calculating the measure of belief of a consequent proposition is max(0;CF of

antecedent) multiplies by the certainty-factor of the rule. Negative certainty-factors do not pass

their values forward.

In the original Mycin experiments, a 0:2 threshold was used to block certainty factors with

low values. Any literal with certainty factor less than this threshold would not propagate any value

forward. This was done with the notion that such low values should be essentially ignored, as they

are close to 0. Rapture does not use this approach. One of Rapture's strengths is its ability

to allow many seemingly small pieces of evidence to combine to produce a great deal of belief in a

proposition. An arbitrary threshold prevents this from happening.

Finally, one of the most common misconceptions about certainty-factors is that they repre-

sent probabilities. They do not. The numbers themselves have only a subjective meaning, which

may or may not be intuitive. Numbers closer to 1:0 represent strong and conclusive evidence,

whereas numbers closer to 0:0 represent weaker evidence. A key distinction between certainty

factors and true probabilities is the manner in which they interpret the negation of a proposition

based on evidence. Consider again the rule Has-Phd
0:6
!Intelligent. As stated, this rule is designed to

increase belief in one's intelligence level, given that they have obtained a Ph.D. Were this a prob-

ability, the obvious deduction would be that there is now a 0:4(= 1:0 � 0:6) probability that the

person is not intelligent. In other words, any evidence for believing in a proposition automatically

provides evidence for disbelieving it. Domain experts agree that this is not the intent of such rules

10

(Buchanan & Shortli�e, 1984). For certainty factors, evidence supporting a proposition has no

direct bearing upon belief in its negation. Measures of belief and disbelief are calculated separately

and combined to determine overall certainty factor as described above.

There have been successful attempts at providing probabilistic interpretations for certainty-

factors, most notably by Heckerman (1986). Unfortunately, such interpretations generally require

unreasonably restrictive assumptions upon the data, which will generally not be true for real-

world domains. Primary in these assumptions is that all evidence supporting a conclusion must be

conditionally independent. This is not true in most applications.

2.3 A Case For Certainty Factors

Rapture grew out of a desire to build a revision system that was capable of employing uncertain-

reasoning, while being able to take full advantage of available domain knowledge. This was due to

the existence of a number of domains where it was clear that some sort evidence summation would

be necessary in order to successfully represent goal concepts. Examination of the DNA domains,

for instance, has shown that it exhibits an M-of-N property (von Heijne, 1987). This indicates

that certain DNA strings can be identi�ed wheneverM-of-N consecutive nucleotides match a given

pattern. This is clearly evidenced in the original expert rules for determining splice-junction points

(see Appendix B).

Also, a set of rules for diagnosing diseased soybeans (described fully in Chapter 4 (Michalski

& Chilausky, 1980)) was created that made use of uncertain reasoning. The rule base contains two

di�erent types of rules. Rules labelled signi�cant are suggested to carry 0.9 weight (out of a possible

1.0), while those labelled con�rmatory carry the remaining 0.1.

Certainty factors were chosen as the formalism for Rapture for several reasons. First,

it is perhaps the simplest method that retains the desired evidence-summing aspect of uncertain

reasoning. As each rule �res, additional evidence is contributed towards belief in the rule's conse-

quent. All evidence can then be combined giving an overall degree of con�dence in the consequent.

Since the value of a proposition's certainty factor is independent of the order in which beliefs and

disbeliefs are collected, there is no concern over which evidence to consider �rst. This modularity

of evidence, as well as the use of probabilistic sum enables many small pieces of evidence to add

up to signi�cant evidence. This is lacking in formalisms that use only MIN or MAX for combining

evidence (Ling & Valtorta, 1991).

Second, probabilistic sum is a simple, di�erentiable, non-linear function. This is crucial

for implementing gradient descent using backpropagation. Further, other formalisms for uncertain

reasoning (e.g. Bayesian networks) have been shown to be NP-hard to evaluate in the general case

(Cooper, 1990), and require the speci�cation of exponentially many conditional probabilities in the

fan-in of a node (Schwalb, 1993).

Even more signi�cantly, however, is the widespread use of certainty factors. Despite recent

criticism of certainty factors (Shafer & Pearl, 1990), there have been numerous knowledge-bases

implemented using the certainty-factor model, which immediately gives our approach a large base

of applicability.

One of the conclusions drawn in Buchanan and Shortli�e (1984) was that the performance

of their certainty-factor system (Mycin) was relatively insensitive to the precision of the weights on

11

the rules. This has been one reason for much of the recent criticism of certainty factors. However,

most of the experiments that were done with Mycin rules only involved adjusting the precision

of the weight of a rule, and not on the relative ranking of the rules. This is not the case with

Rapture. By examining the revised sets of rules presented in Chapter 4 and Appendix B it is

clear that Rapture is able to greatly change the values and relative strengths of certainty factors

when deemed necessary.

Also of importance is the relative ease with which certainty-factor rule bases can be created

out of Horn clauses. If domain knowledge is not initially represented in certainty-factor form, it is

a simple matter to write an equivalent set of rules using certainty factors. One such approach is

described in the next chapter. Despite their lack of true probabilistic semantics, certainty factors

borrow a great deal of their meaning from probability theory. Because of this, the impact and

e�ects of a rule's certainty-factor is quite intuitive.

Finally, and perhaps most importantly, are the empirical results. Presented fully in Chapter

4, results to date indicate that this approach leads to very accurate rule bases. In all of the domains

tested, Rapture consistently performs as well as or better than other learning systems. This is a

clear indication that this approach is one that is worth pursuing.

2.4 Backpropagation

Backpropagation, or simply BackProp, is a standard connectionist technique for training neu-

ral networks to correctly categorize sets of labelled examples (Rumelhart et al., 1986). This is a

gradient-descent method that gradually shifts all of the weights in the network in a direction that

will decrease network mean-squared error.

Each time a training example is processed by the network, any errors occurring at the output

layer are noted. This error is then propagated back down the network towards the input layer. The

weights on all links connecting into output nodes are modi�ed slightly (as dictated by a learning-rate

parameter) in the direction that will reduce the error at the output node. Estimates of remaining

error are made for each node exactly one layer beneath the output layer. This modi�cation of the

weights on links beneath nodes producing error continues, until the input layer is reached. This

terminates the processing of this example. All training examples are processed by the network, one

at a time, repeatedly, until no further error reduction is possible. This marks the end of training.

The mathematical formulae used in BackProp are presented in Section 3.6.1.

One of the properties of BackProp is that it is a hill-climbing technique. Because of this, it

is possible that a local error-minimum will be reached during training, instead of a global minimum.

This will result in inferior performance compared to an optimal weight setting.

2.5 Previous Rule-Base Re�nement Systems

In the two sections that follow, other re�nement systems are described. Results of these systems

will be compared with those of Rapture in Chapter 4. One of these is a purely symbolic system,

and another is predominantly connectionist.

12

2.5.1 EITHER

Either (Ourston & Mooney, 1994) is a rule-base revision system that uses propositional Horn-

clause logic to represent its rule bases. It begins with background knowledge in the form of a

Horn-clause rule base, along with a set of training examples.

Either revises rules whenever they incorrectly classify training examples, and terminates

training only after all examples are processed correctly. Either contains mechanisms for special-

izing and generalizing the rule base. False-positive examples occur whenever the system places an

example into a category to which it does not belong. This is an indication that the rules for this

category need to be specialized. Similarly, false-negative examples occur whenever the system fails

to place an example into a category to which it does belong. This is an indication that the rules for

this category need to be generalized. The bias that Either works with is to make as few changes

to the initial rules as possible, while classifying all training examples correctly. This is based on the

assumption that the original rules contain much useful information, and are not terribly far from

being correct.

Either is a modular system that contains independent modules for performing deduction,

abduction, and induction. The analytical methods (deduction and abduction) are used to identify

those portions of the rule base that are producing errors, and to carefully choose those training

examples that are representative of this error. Induction is used to specify possible corrections to

the rule base that will eliminate the errors caused by these examples.

Either supports two means for specializing its rule bases|removing rules, and adding

conjuncts to existing rules. Both of these mechanisms strictly decrease the number of examples

from the example-space that will be able to prove a given rule-consequent. This strictly specializes

the rule-base. Specialization in Either is done in a manner guaranteeing that negative examples

will not be provable in the given (incorrect) category, while simultaneously insuring that no positive

examples become unprovable.

Generalizing the rule base proceeds similarly for false-negative examples. Either contains

two mechanisms for achieving this. These are adding new rules to the rule base, and deleting

conjuncts from existing rules. Each of these mechanisms facilitates rule �ring, allowing more

examples to be classi�ed into a given category. These mechanisms are also designed to prevent

false-positives from being produced. This strictly generalizes the rule base.

The bias of minimal modi�cation to the original rule-base is designed to allow as much of the

original background knowledge as possible to remain intact. Since changes to the rule base occur

incrementally, there is no guarantee that the �nal result will be as close to the original as possible,

though each step attempts to apply the smallest change that accomplishes its task. This ideally

enables the rules to perform at a superior level of accuracy on unseen examples. Ourston illustrates

the success of this heuristic with results from several domains (Ourston & Mooney, 1994).

2.5.2 NEITHER

Neither, or New-Either, is an updated version of Either developed by Ba�es and Mooney

(1993a). While still a purely symbolic-learning system, it allows M-of-N style rules that allow

consequents to be concluded whenever M of the N antecedents are true. By varying the value of

M, rules with evidence-summing properties are created.

13

One of the most signi�cant changes to the Either algorithm was a simpli�cation of the

search algorithm for potential changes to the rule base. Each time a modi�cation to the existing

rules is called for, Either entertains exponentially many possible modi�cations. Neither on

the other hand, only considers one possible change to the rules for each misclassi�ed example,

determined heuristically to be the best change for that example.

Neither incorporates all of the generalization and specialization techniques of Either,

plus adds its own through the modi�cation of the M-of-N rules. By lowering the value of M, rules

become active more easily, since fewer antecedent conditions must be satis�ed. This generalizes

the rule base. Similarly, by raising the value of M, more antecedent conditions must be satis�ed,

making it more di�cult for rules to become active. These properties gives Neither the ability to

perform better in domains such as Promoter that bene�t from partial matching (Ba�es & Mooney,

1993b).

2.5.3 KBANN

As previously mentioned, Kbann (Towell & Shavlik, 1994) is a re�nement system which translates

a rule base into a neural network and then re�nes it using backpropagation. The translation into

a neural network proceeds in a straightforward manner. First, a logical circuit is created using the

AND-OR graph of the theory, and the weights of the units in the network are set to simulate AND

and OR gates. In addition, all remaining features in the data are added to the input layer. The

network is then fully connected by adding low-weighted links from every node in layer n to every

node in layer n+ 1.

Once built, the network is trained using backpropagation. To help minimize the size of

the network, weight-decay (Hinton, 1986) is utilized. By adjusting each weight in the network

slightly towards zero after each weight update, links that are not contributing to the network are

eliminated.

After training, symbolic rules can be extracted from the network. By analyzing the weights

of the incoming links, each unit is translated into a set of M-of-N rules, that are satis�ed if at

least M of their N antecedents are true. The resulting rule base is generally much simpler than

the revised network; however, there is no guarantee that the two representations are semantically

equivalent.

Kbann has been tested in several domain areas, most of them concerning DNA sequencing,

such as the promoter recognition and splice-junction determination domains discussed in Chapter

4. Results presented in Towell and Shavlik (1994) demonstrate the e�ectiveness of this approach,

with generally superior performance to other learning systems.

2.6 Symbolic vs. Connectionist Debate

During the last several years, a rift has developed in the machine learning, as well as the general AI

community. This rift has come about as a consequence of di�ering opinions regarding intelligence

and learning. On the one side are the symbolic AI people, who tend to think of learning as being

performed strictly by manipulating humanly-understandable symbols in intelligent ways. This

enhances human comprehensibility, and allows one to evaluate, verify, and modify all manipulations.

14

On the other side are the connectionists, who believe that learning is best achieved by

building networks of units that can be trained to learn perceived correlations between these units.

Each unit can represent an observable feature from the domain, or a non-observable hidden feature.

This is analogous to the way neurons in the brain work.

One of the results of the research presented in this dissertation is that Rapture bridges

this gap quite e�ectively. From one perspective, Rapture's rule bases can be viewed in a purely

symbolic manner. They are simply certainty-factor rules for solving the problem. Alternatively,

these rule-bases can be viewed as connectionist networks. The certainty-factors are nothing more

than weights on links that connect features from layer to layer, and their values are adjusted through

the use of gradient descent. Rule (or architecture) modi�cation takes place using a combination of

symbolic and connectionist techniques.

Unlike (most) connectionist systems, all units in a certainty-factor network represent true

features from the domain (which may be non-observable). Similarly, unlike (most) symbolic sys-

tems, there exists real-valued correlations between many of the features.

Furthermore, this system brings to light the similarity between the symbolic and connec-

tionist approaches, as they can really be perceived as di�erent ways of looking at the same problem.

Much research is currently underway for developing hybrid systems which combine pieces of sym-

bolic and connectionist learning techniques. This has led to the birth of several workshops, books,

and a mailing list devoted to the development and discussion of hybrid approaches (Fu & Lacher,

1994; Kandel & Langholz, 1992). Many current results indicate that this combined approach holds

much promise in many domains.

15

Chapter 3

The Re�nement Algorithm

This chapter describes the algorithm used by Rapture for revising certainty-factor rule bases.

The overall structure of this algorithm is illustrated in Figure 3.1. The key idea of this revision

process is to use training examples to guide the revision. These are examples that have been

carefully examined and labelled by a domain expert. Whenever the rule base classi�es one of these

examples di�erently than the expert, an error is deemed to have occurred. By carefully noting these

mishandled examples, revisions can be made to appropriate areas of the rule base in an attempt to

eliminate these errors. Once all of the training examples are handled correctly, it is hypothesized

that the modi�ed set of rules will be more successful at classifying novel examples than the original

rule base.

3.1 Overview of the Algorithm

Given a rule base designed to partition examples into useful categories, along with a set of training

examples, the task of Rapture is to revise these rules in order that they correctly categorize all

of the training examples. It is this training phase of the algorithm that is the main focus of this

chapter. After a brief overview of the algorithm, each learning component will be fully described in

the following sections. There are also minor pre- and post-processing tasks that take place before

and after training, and these too are described in turn.

Before Rapture can begin its training phase, the rule base needs to be converted into a

connectionist network. This enables Rapture to borrow from existing connectionist techniques

for its learning components. As the original rule base is expressed in a certainty-factor format, the

network built from it uses certainty factors as weights on the links between nodes. Each node in

the network represents a unique literal from the rule base, and antecedent nodes are connected to

consequent nodes via a certainty-factor link. Throughout this document, this structure is referred

to as a certainty-factor network.

Once built, this network is revised using a set of training examples to guide the revision. The

revision process terminates when the network correctly classi�es all of these examples. Rapture

contains three training mechanisms to accomplish this task.

The �rst of these is Certainty-Factor backpropagation, or CFBP. This is the gradient

descent algorithm developed for Rapture for adjusting the weights on the links between nodes.

Gradient descent is a standard connectionist technique for training a (neural) network. As each

16

Figure 3.1: The Rapture Algorithm

training example is given to the network at the input layer, certainty-factor values are propagated

forward towards the output layer. Once all values have reached the output layer, the network

output can be compared with the \correct" output. A correct output is generally a 1.0 value at the

output node corresponding to the correct category, and 0.0's at the remaining output nodes. This

information is readily available since all of the training examples have been properly classi�ed by

a domain expert. Errors at the output level are then backpropagated back down towards the input

layer. This has the e�ect of modifying some or all of the certainty factors associated with each

rule. Backpropation (Rumelhart et al., 1986) is a hill-climbing technique that slightly adjusts the

weight on each link in a direction that will most directly minimize the error caused by the particular

training example. Examples are processed by the network one at a time in this manner until all

examples have been processed. Processing all examples exactly once is termed an epoch, and any

number of epochs may be necessary before the overall network error reaches a minimum. Ideally,

CFBP will modify the network su�ciently so that all of the training examples will be correctly

classi�ed.

It is usually the case, however, that CFBP alone is not enough to completely train the

network. This signals a need to modify the architecture of the network, which calls upon the

second stage of Rapture's training algorithm. In this stage, new features (nodes and links) are

added into the network, in an attempt to correct remaining classi�cation errors. New links are

connected to every output category that is incorrectly identifying training examples. These links

connect appropriate nodes to the output categories in question. Appropriate nodes are those with

the highest information-gain in discriminating the misclassi�ed examples. These may be nodes

already in the network, or new nodes built from features from the domain not currently in the

network. Each new link is given a relatively low weight. Once all new links and nodes are in place,

the network is sent back for another round of CFBP.

The process of CFBP followed by feature addition continues until either all of the training

examples are successfully classi�ed, or no further progress is being made. The latter case signals

17

the �nal Rapture training mechanism, which is to use the Upstart (Frean, 1990) algorithm. This

is a connectionist technique for constructing hidden units. These hidden units act as intermediate

terms in the symbolic rule base. For each output category with either false-negative or false-positive

examples, two new hidden units are created. One of these is created to learn the false-negative

examples, and is positively connected to the output category, while the other is designed to learn the

false positives, and is negatively connected. Assuming that these hidden units are trained correctly,

the network will now correctly classify all training examples. The training of the hidden units is

done recursively, using Rapture. New links are created, CFBP is performed, and Upstart is

called as necessary.

Once the network is fully trained, the revised rule base can be read directly from the network.

There is no translation necessary, as the rule base is exactly equivalent to the certainty-factor

network. Each of the above steps is fully described below.

3.2 Pre-processing the Rule-Base

The �rst step in using Rapture is to obtain a rule base that is expressed in certainty-factor format.

While there exist any number of rule bases that utilize some kind of uncertain reasoning, many

of these are not directly expressed using certainty factors. In fact, of the four domains studied in

this work, only one initial theory was originally described using certainty factors. For the others,

modi�cations to the original rule base were required in order to convert them into certainty-factor

form.

The basic idea in this rule-base conversion is to take a propositional Horn-clause rule such

as A ^ B ^ C ^ D ! E, and break it up so that each antecedent can independently contribute

evidence for concluding the consequent. In this manner, observing one or more true antecedents

will result in increased belief in the consequent proposition. This is unlike standard Horn-clause

logic, where a false antecedent prevents a rule from concluding the consequent. Using the above

rule as an example, four new rules will be created to replace the original|one for each antecedent.

These are

A
0:44
! E B

0:44
! E C

0:44
! E D

0:44
! E.

Each rule is given the same certainty factor value, calculated to produce a combined increase of

belief in the consequent of 0.9. Thus, if all of the antecedents from the original rule are true,

each rule will individually contribute the same amount of increased belief in the consequent, and

these values will combine to give a total increased belief of 0.9. This value of 0.9 was suggested in

Michalski and Chilausky (1980) in his study of diagnosing soybean diseases. In order to �nd the

correct certainty-factor value for each rule, the formula (1� :1(1=n)) is used, where n is the number

of antecedents in the original rule.

As an example, the original Promoter Recognition rule base (see next section) contains the

following rule for identifying a Promoter:

Contact ^ Conformation ! Promoter.

18

Translating this into certainty-factor form yields the two rules

Contact
0:68
! Promoter Conformation

0:68
! Promoter

Note that 0:68� 0:68 = 0:9. This does not deny the possibility of a certainty-factor rule containing

more than one antecedent. It may be the case that two or more factors must be present in order

for there to be any evidence suggesting a conclusion. In fact, the Mycin rule base contains many

rules in exactly this format. Rapture handles these using the standard certainty-factor combining

rules as described earlier. Rapture only uses rules such as these when they are explicitly stated

in the initial theory, and will never create them from a Horn-clause rule.

3.2.1 Special Rule Handling

During the process of converting non certainty-factor rule bases into certainty-factor networks, a

few special cases arose. These included the ability to model weighted Horn-clause rules, the ability

to handle negated literals, and M-of-N rules.

Weighted Horn-Clause Rules

The original rule base for Soybean Disease Diagnosis was developed with the help of a soybean

expert, and contained two types of rules that were given di�erent levels of importance (Michalski &

Chilausky, 1980). Though described in Horn-clause form, rules labelled as signi�cant were suggested

to carry approximately nine times as much weight as those labelled con�rmatory. In other words, in

order to be 100% certain of a diagnosis, 90% of the certainty would be derived from the signi�cant

rules, and the remaining 10% from the con�rmatory. This clearly suggested the use of a certainty-

factor of 0:9 for signi�cant rules, and 0:1 for the con�rmatory. These were the values that were

used in translating these rules into certainty-factor format. Signi�cant rules were handled exactly

as the standard Horn-clause rules described above. Conjuncts are broken up into separate rules,

and each is given the same certainty-factor value such that a 0:9 certainty factor will be produced

whenever all of the antecedents are true. The only di�erence for translating the con�rmatory rules

was to give them a much smaller certainty factor. If all of the antecedents from a con�rmatory

rule are true, the resulting combined certainty factor will be only 0:1. This translation appears to

model the original rules accurately.

Negated Literals

Another special type of rule that Rapture is able to handle is those containing negated literals.

In the Splice-Junction Recognition rule base, there are two high-level rules that use negated literals

that are essential for properly identifying Splice-Junction sites. In order to handle this, Rapture

creates special NOT nodes which alter the certainty-factor values that propagate through them.

These NOT nodes alter the certainty factor of a literal as described below.

A true literal, with certainty factor 1:0, will give its negation a certainty factor of 0:0.

Remembering that negative certainty factors never propagate forward (see Chapter 2), this is the

smallest value that can usefully be assigned. A literal with certainty factor 0:0 gives its negation

a value of 1:0. This is in accordance with the methodology of negation as failure (Clark, 1978).

19

This was adopted for strictly intuitive reasons. If an expert is checking for a certain characteristic,

she may have several tests (rules) that check for this. If each test fails, she is likely to be inclined

to conclude that the particular characteristic is absent. This is despite lack of evidence for this

conclusion, which is only obtained through tests that check for the absence of the characteristic.

Any literal with a certainty-factor value between 0:0 and 1:0 will result in the negated literal

receiving a certainty factor of (1:0 { CF). Any literal with a certainty-factor value of less than 0:0

results in the negated literal being true with certainty factor 1:0.

M-of-N Rules

In the rule base for identifying Splice-Junction sites in DNA strands, several M-of-N rules are

expressed. These are easily simulated with proper setting of certainty factors. Analogous to the

translation for a standard Horn-clause, where all of the original antecedents must be true in order

that the corresponding certainty-factor rules give a value of 0:9, anM-of-N rule can be represented

using slightly higher certainty factors. Assuming a 3-of-5 rule, by giving each of the 5 certainty-

factor rules the certainty factor corresponding to a Horn-clause with 3 antecedents, whenever any

three of the �ve antecedents become true, a certainty factor of 0:9 will result. This also has the

nice feature that if all �ve of the antecedents are true, an even greater certainty factor will result,

corresponding with intuition.

3.2.2 Preparing to Construct the Network

Once a rule base has been obtained in certainty-factor format, Rapture can begin the revision

process with the use of training examples. Although no formal study has been made to determine

the precise relationship between an original propositional rule base, and its certainty-factor coun-

terpart, it is evident through examination of the learning curves of Chapter 4 that both theories

have very similar original predictive accuracies.

3.3 Converting the Rule Base into a Network

Before training begins, Rapture's �rst task is to convert the given certainty-factor rule base into a

connectionist network. Unlike the translation of the previous section, this conversion is completely

information preserving. The rule base and constructed network both process examples in exactly

the same manner. The main idea in building this network is to create one node for each unique

proposition in the rule base. All identical propositions map to the same node. Input features (those

only appearing as rule-antecedents) become input nodes that are placed at the bottom (input layer)

of the network. Output symbols (those only appearing as rule-consequents) become output nodes,

and are placed at the top (output layer) of the network. These output nodes represent the various

categories into which an example can be classi�ed. Links are created to connect antecedent nodes

with consequent nodes. One link is created for every rule in the rule-base, and the certainty factor

of the rule becomes the weight of this link. As examples are presented to the network, values are

propagated forward, and the measure of belief of each output node is computed. Each example is

classi�ed into the category with the highest output value.

20

A

MIN

D G

MIN

B C E F

.5
.7 .1

.8

MIN

I

.3

D

A B C

.5.2.7

A D B D C D
.7 .2 .5

(a)

(b)

.5 .7 .1

.2.8 .3

NOT

.2

A B C D E D C G

H

^

^

^

^
E F G H I C I E

Figure 3.2: Converting Rules into Certainty-Factor Networks

3.3.1 Domains with a Default Category

In both of the DNA domains examined in this work, there exists a default negative category.

Whenever the given rules fail to classify a particular example into any of the de�ned categories, it

is labelled as a negative example. The rule base for Promoter Recognition only contains rules for

one category, namely Promoter, and examples not satisfying the conditions for this category are

labelled negative (or non-Promoters).

This is easily handled with the use of a threshold. The value of 0:9 is used in all experiments

requiring a threshold. Any example receiving certainty factors less than 0:9 in all de�ned output

categories is classi�ed as a negative example. This threshold value remains constant throughout

training, though may be altered before testing begins (see below).

Consider a simple example of three rules:

A
:7
! D B

:2
! D C

:5
! D

21

The network of Figure 3.2(a) is the certainty-factor network for this set of rules. These rules state

that A, B, and C all contribute evidence towardsD in varying degrees. Note the di�erence between

these rules, and the single rule

A ^B ^ C
0:9
! D

which states that all of A,B, and C must be true (to some degree) in order for there to be any

evidence forD. As mentioned previously, Rapture handles these two cases di�erently|the former

uses probabilistic sum to combine certainty-factor values, whereas the latter uses MIN.

Figure 3.2(b) illustrates the following more complete set of rules.

A ^B ^ C
:5
! D E

:7
! D C

:1
! G

E ^ F
:8
! G H ^ I

:3
! C :I

:2
! E

As shown in the network, conjuncts must �rst pass through a MIN node before any activation reaches

the consequent. This permits only the minimum value from among all inputs to propagate up the

network. This is in agreement with the certainty-factor combining rules (Buchanan & Shortli�e,

1984). Note that each of the conjuncts is connected to the corresponding MIN mode with a solid

line. This represents the fact that the link is non-adjustable, and simply passes its full activation

value onto the MIN node. Similarly, solid lines are used to connect NOT nodes with their non-

negated counterparts. The full activation is passed to the NOT node, which then negates this value

as described earlier. The standard (certainty-factor) links are drawn as dotted lines indicating that

their values are adjustable.

The above constructions illustrate the close correspondence between the certainty-factor

rule-base, and the certainty-factor network. Each representation can be converted into the other,

without loss or corruption of information. They are two equivalent representations of the same set

of rules.

3.4 Pre-processing the Data

Once the network has been constructed, Rapture's task is to revise it in order that it can correctly

classify all of the training examples. One of the biases of Rapture is that it continues training until

100% of the training examples are classi�ed correctly. This is done with the hope of enabling the

learned rule base to be more successful at classifying novel examples. Attempts are made to prevent

over�tting (see Section 3.7.2), at least during node and link addition, though this is certainly one

area for future work. The downside of this bias is the impossibility of successfully training on sets

containing conicting examples. These are examples that have identical feature vectors, yet have

been given di�erent classi�cations by the expert. In order to remedy this, all conicting examples

are removed from the training set before training begins. This is done by placing all examples with

identical feature vectors and conicting classi�cations into a conict set. One example from this

set is placed back into the training set, and the rest are discarded from training. The example that

is selected is one that has been classi�ed into the same category as the majority of the examples in

the conict set. In case of a tie, an example is picked at random from among tied categories.

22

3.5 Processing the Training Examples

Before any training can occur, examples must be input into the network. This is done by assigning

each node in the input layer a certainty-factor value based on the example in question. Since each

node in the input layer by de�nition represents one observable feature from the domain, these

values can generally be taken directly from the example. Rapture is designed to handle several

di�erent types of observable features.

The standard feature is one with a �nite number of discrete values. An input node repre-

senting the feature (COLOR RED) will receive a certainty factor of 1.0 if the incoming example has

the value RED for feature COLOR. A certainty factor of 0.0 results if the value is any other color from

the domain. If the example is missing the value for this feature, a certainty factor of 1=n is used,

where n is the number of possible values for this feature. This has been shown to be an e�ective

encoding for missing features in neural networks (Shavlik, Mooney, & Towell, 1991).

In many domains, there also occur features with continuous values, such as a patient's age.

An input node corresponding to the feature (AGE-OF-PATIENT < 50) will receive a certainty factor

dependent upon how closely the example satis�es the condition of the rule. This is evaluated using

the formula 1=(1 + eAGE�50). This has the nice property that the certainty factor will be higher

for younger patients, yet still have a small positive value for patients slightly over 50. A patient

exactly 50 years old will produce a certainty factor of 0:5, and this value will decrease rapidly

towards 0:0 for older patients. This type of evaluation is typical of the method used to determine

set membership in fuzzy set theory (Zadeh, 1965). All examples with no value for this feature are

assigned the average value for the feature.

Finally, when creating Rapture{Kbann networks (discussed in Section 4:2), which are

the certainty-factor counterpart of a standard Kbann network, and where every feature from the

domain must be represented in the network, there arises the need to represent continuous features

without a speci�c threshold. An example of this is a node representing the feature TEMPERATURE. A

feature such as this signi�es that only the magnitude of the value from the example is important,

and the larger the value, the greater the resulting certainty factor. All training examples with

values for this feature are scaled linearly between 0:0 and 1:0. The example having the smallest

value will produce a certainty factor of 0:0 for the input node, while the example with the largest

value will produce one of 1:0. All other values are scaled in between. If a test example occurs with

a value outside this range, it will produce a certainty factor of 0:0 if below the training minimum,

and a 1:0 if above the training maximum. An example with a missing value will receive the average

temperature, and in the case of a missing value where no training examples have values, a certainty

factor of 0:5 is produced. This is one distinction between Rapture and Rapture{Kbann as the

former never makes use of such rules.

With the network and the training data in order, Rapture can begin the process of revising

the rule base. Rapture contains three separate mechanisms for achieving this|certainty-factor

backpropagation (CFBP), feature addition, and Upstart hidden-node creation. These are fully

described in the following sections.

23

3.6 Certainty-Factor Backpropagation

CFBP is the gradient-descent algorithm developed for Rapture. Gradient descent, or backprop-

agation (Rumelhart et al., 1986), is a standard connectionist algorithm for adjusting weights in a

neural network. The basic idea is to systematically adjust all of the weights on the links in the

direction that minimizes the mean-squared error of the network. Each time an example is pro-

cessed by the network, a comparison is made between the actual output and the desired output.

The desired output is generally a certainty factor of 1:0 at the correct output node, and 0:0 at all

others. These di�erences are noted at each output node, and represent the error produced from

the example. These errors are propagated back towards the input layer, and the certainty factor

of each link is slightly adjusted in the direction that will decrease this error for this example. By

cycling through all the examples one at a time, and comparing the network output with the desired

output, the overall network error can be diminished. Each complete pass through the training ex-

amples, where each example is processed by the network exactly once, is termed an epoch. Epochs

continue until the overall network error reaches a minimum. Speci�cally, Rapture continues this

backpropagation until classi�cation accuracy ceases to increase, and mean-squared network error

improves by less than 0:001 after a complete epoch.

3.6.1 Standard Backpropagation

In order to train a neural network using backpropagation, the standard formula for adjusting the

weight linking node i to node j (wji) after seeing pattern p is

�pwji = ��pjopi (3.1)

where � is the user-de�ned learning rate, opi is the output of unit i for input pattern p, and �pj is

the output error of unit j for pattern p. The output of a node j is f(netpj) where the net input

netpj =
P

wjiopi for all input connections i, and where f is a nondecreasing, di�erentiable function

(generally a logistic function). The value of �pj is determined by the type of unit. If j is an output

unit, then

�pj = (tpj � opj)f
0
j(netpj): (3.2)

where tpj is the correct output value for unit j. If j is not an output unit, then

�pj = f 0j(netpj)
X

k

�pkwkj : (3.3)

3.6.2 CFBP

The above formulas, however, do not apply to certainty-factor networks since they model only the

standard linear-summation of neural networks. In order to achieve gradient descent in a certainty-

factor network, it is �rst necessary to derive the corresponding formulas for Certainty-Factor Back-

propagation.

The main distinction between these two types of networks is the manner in which values

are combined to produce total net input (netpj). Certainty-factor networks use probabilistic sum

to determine this. This probabilistic sum directly determines the certainty factor of the node since

24

Figure 3.3: CFBP Diagrams

we have de�ned the output function to be identity| (opj = netpj). In order to minimize mean-

squared error in a certainty-factor network, CFBP is performed using the following equations. For

a derivation of these equations, see Appendix A.

�pwji =
��pjopi(1�

P
+h6=i� wjhoph)

1� MDj
(3.4)

If uj is an output unit

�pj = (tpj � opj) (3.5)

If uj is not an output unit

�pj =
X

kmin

�pkwkj(1�
P

+i6=j� wkiopi)

1� MDk
(3.6)

The essential variables are diagrammed in Figure 3.3. The �rst equation is for adjusting the

weight (certainty factor) on the link connecting node i with node j (wji), after processing training

example p. The wji notation represents the weight coming into node j from node i, indicating that

node j is exactly one layer higher in the network (closer to the output layer) than i. The \Sigma

with circle" notation is meant to represent probabilistic sum over its index value. The measures

of belief and disbelief for node j are labelled as MBj and MDj respectively. In this equation, this

probabilistic sum is indexed over +h 6= i. This is a probabilistic sum of all the positive links coming

into node j, except for i itself. The h nodes are the other nodes also exactly one layer beneath,

and connected to, node j. See Figure 3.3(a).

The second and third equations are used for determining the amount of output error that

is caused by node j after processing training example p. In the third equation, the entire formula

is summed over index kmin. This notation represents the fact that some k nodes receive no value

from node i when processing example p. This is due to the fact that the output value from each

25

node may have to pass through a MIN (or MAX) node before any value is passed onto node k.

This makes it possible that j's value will not reach k, and any error caused by node k can not be

attributable to node j. Thus the summation index kmin indicates that the summation is over only

k nodes that received a value from node j. The probabilistic sum in this equation is similar to that

of the previous equation. The index is over +i 6= j, which represents all positive links i coming

into node k except for j itself. See Figure 3.3(b).

Using these equations, CFBP performs gradient descent on certainty-factor networks in a

manner identical to standard backpropagation for a neural network. Examples are fed into the

network one at a time through the input nodes. Weight adjustment occurs with each example as

network error propagates down towards input lines. Epochs are run until network error reaches a

minimum.

Assuming the target output value is 1:0 for the correct category and 0:0 for all other cate-

gories, it is virtually impossible to achieve an overall mean-squared error of zero. When combining

evidence using probabilistic sum, an output of 1:0 is only possible with the existence of a rule that

concludes the consequent with certainty (i.e., 1:0). The existence of such a rule still requires that all

antecedents have certainty factors of 1:0. Such cases are not common in probabilistic classi�cation

problems. Because of this, Rapture deems a classi�cation correct when the output value for the

correct category is greater than that of any other category. Since this is considered a correct diag-

nosis, no error propagation takes place (�pj = 0), even though it is unlikely that the mean-squared

error for this example is 0:0. This is similar to the method used in Yu and Simmons (1990) and

many others.

The remaining issue is when to terminate CFBP. The obvious stopping criteria is after all

examples are classi�ed correctly. This simple criteria is not used for a couple of reasons. First, since

backpropagation is a hill-climbing algorithm, it is very possible that 100% training accuracy will

never be reached. The network error may reach a local minimum, where further backpropagation

will not help. Second, classifying all of the examples correctly does not mean that further weight

adjustment is of no use. Correct classi�cation does not imply 0:0 mean-squared error, as previously

explained, and it is possible that further gradient descent would minimize error to an even greater

extent. A more useful criteria for terminating weight adjustment is when overall mean-squared

error is minimized. Rapture checks the total mean-squared error after every 10 epochs, and halts

CFBP whenever training accuracy is observed to decrease, or mean-squared error decreases by less

than 0:001, with no improvement in training accuracy.

If at this point, all of the training examples are being correctly classi�ed, the network is

considered trained, and Rapture terminates, returning the trained network. If not, a call to the

Rapture's second training mechanism is made.

3.7 Feature Addition

This module is called whenever CFBP fails to train the network to 100% accuracy with the given

examples. Since this is commonly a sign that the architecture of the network is insu�cient for the

current classi�cation task, this module attempts to modify it in a way that will further improve

training accuracy. Speci�cally, carefully selected nodes and links are added into the network in

an attempt to bring training accuracy closer to 100%. The essential decision to be made is the

26

Figure 3.4: Adding New Features

selection of the appropriate feature from the domain to be added into the network, and this may

come from an existing node in the network, or an observable feature from the domain not currently

in use.

In order that the new feature has as great an impact as possible on the successful classi�ca-

tion of training examples, it is directly connected to appropriate output nodes in the network. It

is connected with a small positive link weight to one output node, and with a small negative link

weight to others. The selection of the most appropriate feature to add uses the information-gain

metric of ID3 (Quinlan, 1986). The following subsection describes this process in detail.

3.7.1 Choosing the Best Feature to Add

Assuming that the network has not reached 100% training accuracy, by de�nition there remain

training examples that are being classi�ed into incorrect categories. Each such example is both a

false-negative example, and a false-positive example. It is a false-negative example for the correct

category, since it failed to be classi�ed into this category. It is also a false-positive example, however,

for the category into which it was classi�ed. In fact, it is a false-positive example for every category

whose output node obtained a higher certainty-factor value than did that of the correct category.

Formally, let us de�ne C as the set of all possible categories into which an example may be

classi�ed, and Ci represent the ith category. We de�ne Ni to be the set of false-negative examples

for category Ci. These are those examples whose target (correct) category is Ci, yet the network

has classi�ed as Cj 6=i. In fact, the network may have given a higher certainty factor to several Cj

for any given example in Ni. We can de�ne Mi as the set of all mistaken categories Cj 6=i, such that

for some example in Ni, Cj has a higher certainty factor than Ci. Finally, de�ne Pi as the set of

all examples whose target category is among the categories in Mi, namely the true positives for all

of these categories, regardless of how the network handles them.

27

As shown in Figure 3.4, for each category Ci, we now have two disjoint sets of examples.

The �rst of these, Ni, is the set of false-negative examples for this category. The second is Pi,

which is the set of true-positives for all categories that are being confused with Ci.

Since the network is classifying the false-negative examples into these incorrect categories,

a new feature is needed that the network can use to better discriminate between these groups of

examples. Quinlan's ID3 metric (Quinlan, 1986) has been adopted by Rapture as the solution to

this problem.

ID3 is designed to build decision trees that classify examples into pre-de�ned categories.

Given a set of examples described using feature vectors, ID3 selects the feature that best partitions

these examples into subsets that correlate with an expert's classi�cation. This is done using an

information-gain metric. Each node in the tree is the feature with the highest information-gain

among examples at this node, and each branch beneath this node represents a particular value.

This same information gain can be used to help Rapture add bene�cial features. Rapture

has two sets of examples to work with (Ni and Pi), and needs to �nd the feature-value pair that is

highly prominent in the former, yet lacking in the latter. Once this feature has been determined,

it can be used as positive evidence for category Ci and negative for all categories in Mi.

By labelling each example inNi as negative, and those from Pi as positive, Rapture can then

use information gain to determine which feature maximally distinguishes these sets of examples.

Speci�cally, this metric chooses the feature that minimizes

[(Pyes +Nyes)� INFO(yes) + (Pno +Nno)� INFO(no)]

N

This function calculates information gain by returning a number between 0:0 and 1:0, where 0:0

represents maximal gain, and 1:0 represents no information gain. The variable Pyes refers to the

number of positive examples with value yes for the feature in question. Nyes is the number of

negative such examples. INFO() is a function of the value (yes or no) de�ned as INFO(value) =

� 0 if Pvalue = 0 or Nvalue = 0

� �ulog2u� vlog2v otherwise,

where u = Pvalue=(Pvalue +Nvalue), and v = Nvalue=(Pvalue +Nvalue).

The major task of this module is to check every possible feature from the domain, as well as

the network. ID3's metric calculates the information gain for each node currently in place in the

network. This excludes nodes that are already directly connected to the output node in question.

This is then compared with the information gain of every feature from the domain not currently

in the network. Rapture does this by considering every feature-value pair from the domain as

a binary feature. Instead of having a feature COLOR with values RED, BLUE, and GREEN, we have

3 features COLOR=RED, COLOR=BLUE, and COLOR=GREEN, with values NO or YES. For features with

continuous values, a set of potential threshold values is created. This set is created by listing all

of the values for this feature from the training examples. This list is sorted, and midpoints are

created between each successive numeric value. Each of these midpoint values is then used, and

tested as a potential threshold for this feature. This has been shown to be a successful technique

for creating values to test against (Quinlan, 1993).

All intermediate (non-observable) features appearing in the network are also tested for

information gain. Every example when processed by the network will give some certainty-factor

28

value to every node in the network. If a particular example gives a 0:4 certainty factor to the the

node in question, this represents 0:4 of an example containing this hidden feature, and 0:6 of an

example that does not contain this feature. Since the information-gain formula requires counts

of the number of examples with and without this feature, these values are totalled over all of the

training examples, and given to the information-gain equation.

Any information-gain ties are broken at random. Once a feature has been selected, it

is added as new positive evidence for Ci. For newly inserted features, it may be the case that

the selected feature is negative evidence for Ci, meaning that it is highly prominent in Pi while

lacking in Ni. To correct this, the value of the feature is simply inverted (e.g., from COLOR=RED to

COLOR6=RED). The alternative method of creating a NOT node, rather than inverting the value has

the undesirable side e�ect of increasing the size of the network. For intermediate features currently

in the network, where inversion is not possible, only positive evidence is considered. Placing a

small positive weight (0:1) on the rule produces a rule of the form COLOR=RED
0:1
! Ci, which serves

as new positive evidence for Ci. Similar rules (using the same feature pair) are built for each of

the categories in Mi with negative weights (-0.1). This gives new negative evidence for all of these

categories. The examples in Ni will now produce higher certainty-factor values at the output node

for Ci, and smaller values at the output nodes for Mi.

This feature addition is performed for each category Ci 2 C. Note that for some categories,

the false-negative list will be empty. This happens whenever every example of this category is

classi�ed correctly. This produces no new nodes in the network. False positives are not dealt with

explicitly, since these will turn up as false negatives for some other category. Once there are no

further false-negative examples, the network is fully trained.

Note that is may be possible that none of the output nodes have any false-negative examples,

yet network accuracy is less than 100%. This can occur with the existence of a default category,

described in Section 3.3.1. This category is never represented in the network with an output node,

but rather a threshold value is used to determine when an example falls into this default category.

If no output node has a certainty factor greater than this threshold, the example is categorized into

this category (usually the negative category).

When this occurs, a new feature is linked into the network exactly as described above. False

negatives for the default category, along with the true positives of the mistaken categories are

collected, and the highest information-gain feature-value is selected. The only di�erence now is

that it is impossible to connect this node as positive evidence for the default category, since it has

no output node. But, as before, negative link connections can still be made to other categories,

and this produces the desired e�ect.

With these new nodes in place, Rapture returns to CFBP in order to train the weights

on the new links. Ideally, this will allow more training examples to be successfully classi�ed. This

entire process (CFBP followed by adding new nodes and links) repeats until either all training

examples are correctly classi�ed, or training accuracy begins to decline.

Once all of the examples are classi�ed correctly, the network is considered trained. Before

returning the network, all links with certainty factors within 0:0001 of 0:0 are deleted, simplifying

the complexity. If network accuracy begins to decline before 100% accuracy occurs, the �nal

Rapture training module is called. Links near zero are similarly deleted before the next module

is called.

29

3.7.2 Avoiding Over�tting During Feature-Addition

Early tests with Rapture showed that by continuing to add features as described in the previous

section until 100% training accuracy was obtained, generally poor generalizations resulted. For

larger numbers of examples in some domains (e.g. soybean), 100% accuracy is never achieved.

After adding a certain number of links into the network, mean-squared error often got considerably

worse. Continuing to add links beyond this point, despite often ending with 100% training accuracy,

poor test performances resulted. If, however, training terminated as soon as mean-squared error

began increasing, even with less than 100% training accuracy, better test performance resulted.

This is a clear sign that over�tting is occurring.

In order to prevent this, a call to the Upstart algorithm is made. Rapture terminates

the feature-addition portion of the algorithm as soon as network accuracy ceases to improve, and

mean-squared error begins to increase. This is noted individually for each output category, as well

as for the entire category. Whenever the addition of a new feature causes no improvement in overall

network accuracy, no improvement in the accuracy of the particular category being worked on, and

no improvement in network mean-squared error, the particular category is marked as ready for

Upstart, and no further feature addition is performed for this category. It is occasionally the

case that the addition of a particular feature may actually create more errors in the particular

category, yet still improve overall accuracy by helping out other categories. This does not cause a

call to Upstart, and features continue to be added for this category. Once every category is either

completely trained, or ready for Upstart, the feature addition module terminates.

3.8 The UPSTART Algorithm

The �nal module used byRapture is theUpstart algorithm (Frean, 1990). This is a connectionist

technique for creating hidden nodes in a neural network. The basic idea is to create new hidden

units directly beneath any output nodes that are producing classi�cation errors. These new nodes

are designed to learn the incorrectly classi�ed examples, and are linked directly to the problematic

output nodes. In essence, these nodes learn the exceptional cases that the current network is unable

to classify.

Speci�cally, the algorithm looks at every output node, and notes which examples it is mis-

classifying. Since there are two types of errors that can be made (i.e., false-negatives and false-

positives), two new hidden units are created. One of these is designed to learn the false-negatives

for this category, while the other is designed to learn the false-positives. Clearly, if a particular

category does not have both of these types of errors, then the corresponding hidden unit is not

necessary. Once trained, the node representing the false-negative examples is linked positively to

the output unit, whereas the one representing the false-positives is linked negatively. Once these

new nodes are trained correctly, and linked into the network, no false-negative or false-positive

examples will remain for this output category. Once this is done for each category, training is

complete, as now the network categorizes each training example correctly.

The problem is now reduced to one of properly training the new hidden units. Fortunately,

a very elegant solution is available|namely to train the new units using the Rapture algorithm

recursively. This means applying all of the above modules with a new problem. CFBP followed by

feature addition again repeats until termination is signalled. If all examples are now correct, the

30

Figure 3.5: Adding Hidden Units { Upstart

algorithm terminates, otherwise Upstart is called again a new set of misclassi�ed examples.

In practice, it is rare to see more than one level of Upstart being called, though it does

occur when there are hundreds of training examples. Once all hidden units are fully trained, they

are linked into the original network with just enough weight to force all examples to be classi�ed

correctly. This weight is determined by performing a binary search over possible weights, until a

certainty factor within 0:01 of the lowest possible value is obtained. This lowest possible value is

the minimal value that can be assigned to the new link that enables all of the misclassi�ed examples

in question to be handled correctly. Any value greater than this minimum value will correct these

examples. Using too high a value, however, results in requiring remaining Upstart link-weights to

have an even higher value in order to correct misclassi�ed examples. For this reason, it is desirable

to choose a link weight not far from the minimum value.

Finally, as an implementation note, generally only one new Upstart unit is created below

each output unit with misclassi�ed examples. This is because I chose to create all of the false-

negative Upstart nodes �rst before creating any false-positive Upstart nodes. Since as soon

there are no false-negative examples, all examples are correct, and false-positive Upstart nodes

are only needed in domains with a default category. This was decided because for each category,

there were generally many fewer false-negative examples than false positives, and this simpli�ed

the work of Upstart.

3.9 Post-Processing

One of the elegant features of this algorithm is the minimal need for post-processing. One

the network is trained, the new rule base can be read directly o� of it. This is the reverse process

of building the network, and can be done directly with no loss or corruption of information. An

overview of the entire algorithm is depicted in Figure 3.6.

31

� Loop until training accuracy ceases to improve.

1. Perform CFBP on the network. Use given training examples, and as many epochs as
necessary until mean-squared error ceases to improve.

2. If not 100% training accuracy, use ID3 information gain to add new features (or link
existing ones). Create one new link for each output unit misclassifying positive examples.

� Remove all near zero-weighted links

� For All Output Units Producing Errors

1. Build one unit to learn the false-negative examples.

2. Build one unit to learn the false-positive examples.

3. Train each of these units using Rapture

4. Link new units to the Output Unit with appropriate weight.

Figure 3.6: Overview of the Rapture Algorithm

32

Chapter 4

Experimental Results in Real-World

Domains

In order to test the performance of Rapture, rule bases from various domains were sought. A

successful domain requires training examples of all target concepts, along with a set of rules for

classifying the examples. An ideal rule base for Rapture is one that is originally expressed using

certainty-factors, though to date, only one such rule base has been obtained. The other rule bases

examined in this chapter are originally expressed as sets of Horn-clauses, and manually converted

into certainty-factor format for use by Rapture. This chapter presents results from four unique

domains, one of which contains two sets of examples.

Two of these rule bases come from problems of genetics that attempt to identify certain

regions of DNA sequences. The �rst of these is identifying promoter sequences, which are portions

of DNA that precede gene sequences. The second attempts to identify exon-intron and intron-exon

borders in DNA sequences. These borders distinguish the parts of a DNA sequence that code

genetic information, from those that do not.

The third rule base that Rapture has been tested on is a version of the original Mycin

rule base that came from the Stanford Medical Library. This rule base was ideal for Rapture, as

it was designed using certainty-factors in its rules, and was created to provide consultative advice

on diagnosis and therapy for infectious diseases. The fourth rule base is one that classi�es diseased

soybeans into one of fourteen common diseases. This rule base comes from Michalski and Chilausky

(1980). These domains are discussed in detail in the sections that follow.

4.1 The Train and Test Methodology

In the following sections, numerous graphs are presented. These are learning curves that show

the performance of various learning systems in the given domains. All results were run on Sun

Sparc 5's. The horizontal axes represent the number of training examples that were given to each

system for learning, and the vertical axes plot either test accuracy on novel examples, the time it

took to train the system, or the complexity of the learned rule base (measured as the number of

rules or the number of links in the network). Except where noted, all of the systems are given the

same sets of examples for training, and are tested on the same sets of novel examples. During each

trial, beginning with no training, the number of training examples increases by adding new novel

33

Figure 4.1: Modules Used in Rapture Ablations

examples to the current training-set. The test set of examples remains static throughout a given

trial, and is created from examples not used for training. All of the graphs represent values averaged

over at least 20 independent trials. Statistical signi�cance is measured by running two-tailed paired

t-tests on the data.

In the learning-curve plots that follow, I have made attempts to be as consistent as possible

in labelling each of the systems. For example, Rapture is consistently plotted with a slightly

thicker line than the others, and uses black dots to mark individual points. Kbann is consistently

plotted as a thinner solid line, using an asterisk for individual points. Systems that do not begin

with any domain knowledge use non-�lled-in marks for their data points. This makes it much easier

to quickly pick out these systems.

4.2 Versions of Rapture used in Testing

In order to fully test Rapture, observe the contribution of each of the component algorithms,

and make comparisons with other learning algorithms, several ablated versions of Rapture were

created, and tested on the above domains. Results of these are compared with results from standard

learning systems.

The �rst two of the ablations are simply Rapture with one or more training modules dis-

abled. The simplest of these is Rapture{CFBP, which uses only the �rst algorithm of Rapture-

|the weight modi�cation routine. The initial theory is converted into a certainty-factor network,

and CFBP is performed until training accuracy is maximized. Similar to this is Rapture{Add,

which is Rapture without the Upstart algorithm. CFBP is performed on the initial theory, and

new links are added repeatedly until no further improvement is observed. These main Rapture

ablations are diagrammed in Figure 4.1

In order to test the signi�cance of the initial theory, Rapture{Null was also created.

This is the complete Rapture algorithm beginning with no background knowledge. The initial

network simply consists of a set of output nodes with no input connections. New nodes are created

and linked through feature-addition, CFBP is performed, and the Upstart algorithm is called to

34

create hidden units. Rapture{Null terminates when training accuracy reaches 100%.

The variant Rapture{Kbann, is an attempt to replicate the Kbann algorithm (Towell &

Shavlik, 1994) using Rapture's certainty-factor combining functions. Beginning with an initial

theory represented as a certainty-factor network, all features from the domain not currently repre-

sented in the network are added to the input layer. The network is then fully connected by linking

all nodes in one layer, to all nodes in the next higher layer. These new additional links are given

a minimal link-weight. CFBP and weight decay (Hinton, 1986) are performed over this network

until training accuracy ceases to improve.

Finally, CF-Net is CFBP performed over an initially random-weighted two-layer certainty-

factor network. This system is created out of an attempt to discover any potential di�erences

between standard Backpropagation and CFBP. CF-Net uses an architecture that includes an

input layer, an output layer, and one hidden layer. The input layer consists of one input unit for

each possible value for each feature of the domain. The output layer has one output unit for each

output category, and the hidden layer contains the number of units equal to (number-input-nodes

+ number-output-nodes) / 10. This is the architecture that was used for standard backpropagation

in Shavlik et al. (1991). CFBP is applied to this network until training accuracy is maximized.

4.3 Experimental Hypotheses

Rapture was designed to be able to work well in a framework involving uncertainty, and be able

to take advantage of available background knowledge. Because of this, we believe that Rapture

should be able to outperform systems that are unable to make use of background knowledge, or

have di�culty expressing uncertain target-concepts. Since the given background knowledge should

ideally be not too far from a correct set of rules, Rapture should be able to train much faster,

both in terms of number of training examples required to reach a certain performance level, as well

as CPU time necessary to train over a given number of examples.

Because of this, it is hypothesized that Rapture will be able to produce more accurate sets

of rules than C4.5, which is unable to take advantage of background knowledge, and can not easily

represent uncertain concepts. Similarly, Rapture should be able to outperform BackProp, which

despite being able to represent uncertain target-concepts, allows no use of background knowledge.

The system Either, on the other hand, is designed to make use of background knowledge,

but with its use of Horn-clauses to represent rules, it is unable to accurately represent uncertain

concepts. This should lead to performance that is inferior to that of Rapture.

Systems that are able to make use of background knowledge, and represent uncertain target-

concepts, such as Kbann and Neither, should be competitive with Rapture. Since Kbann

requires a fully-connected network containing all available input features, it should take more time

to train, and may produce larger rule bases. Since Neither, on the other hand, can only represent

uncertainty through the use of M-of-N rules, which are less general than certainty factors, it may

produce slightly less accurate sets of rules.

The separate modules of Rapture were designed to improve the accuracy of the initial rule

bases as much as possible with respect to training examples. Because of this, it is hypothesized

that the performance of ablated versions of Rapture will su�er. Further, increasing the number of

inactive modules should result in increasingly poor performance. Hence Rapture should outper-

35

form Rapture{Add, which should outperform Rapture{CFBP. The system Rapture{Null

will demonstrate the utility of the background knowledge, as it begins with none. The performance

of this system should su�er because of this. Also, since Rapture{Kbann begins with a much

larger initial set of rules, Rapture should be able to train faster, and produce less complex rule

bases, which should give it better generalization performance.

Due to their very similar techniques, BackProp and CF-Net are hypothesized to produce

nearly identical results. The only di�erence between these two systems are their combining func-

tions, and corresponding backpropagation formulas. Since those of CF-Net are more complex,

and of a higher order, it will almost certainly take more time to train these networks, and they

may converge at a slower rate.

4.4 DNA Primer

Since two of the four domains presented here deal with analyzing DNA sequences, a brief introduc-

tion to this domain is in order. More detailed information can be found in (Frank-Kamenetskii,

1993; von Heijne, 1987; Rosen�eld, Zi�, & van Loon, 1983; Portugal & Cohen, 1977; Kornberg,

1974).

DNA, short for Deoxyribonucleic Acid, is the molecule that contains the genetic information

in all living creatures. It is made up of two polynucleotide strands that form a double helix. Each

of these strands consist of a long chain of nucleotides, and each nucleotide can be one of four

types (known as bases). These bases are adenine, guanine, cytosine, and thymine, abbreviated as

A,G,C, and T. Genetic information is encoded via the linear order in which bases are arranged in

a given strand of DNA. It is estimated that a typical strand of human DNA contains more than

3,000,000,000 nucleotides.

Genes, the smallest physical units of heredity, are actually sequences of DNA that code for

some functional product|commonly protein. Each linear sequence of three bases de�nes a codon,

and these specify a particular amino acid in the protein. Since there are only 20 amino acids found

in proteins, the 64 = 43 possible base triplets are easily su�cient. There is much ongoing research

into decoding the information contained in strands of DNA, and more is being learned continuously.

The New York Times (Wade, 1995) reports on rapid progress currently being made, and quotes two

scienti�c reports that estimate that as much as 99% of human-DNA genetic-information should be

fully decoded by the year 2002.

One current unknown in the decoding process is the determination of the starting points of

gene sequences. Knowing exactly which nucleotides encode any given gene greatly simpli�es the

decoding process. This problem is made all the more di�cult by the fact that the majority of

nucleotides in a DNA strand don't code for anything, and are simply referred to as \junk" DNA.

It is estimated that as much as 90% of animal-cell DNA is junk.

Fortunately, there are special sets of base-sequences that indicate where genes begin and

end. Sequences that precede a gene are known as promoters, and those that terminate them are

referred to as terminating codons. Identifying the base sequences that code for promoters is the

subject of one of the test domains of this work.

Research has shown that the complete set of codons for any one gene are not contiguously

placed in the DNA strand. Codons and junk DNA are interspersed throughout all gene sequences,

36

further complicating the decoding process. Contiguous areas of codons are known as Exons, and the

interspersed junk areas are known as Introns. Identifying the borders between Exons and Introns

is the subject of another one of the test domains presented in this work.

4.5 DNA Promoter Experiments

As discussed in the previous section, Promoters are short DNA base-sequences that precede the

beginning of genes. The ability to identify these regions greatly simpli�es the task of genetic

decoding. While much is known about the structure of Promoter sequences, there is no known

procedure for identifying them solely by examining base sequences. Physical tests do exist, however,

that can be performed on strands of DNA to identify these regions. This is due to the fact that

a promoter is the location where protein RNA polymerase binds to the DNA structure. While

further explanation can be found in Frank-Kamenetskii (1993), su�ce it to say that such a test will

identify Promoters with very high accuracy. This allows one to examine the base sequences that

precede genes, in order to search for regularities.

Through analysis of the biological literature of O'Neill and Chiafari (1989), Noordewier,

Towell, and Shavlik (1991) developed a set of rules for recognizing Promoters given a base sequence.

The certainty-factor rule base for identifying Promoters is illustrated in Figure 4.2. All

original (non-translated) rule bases can be found in Appendix B. Each line represents one rule{

consisting of the consequent, the certainty factor, and the antecedents. There are thus two rules

that conclude promoter. One of them uses contact as evidence, and the other uses conformation.

All of the rules for this domain have antecedents of length one.

Though these rules contain a great deal of accurate information, they are unfortunately

overly-speci�c. In fact, these rules never classify an example as a Promoter (i.e., no examples pro-

duce a promoter certainty-factor of 0:9 or greater). Attempts to revise this rule base are discussed

in the following sections.

4.5.1 The 106-example Promoter Data Set

The 106 example Promoter data set is available from the Irvine machine-learning data repository

(Merz, Murphy, & Aha, 1996), and because of its wide availability has been tested on a number of

learning systems. This data set consists of 53 examples of Promoters (i.e. positive example), and

53 examples of non Promoters. There are no conicting examples, and there are no examples with

missing features.

Each example is represented as a sequence of 57 contiguous nucleotides taken from a strand

of DNA, with each nucleotide being one of the four base values|A, C, G, or T. The 57 nucleotides

in the examples represent a window carefully positioned around a possible Promoter site, so that

nucleotides 51 through 57 actually represent the �rst nucleotides of the gene that follows the possible

Promoter (in positive examples). The �rst 50 features of the examples are labelled P-50 through P-

1, representing DNA positions -50 through -1. These are the positions which contain the potential

Promoter. The �nal 7 positions are labelled P+1 through P+7, representing positions +1 through

+7, which is the beginning of a potential gene. Note that there is no position P0. The classi�cation

37

promoter <-0.68-- (contact) conformation <-0.08-- (p-47 c)

promoter <-0.68-- (conformation) conformation <-0.08-- (p-46 a)

conformation <-0.08-- (p-45 a)

conformation <-0.08-- (p-44 t)

contact <-0.68-- (minus_35) conformation <-0.08-- (p-44 a)

contact <-0.68-- (minus_10) conformation <-0.08-- (p-43 t)

conformation <-0.08-- (p-42 t)

conformation <-0.08-- (p-41 a)

minus_35 <-0.28-- (p-37 c) conformation <-0.08-- (p-40 a)

minus_35 <-0.28-- (p-36 t) conformation <-0.08-- (p-39 c)

minus_35 <-0.28-- (p-35 t) conformation <-0.08-- (p-28 t)

minus_35 <-0.28-- (p-34 g) conformation <-0.08-- (p-27 t)

minus_35 <-0.28-- (p-33 a) conformation <-0.08-- (p-23 t)

minus_35 <-0.28-- (p-32 c) conformation <-0.08-- (p-22 a)

minus_35 <-0.28-- (p-31 a) conformation <-0.08-- (p-22 g)

conformation <-0.08-- (p-21 a)

conformation <-0.08-- (p-20 a)

minus_10 <-0.25-- (p-14 t) conformation <-0.08-- (p-18 t)

minus_10 <-0.25-- (p-13 t) conformation <-0.08-- (p-17 t)

minus_10 <-0.25-- (p-13 a) conformation <-0.08-- (p-16 t)

minus_10 <-0.25-- (p-12 t) conformation <-0.08-- (p-16 c)

minus_10 <-0.25-- (p-12 a) conformation <-0.08-- (p-15 t)

minus_10 <-0.25-- (p-11 t) conformation <-0.08-- (p-15 g)

minus_10 <-0.25-- (p-11 a) conformation <-0.08-- (p-8 g)

minus_10 <-0.25-- (p-10 a) conformation <-0.08-- (p-7 c)

minus_10 <-0.25-- (p-9 t) conformation <-0.08-- (p-6 g)

minus_10 <-0.25-- (p-9 a) conformation <-0.08-- (p-5 c)

minus_10 <-0.25-- (p-8 t) conformation <-0.08-- (p-4 t)

minus_10 <-0.25-- (p-7 t) conformation <-0.08-- (p-4 c)

conformation <-0.08-- (p-2 c)

conformation <-0.08-- (p-1 a)

conformation <-0.08-- (p-1 c)

Figure 4.2: The Initial Promoter Rule Base in Certainty-Factor Form

Figure 4.3: Promoter Example 53 From the Rule Base

task is to determine if a Promoter resides in positions P-50 through P-1, with a gene beginning in

position P1. An actual example from this data set is shown in Figure 4.3.

These rules are based upon the fact that RNA-polymerase must bind to a DNA sequence

at two distinct points, namely DNA positions �35 and �10. The values at these positions weighs

heavily upon proper classi�cation. Since this data set is a 50/50 split of Promoters and non-

Promoters, the original rule base classi�es exactly 50% of the examples correctly, by simply labelling

every example negatively. This is precisely the accuracy of random guessing in this domain.

38

0 30 60 90
0

20

40

60

80

100

Rapture Kbann Neither
Backprop Either C4.5

Figure 4.4: Promoter 106 Recognition Accuracy { Standard Systems

Since this problem is a single-category problem, where an example either is or is not a

Promoter, Rapture uses a threshold value (0:9) during training and testing to distinguish positive

and negative examples. As discussed in Chapter 3, an example producing an output certainty-factor

of 0:9 or greater during training is classi�ed as a positive example (e.g., Promoter). A certainty-

factor less than 0:9 results in a classi�cation of non-Promoter. Once the rule base is trained to

100% accuracy (using the 0:9 threshold), the threshold is adjusted before testing. By averaging the

certainty-factor of the lowest-scoring positive example with the highest-scoring negative example,

a threshold maximizing the distance between the two sets of examples is obtained. The e�ect of

this was minimal in these tests, as the new threshold-value never di�ered from the original (0:9)

by more than 0:05.

Performance in this domain is shown in the graph of Figure 4.4. This is a plot of accuracy

in correctly identifying Promoter sites in DNA strands. In this domain, all plots, except those of

Kbann are averaged over 25 trials. The Kbann results were obtained independently by Geo�

Towell, and were run over di�ering sets of training examples. The graph clearly demonstrates the

advantages of an evidence summing system like Rapture over a pure Horn-clause system such as

Either, a pure inductive system such as C4.5, or a pure connectionist system, such as BackProp.

39

The reasons for this are apparent, upon further examination of the domain. It turns out that there

are several potential sites at which hydrogen bonds can form between DNA and a protein. When

enough of these bonds form, promoter activity can occur. In order for a set of rules to e�ectively

model this knowledge, some sort of evidence-summing ability is required.

Before any learning takes place (i.e., 0 training examples), all of the systems perform at

roughly the same 50% accuracy level, which as mentioned previously is the accuracy produced by

random guessing. Rapture, however, is able to learn an accurate classi�cation for Promotersmuch

more quickly than the other systems. Whereas Rapture performs at a better than 90% level after

only 20 training examples, Either, BackProp, and C4.5 never reach this performance level, even

after as many as 90 training examples. These results are not terribly surprising, since both Either

and C4.5 lack the ability to represent M-of-N style rules, or any other evidence-summing ability.

The weak performance of BackProp is likely due to the lack of domain knowledge in the neural

network.

Though Rapture performs the best overall, systems Kbann and Neither perform com-

parably. Both of these systems contain mechanisms for representing M-of-N style rules, and are

given domain knowledge to guide their learning. Rapture does, however, learn more quickly as it

is able to perform at a greater than 90% level after only 20 training examples, where it takes more

than twice this number for both Neither and Kbann. Statistical t-tests show that Rapture is

performing signi�cantly better than the other systems through 40 training examples at at least the

0:05 level. Since the exact data that was used for training the Kbann system was not available to

us, performing paired t-tests was impossible, though it does appear that Kbann is performing no

better than Neither.

By examining the training time plots of Figure 4.5, it is clear that Rapture is able to

learn this concept quite rapidly in terms of CPU cycles as well. Though C4.5 and Neither

learn somewhat faster, Rapture is outperforming the neural network by more than an order of

magnitude. The main reason for this good performance is the domain-knowledge that Rapture is

able to use to good advantage.

This is one set of rules and examples that Rapture is able to train using only the CFBP

mechanism. The feature-addition module, and the Upstart mechanism are never needed to train

the examples. This is a good indication that the structure of the domain knowledge is quite

accurate. Figure 4.6 presents the learned rule base after training on the entire (106) training set.

The main di�erence between this and the original is that each nucleotide has di�erent amounts of

inuence on the terms in the rules. Contact has also been given a much higher certainty factor

than Conformation, indicating a greater importance in classifying each example. The 0:99 certainty

factor for Contact indicates that this condition is essentially conclusive for being a promoter.

The fact that this set of rules is much smaller than the complete network required by

BackProp, Rapture{Kbann, and CF-Net also makes training much faster.

The performance of the Rapture-variants is plotted in �gure 4.7, which further demon-

strates the bene�t of the initial theory. Rapture and Rapture{Kbann are both performing at

similar levels, though Rapture is doing slightly better by the 90 example mark. Rapture{Null,

which is given no initial theory performs signi�cantly worse (� = 0:001), and has performance very

similar to that of BackProp.

CF-Net is the big disappointment of all of the variants. In this, as well as the other domains,

40

0 30 60 90
0

100

200

300

Rapture Backprop
Neither C4.5

Tr
ai

ni
ng

 T
im

e
(S

ec
on

ds
)

Figure 4.5: Promoter 106 Training Time {Standard Systems

it is largely unable to learn the target concepts. Remembering that CF-Net is CFBP performed

over a certainty-factor network with a standard neural-network architecture, two reasons for this

failure are apparent. First, this system does not begin with any domain knowledge, but rather is

initialized with random certainty-factors. All features from the domain are present in this network,

along with a hidden-layer of nodes, providing many degrees of freedom in the fully-connected

network. One of the properties of a certainty-factor network and CFBP is that its weight-space

contains many more local minima than the corresponding neural network using BackProp. This

is due to the non-linearity present in the certainty-factor combining functions. Due to this property,

CF-Net converges very rapidly to a local-error minimum not far from the original weights. This

generally results in testing accuracy similar to the random-guessing accuracy. Though not plotted

for the remainder the domains in this work, its performance is comparable for them all.

By examining the remainder of the plots for this domain (Figure 4.8 and Figure 4.9), many

of the same observations are demonstrated. Both Rapture{Kbann and Rapture{Null require

signi�cantly more time to train their networks, and Rapture{Kbann produces signi�cantly larger

41

promoter <-0.99-- (contact) conformation <-0.08-- (p-47 c)

promoter <-0.84-- (conformation) conformation <-0.11-- (p-46 a)

conformation <-0.15-- (p-45 a)

conformation <-0.05-- (p-44 t)

contact <-0.79-- (minus_35) conformation <-0.18-- (p-44 a)

contact <-0.82-- (minus_10) conformation <-0.14-- (p-43 t)

conformation <-0.12-- (p-42 t)

conformation <-0.12-- (p-41 a)

minus_35 <-0.25-- (p-37 c) conformation <-0.07-- (p-40 a)

minus_35 <-0.35-- (p-36 t) conformation <-0.10-- (p-39 c)

minus_35 <-0.29-- (p-35 t) conformation <-0.16-- (p-28 t)

minus_35 <-0.37-- (p-34 g) conformation <-0.10-- (p-27 t)

minus_35 <-0.31-- (p-33 a) conformation <-0.09-- (p-23 t)

minus_35 <-0.28-- (p-32 c) conformation <-0.06-- (p-22 a)

minus_35 <-0.31-- (p-31 a) conformation <-0.11-- (p-22 g)

conformation <-0.07-- (p-21 a)

conformation <-0.14-- (p-20 a)

minus_10 <-0.20-- (p-14 t) conformation <-0.18-- (p-18 t)

minus_10 <-0.23-- (p-13 t) conformation <-0.05-- (p-17 t)

minus_10 <-0.27-- (p-13 a) conformation <-0.06-- (p-16 t)

minus_10 <-0.29-- (p-12 t) conformation <-0.09-- (p-16 c)

minus_10 <-0.31-- (p-12 a) conformation <-0.08-- (p-15 t)

minus_10 <-0.24-- (p-11 t) conformation <-0.07-- (p-15 g)

minus_10 <-0.30-- (p-11 a) conformation <-0.06-- (p-8 g)

minus_10 <-0.28-- (p-10 a) conformation <-0.09-- (p-7 c)

minus_10 <-0.25-- (p-9 t) conformation <-0.06-- (p-6 g)

minus_10 <-0.27-- (p-9 a) conformation <-0.13-- (p-5 c)

minus_10 <-0.25-- (p-8 t) conformation <-0.14-- (p-4 t)

minus_10 <-0.29-- (p-7 t) conformation <-0.12-- (p-4 c)

conformation <-0.10-- (p-2 c)

conformation <-0.12-- (p-1 a)

conformation <-0.13-- (p-1 c)

Figure 4.6: The Revised Promoter Rule Base

rule bases. This is due to the fact that Rapture{Kbann begins with such a large initial network,

and not enough links are able to decay away due to the convergence properties of certainty factors.

Rule base complexities of all networks are measured by the number of links they contain. Interest-

ingly, Rapture{Null actually produces much smaller rule bases than Rapture. In fact, for 10

training examples, Rapture{Null only requires slightly more than 1 rule in order to classify the

examples correctly. This is a clear demonstration of the value of the domain knowledge, as these

simpler rule bases result in worse performance.

42

0 30 60 90
0

20

40

60

80

100

Rapture Rapture-Kbann
Rapture-Null CF-Net

Figure 4.7: Promoter 106 Recognition Accuracy { Rapture Ablations

43

0 30 60 90
0

50

100

150

200

250

300

Rapture
Rapture-Null
Rapture-Kbann

Tr
ai

ni
ng

 T
im

e
(S

ec
on

ds
)

Figure 4.8: Promoter 106 Training Time { Rapture Ablations

44

0 30 60 90
0

100

200

300

400

500

600

700

Rapture Rapture-Kbann
Rapture-Null C4.5

Figure 4.9: Promoter Rule-Base Complexity

45

0 100 200 300 400
0

20

40

60

80

100

Rapture Kbann Backprop C4.5

Figure 4.10: Promoter 468 Recognition Accuracy { Standard Systems

4.5.2 The 468-example Promoter Data Set

This data set is a more extensive set of examples of Promoters and non-Promoters that comes from

the Human Genome Project (Alberts, 1988). Once again, the examples are an even mix of 234

Promoters and 234 non-Promoters, though the key di�erence in these examples is the presence of

missing features. Approximately 15% of the examples have missing values for one or more of the

features. Naturally this set of examples uses the same initial rule base as the previous set.

Performance results are presented in Figure 4.10. While Rapture outperforms the other

systems up through 50 training examples, Kbann surpasses Rapture at the 200 example mark.

While once again paired t-tests were not possible to run with Kbann, it does appear that Rapture

and Kbann are performing roughly the same by 400 example mark. Rapture performs signi�-

cantly better than BackProp up through 200 training examples (� = 0:1 level), and signi�cantly

better than C4.5 (� = 0:001 level) throughout all of training. These results seem to corroborate the

need for an ability for evidence-summation. C4.5 is the only system presented here without this

46

0 100 200 300 400
0

20

40

60

80

100

Rapture Rapture-Kbann
Rapture-CFBP Rapture-Null

Figure 4.11: Promoter 468 Recognition Accuracy { Rapture Ablations

ability, and its performance su�ers. Further, the systems with the advantage of domain knowledge

have an edge in performance.

These observations are further demonstrated in the plot of Figure 4.11. The Rapture-

-variants with domain knowledge are all performing at nearly equivalent levels, though Rapture

is performing signi�cantly better (� = 0:05 level) than Rapture{CFBP with 20 and 50 training

examples. Only Rapture{Null with its lack of domain knowledge su�ers, as its performance

is signi�cantly worse than that of Rapture at the 0:001 level throughout. Its performance very

similar to that of C4.5.

Unlike the 106-example data set, this time Rapture requires the use of its architecture-

modi�cation routines in order to fully train the examples. This is most noticeable in the increased

training time with the larger-sized training sets. These e�ects can be clearly seen in Figure 4.12.

For 400 training examples, Rapture requires a considerable number of new links in order to fully

train the network. Due primarily to usage of the Upstartmodule, Rapture actually takes slightly

47

0 100 200 300 400
0

200

400

600

800

1000

Rapture
Backprop
C4.5

Figure 4.12: Promoter 468 Training Time { Standard Systems

longer than BackProp to learn 400 training examples.

The plot of Figure 4.13 clearly demonstrates the e�ects of theUpstart algorithm. Rapture{Null

with no domain knowledge requires a great deal of time to train the network to learn 400 training

examples. The majority of time is spent in the Upstart algorithm, where a new sub-network must

be built each time it is called. This sub-network must learn to distinguish a handful of exception-

examples from the rest of the entire training set, which may or may not be a simple task. When it

is not, the considerable e�ort necessary is reected in the training time, as well as the complexity

of the resulting rule base. This can be seen in Figure 4.14. Whereas Rapture{Null is able to

learn very simple rule bases in the smaller Promoter data set, it is forced to build considerably more

complex ones as the number of training examples grows.

As can be seen in the complexity plot, the rule bases of Rapture{Kbann are signi�cantly

larger than the rest. This is due both to its requirement that all features from the domain must be

present in the network with complete connectivity between layers. Since complexity is measured

48

0 100 200 300 400
0

2

4

6

8

10

12

14

16

Rapture
Rapture-Null
Rapture-Kbann
Rapture-CFBP

Figure 4.13: Promoter 468 Training Time { Rapture Ablations

here as the number of links in the network, this greatly e�ect Rapture{Kbann.

49

0 100 200 300 400
0

100

200

300

400

500

600

700

Rapture
Rapture-Kbann
Rapture-CFBP
Rapture-Null
C4.5

Figure 4.14: Promoter 468 Rule-Base Complexity

50

4.6 Splice-Junction Results

The other DNA-sequencing domain discussed in this work is the Splice-Junction Domain. Through-

out the more than 3,000,000,000 nucleotides that exist in human DNA, as much as 90% of these do

not code for anything, and are known as junk DNA. As protein is created in living organisms, the

junk DNA gets spliced out of the sequence, and protein is built from the remaining coding-DNA.

Learning to recognize the borders between coding and junk DNA is the Splice-Junction task.

Figure 4.15: Exon-Intron Example 1 From the Rule Base

Areas of DNA that contain genetic information are called Exons, and the areas of inter-

spersed junk DNA are known as Introns. These two di�erent areas of a DNA strand give rise to

two types of borders that must be identi�ed. Intron-Exon (IE) borders (also known as acceptors)

delimit the end of junk DNA, and the beginning of genetic information. Similarly, Exon-Intron (EI)

borders (known as donors) delimit the end of a sequence of genetic information, and the beginning

of junk DNA.

The rules and examples for this domain come from M. Noordewier (Noordewier et al., 1991),

and consists of a database of 3190 examples of DNA strings. Of these examples, there are 768 (or

24%) examples of IE borders, 767 (24%) EI borders, and 1655 (52%) negative examples, which

are randomly chosed DNA sequences containing neither border. Each example in this domain

is represented by a string of 60 nucleotides. The �rst 30 features are labelled P-30 through P-1

(positions -30 to -1), and the second 30 are labelled P+1 through P+30 (positions 1 to 30). The

learning task is to determine which of the above three border types (including negative) exists

between nucleotides P-1 and P+1.

M. Noordewier, derived these rules from information found in Watson, Roberts, Steitz, and

Weiner (1987). These rules specify common patterns that are present at border sites. IE borders

are characterized by regions dense with C and T values (known as pyramidine-rich regions). The

rules also contain information for recognizing Stop-Codons. The certainty-factor rules for this task

are presented in Figure 4.16.

In order to train Rapture for this task, use of a threshold was again necessary due to the

negative category. A 0:9 threshold was used throughout training, so that if both EI and IE output

categories received certainty-factors less than 0:9, a negative classi�cation would result. Once the

network was trained, the threshold was again (as in the Promoter domain) adjusted to maximize

the distance between positive (i.e., borders) and negative examples. In order to do this, an average

was made between the certainty-factor of the positive example with the lowest value in its category,

and the certainty-factor of the negative example that scored the highest in either border category.

This domain is quite similar to the Promoter domain in that a set of rules capable of evidence

summation should be at an advantage. Test results appear to con�rm this hypothesis.

51

EI <-0.23-- (p-3 A) IE-stop <-1.0-- (p1 T)(p2 A)(p3 A)

EI <-0.23-- (p-3 C) IE-stop <-1.0-- (p1 T)(p2 A)(p3 G)

EI <-0.23-- (p-2 A) IE-stop <-1.0-- (p1 T)(p2 G)(p3 A)

EI <-0.23-- (p-1 G) IE-stop <-1.0-- (p2 T)(p3 A)(p4 A)

EI <-0.23-- (p1 G) IE-stop <-1.0-- (p2 T)(p3 A)(p4 G)

EI <-0.23-- (p2 T) IE-stop <-1.0-- (p2 T)(p3 G)(p4 A)

EI <-0.23-- (p3 A) IE-stop <-1.0-- (p3 T)(p4 A)(p5 A)

EI <-0.23-- (p3 G) IE-stop <-1.0-- (p3 T)(p4 A)(p5 G)

EI <-0.23-- (p4 A) IE-stop <-1.0-- (p3 T)(p4 G)(p5 A)

EI <-0.23-- (p5 G)

EI <-0.23-- (p6 T)

EI <-0.68-- (NOT EI-stop) pyramidine-rich <-0.32-- (p-15 C)

pyramidine-rich <-0.32-- (p-15 T)

pyramidine-rich <-0.32-- (p-14 C)

IE <-0.68-- (pyramidine-rich) pyramidine-rich <-0.32-- (p-14 T)

IE <-0.25-- (p-3 C) pyramidine-rich <-0.32-- (p-13 C)

IE <-0.25-- (p-3 T) pyramidine-rich <-0.32-- (p-13 T)

IE <-0.25-- (p-2 A) pyramidine-rich <-0.32-- (p-12 C)

IE <-0.25-- (p-1 G) pyramidine-rich <-0.32-- (p-12 T)

IE <-0.25-- (p1 G) pyramidine-rich <-0.32-- (p-11 C)

IE <-0.68-- (NOT IE-stop) pyramidine-rich <-0.32-- (p-11 T)

pyramidine-rich <-0.32-- (p-10 C)

pyramidine-rich <-0.32-- (p-10 T)

EI-stop <- 1.0 -- (p-3 T)(p-2 A)(p-1 A) pyramidine-rich <-0.32-- (p-9 C)

EI-stop <- 1.0 -- (p-3 T)(p-2 A)(p-1 G) pyramidine-rich <-0.32-- (p-9 T)

EI-stop <-1.0-- (p-3 T)(p-2 G)(p-1 A) pyramidine-rich <-0.32-- (p-8 C)

EI-stop <-1.0-- (p-4 T)(p-3 A)(p-2 A) pyramidine-rich <-0.32-- (p-8 T)

EI-stop <-1.0-- (p-4 T)(p-3 A)(p-2 G) pyramidine-rich <-0.32-- (p-7 C)

EI-stop <-1.0-- (p-4 T)(p-3 G)(p-2 A) pyramidine-rich <-0.32-- (p-7 T)

EI-stop <-1.0-- (p-5 T)(p-4 A)(p-3 A) pyramidine-rich <-0.32-- (p-6 C)

EI-stop <-1.0-- (p-5 T)(p-4 A)(p-3 G) pyramidine-rich <-0.32-- (p-6 T)

EI-stop <-1.0-- (p-5 T)(p-4 G)(p-3 A)

Figure 4.16: The Splice-Junction Rule Base in Certainty-Factor Format

As can be seen in Figure 4.17, Rapture appears to be outperforming the other systems.

Both BackProp and C4.5 are identifying splice-junction points signi�cantly less accurately than

Rapture (� = 0:05, � = 0:001). C4.5 is clearly hindered by its inability to model evidence-

summing, and BackProp with no domain knowledge requires a considerable number of training

examples in order to be competitive.

The two systems with both domain knowledge and evidence-summing ability are clearly

performing the best. Despite not being able to run t-tests on Kbann, it does appear that Kbann

is performing very near the BackProp level at the 400 training example point. T-tests con�rm

that Rapture is performing signi�cantly better than BackProp throughout at the 0:1 level at

400 training examples, and at least the 0:05 levels earlier.

Figure 4.18 is a plot of the Rapture-variants, which shows the e�ect of each of the Rapture

components. Beginning with Rapture{Null, which has the worst performance, the contribution

of the initial theory can be seen. Its performance is very similar to that of C4.5.

Rapture{CFBP performs better than BackProp when there are fewer than 200 training

examples, but does quite similarly after this point. This early edge is most likely due Rapture{CFBP-

's domain knowledge, which is of the greatest help with smaller numbers of examples. Note also

than Rapture{CFBP and Kbann are performing nearly identically.

The performances of Rapture and Rapture{Add are also virtually the same, indicating

52

0 100 200 300 400 500
0

20

40

60

80

100

Rapture Kbann Backprop C4.5

Figure 4.17: Splice-Junction Recognition { Standard Systems

that Rapture found some use in adding new rules into the network, but had little need for the

Upstart algorithm. Any usage of Upstart had little e�ect upon the system performance.

Some of these same conclusions can be drawn by examining the training-time plots of Fig-

ure 4.19 and Figure 4.20. Rapture learns faster than BackProp, but is no match in speed for

Rapture{CFBP. It is apparent thatRapture only takes slightly more time thanRapture{Add-

, again indicating only moderate Upstart usage. Rapture{Null learns correct target concepts

rather quickly with small numbers of training examples, but as the numbers get larger, its lack of

domain knowledge causes it to su�er. It is forced to make extensive use of the Upstart module,

which reects is the increased training times.

In Figure 4.21, it is apparent that Rapture{Kbann requires produces larger rule bases

than the other variants, due to its domain-complete network.

53

0 100 200 300 400
0

20

40

60

80

100

Rapture
Rapture-Add
Rapture-CFBP
Rapture-Null

Figure 4.18: Splice-Junction Recognition { Rapture Ablations

54

0 100 200 300 400
0

500

1000

1500

2000

2500

3000

Rapture
Backprop
C4.5

Figure 4.19: Splice-Junction Training Time { Standard Systems

55

0 100 200 300 400
0

5

10

15

20

25

30

Rapture
Rapture-Kbann
Rapture-Null
Rapture-Add
Rapture-CFBP

Figure 4.20: Splice-Junction Training Time { Rapture Ablations

56

0 100 200 300 400
0

200

400

600

800

Rapture
Rapture-Kbann
Rapture-Null
Rapture-Add
Rapture-CFBP

Figure 4.21: Splice-Junction Rule Base Complexity

57

4.7 Mycin Diagnosis Results

Whereas the previous sections dealt with problems of DNA sequencing, a domain commonly be-

lieved to possess the M-of-N property, this section and the next both deal with problems of

diagnosis.

The �rst of these is theMycin system (Shortli�e, 1976; Buchanan & Shortli�e, 1984), which

was designed to provide consultative advice for diagnosing and treating infectious diseases. Devel-

oped as part of the Stanford Heuristic Programming project, it was heavily inuenced by earlier

expert systems, most notably dendral (Feigenbaum, Buchanan, & Lederberg, 1971). dendral

was a system for determining molecular structures of complex organic chemicals from mass spec-

trograms. This was the �rst AI program that put more emphasis on domain-speci�c knowledge

than on general problem-solving methods, which became a large part of Mycin.

Domain knowledge inMycin is represented as rules using certainty factors. The use of these

rules to represent uncertainty is one to the major contributions of the Mycin system. Certainty-

factors, and their properties are fully described in Chapter 3. Rapture borrows from this formalism

for representing the rule bases that it revises.

A version of the Mycin rule base was prepared for Rapture consisting of 99 examples

of solved cases (patients) of infectious diseases drawn from the Stanford Medical Center (Ma &

Wilkins, 1991). Each patient is described using a vector of 262 features ranging from sex and age

to the duration of headaches, and each may have any one of nine infectious diseases, Many features

are missing for any given patient, and there are a large number of continuously-valued features.

The complete set of rules used in these experiments contains 137 certainty-factor rules, and is listed

in Appendix B.

Figure 4.22 plots the learning performance of Rapture against both BackProp and C4.5.

Neither of these competing systems bene�t from domain knowledge, and this is reected in their

performances. Rapture's accuracy is clearly superior early on (� = 0:001), and even through

80 examples is doing signi�cantly better (� = 0:05) than the other systems. While C4.5 is never

competitive with Rapture, BackProp with its evidence-summing ability does come to within

four percentage points.

The comparisons of the Rapture variants shown in Figure 4.23 shows that there is little

advantage gained through architecture modi�cation. Rapture, CFBP, and Rapture{Add are all

performing at levels that have no signi�cant di�erences. The advantages of the domain knowledge

are demonstrated by the relatively poor performance of Rapture{Null, with performance that is

very similar to that ofC4.5. The performance ofRapture{Kbann is considerably better than that

of Rapture{Null, but is slightly, yet signi�cantly less than that of Rapture. Rapture{Kbann

is performing very nearly the same as BackProp from 60 examples on.

An examination of Figure 4.24 through Figure 4.26 leads to several observations. The

most obvious is the fact that Rapture takes a big time hit once there are more than 20 training

examples. This is primarily due to the use of the Upstart algorithm, whose e�ects can also be seen

by examining rule base complexities. A good indication of the accuracy of the original set of rules

is that this architecture modi�cation does little, if any good at improving its overall performance.

The Rapture rule base is more than 20% larger than Rapture{Add and CFBP. Rapture

does, however, perform signi�cantly better, both in terms of training time, and complexity of the

resulting rule bases, than Rapture{Kbann. Rapture{Kbann's complexity is so large on this

58

0 20 40 60 80
0

20

40

60

80

100

Rapture Backprop C4.5

Figure 4.22: Mycin Disease Diagnosis Accuracy { Standard Systems

problem, that the plot represents the complexity divided by 10. Because of this, Rapture{Kbanns

training time su�ers greatly.

Similar to the DNA rule bases, Rapture{Null is able to learn much simpler rule bases

than most of the other systems. Again, however, this results is a signi�cant drop in performance

accuracy.

59

0 20 40 60 80
0

20

40

60

80

100

Rapture Rapture-Kbann Rapture-Add
Rapture-CFBP Rapture-Null

Figure 4.23: Mycin Disease Diagnosis Accuracy { Rapture Ablations

60

0 20 40 60 80
0

1

2

3

4

Rapture
Backprop
C4.5

Figure 4.24: Mycin Training Time { Standard Systems

61

0 20 40 60 80
0

1

2

3

4

5

6

7

Rapture
Rapture-Kbann
Rapture-Add
Rapture-CFBP
Rapture-Null

Figure 4.25: Mycin Training Time { Rapture Ablations

62

0 20 40 60 80
0

200

400

600

800

Rapture
Rapture-Kbann (1/10)
Rapture-Add
Rapture-CFBP
Rapture-Null

Figure 4.26: Mycin Concept Complexity

63

4.8 Soybean Diagnosis Results

The �nal data set tested in these experiments is one for diagnosing diseased soybean plants. This

data comes from Michalski and Chilausky (1980), and was prepared in collaboration with experts

in soybean pathology. The data set includes 562 examples of diseased soybean plants, and an initial

rule base describing 15 soybean diseases.

While the original rule base for this domain was written as a set of Horn clauses, it contains

characteristics similar to a probabilistic rule base. This is due to the di�erent types of rules that

are used to describe each disease. The expert pathologist suggested the use of rules with di�erent

strengths in order to properly identify each soybean disease. Signi�cant rules were used to de�ne

the main characteristics of each disease, while Con�rmatory rules were used to supply additional

information that would con�rm a diagnosis. While each rule is written as a Horn-clause, the authors

suggest the use of a weighting scheme whereby signi�cant rules provide 90% of the evidence, and

con�rmatory rules provide the remaining 10%. These values were used for the certainty-factor

version of the rule base given to Rapture. The certainty-factor version contains 187 certainty-

factor rules, and these rules are presented in Appendix B, along with the original set of rules.

Each soybean example is described with a vector of 35 features including the condition of

the stem, roots, seeds, as well as climate information, time of year, and features of the soil. Each

soybean has been classi�ed by an expert into one of the 15 soybean diseases. In this data set

there exists one pair of examples with identical feature vectors, yet di�ering classi�cations. This is

handled as described in Chapter 3. There are also many examples with missing information. This

data set has been used as a benchmark for a number of learning systems. The original certainty-

factor rules for this domain, along with a revised rule base, rare presented in Appendix B.

Figure 4.27 is a plot of the learning curves for standard learning systems on this data. This

plot has the unique characteristic that systems given no domain knowledge perform as well as

Rapture. From 80 examples onward, C4.5 performs at a level for which there is no statistically

signi�cant di�erence from the performance of Rapture, and from 150 examples on, the same can be

said for BackProp. Rapture does, however, signi�cantly outperform the other systems (� = 0:05

level) when there are fewer than 80 training examples. This is an important characteristic, since

for many domains, collecting large numbers of examples may be impossible.

Likely explanations for these performances come from the data. One characteristic of these

15 diseases is that they are for the most part, relatively easy to learn. Many of the diseases can

be diagnosed by examining one or two key features from the plant. In these cases, the domain

knowledge helps, but the inductive learners can catch up relatively quickly.

Secondly, three of the diseases are very closely related. These are Brown Spot, Alternaria Leaf

Spot, and Frog Eye Leaf Spot. They are so closely related that, as mentioned previously, two identical

examples were classi�ed di�erently by di�erent experts. One was classi�ed as a Frog Eye Leaf Spot

while the other was classi�ed as a Alternaria Leaf Spot. This may perhaps be an indication that

an insu�cient set of features was used in describing these soybean plants. The domain knowledge

seems to be of minimal help, and only with the easier to classify diseases. Because of this, Rapture

is forced to make extensive use of architecture modi�cation routines. This is reected in the time

necessary to train, as well as the complexity of the resulting rule base.

Unfortunately, the three di�cult to distinguish Spot diseases dominate the examples in this

data set. Out of 562 training examples, nearly half of them (274) belong to one of these three

64

0 100 200 300
0

20

40

60

80

100

Rapture C4.5 Backprop Either

Figure 4.27: Soybean Diagnosis Accuracy { Standard Systems

categories. Because of this, systems with no domain knowledge are able to learn the easier diseases

rather quickly, and the domain knowledge is of little help with the more di�cult diseases. Thus all

of the systems have equal di�culty with the these diseases.

Either to date has only been run up to 100 examples. It has, however, also been run

using a partial-matching technique, where examples are classi�ed into the category that was closest

to �ring, in which case its performance through 100 examples nearly matches that of Rapture

(Ourston & Mooney, 1994).

Figure 4.28 e�ectively demonstrates the contributions of Rapture's component algorithms.

From 80 examples onward, Rapture is performing at signi�cantly better levels than the vari-

ants. This can only be attributed to the Upstart algorithm. As the initial set of rules lacks

essential information for distinguishing the Spot diseases, Upstart is able to create useful hid-

den concepts. Both Rapture{Add and Rapture{Null come close to the levels of Rapture,

while Rapture{CFBP and Rapture{Kbann are performing much worse. The poor perfor-

65

0 100 200 300
0

20

40

60

80

100

Rapture Rapture-Add
Rapture-CFBP Rapture-Null
Rapture-Kbann

Figure 4.28: Soybean Diagnosis Accuracy { Rapture Ablations

mance of Rapture{CFBP is a clear indication that the original rules are lacking appropriate

features to discriminate among many of the diseases. By allowing Rapture{CFBP to add new

rules (Rapture{Add), signi�cant increases in performance are obtained. The performance of

Rapture{Kbann is due to its inability to converge on the training data. This is very similar to

the di�culties encountered by CF-Net which is unable to learn the training data for any of the

data sets presented here, Rapture{Kbann is equally hindered by the local-minimum character-

istic of gradient descent over certainty-factors. This is probably due to the less than perfect initial

rule base, and the large number of examples with hard to discriminate diseases.

Examining the training time plots of Figure 4.29 and Figure 4.30, further e�ects of the

algorithm can be seen. Due to the use of the Upstart algorithm, Rapture's training time

becomes quite slow. Only Rapture{Null which makes even more extensive use of the Upstart

algorithm takes longer. Rapture{Add and Rapture{CFBP are able to run in much less time,

due to their simpler algorithms, yet perform at signi�cantly poorer level.

66

0 100 200 300
0

5

10

15

20

25

30

Rapture
Backprop
C4.5

Tr
ai

ni
ng

 T
im

e
(S

ec
on

ds
 x

 1
00

0)

Figure 4.29: Soybean Training Time { Standard Systems

By examining the rule base complexities of Figure 4.31, the great complexity ofRapture{Kbann

can be observed. There is also very little link deletion, which is further evidence of its inability

to converge on the training data. Rapture{Null again produces more complex rule bases than

Rapture, another indication of the complexity of the problem.

4.8.1 Examination of a Revised Rule Base

Section 4 of Appendix B displays the original certainty-factor rules for this domain, followed by a

rule base that was revised by training on 100 randomly selected examples. Contrasting the two rule

bases reveals much information about the revision algorithm, as well as the quality of the original

rules.

One of the �rst observations is that for many disease categories, very little change was made

to the rules. A primary example is the rules for Bacterial-Blight. No rules are added or deleted,

and the biggest change to a certainty factor is a change of 0:05. Similar to this are the rules for

67

0 100 200 300
0

10

20

30

40

50

Rapture
Rapture-Null
Rapture-Add
Rapture-CFBP

Tr
ai

ni
ng

 T
im

e
(S

ec
on

ds
 x

 1
00

0)

Figure 4.30: Soybean Training Time { Rapture Ablations

Diaporthe-Stem-Canker. While many of the rules change very little, one of the con�rmatory

conditions (crop history) is deleted, and a new condition (fruit spots) is added.

This is in contrast to the rules for Brown-Spot. As mentioned previously, the spot diseases

are apparently very similar, and are di�cult to distinguish via the given rules. Whereas the original

rules only contain 6 conditions, the revised rules contain 24 conditions, and one of these is a new

intermediate term which itself is made up of 12 conditions. There is very little in common among

the two sets of rules. The original con�rmatory condition for precipitation becomes a very strong

negative condition in the revised rules. The new intermediate condition was built while training

a new node on 5 false-negative examples for Brown-Spot. This new intermediate condition seems

to be emphasizing examples in the sixth month (date 6), and a very strong condition is added for

condition area-damaged.

Another leaf spot disease that caused the creation of a new intermediate term is Phyllosticta-Leaf-Spot.

This set of rules went from 9 rules to 18 rules, including an intermediate term with 9 rules. This

68

0 100 200 300
0

1

2

3

4

5

Rapture
Rapture-Kbann
Rapture-Add
Rapture-CFBP
Rapture-Null

Figure 4.31: Soybean Rule-Base Complexity

new intermediate term seems to be focussed on low precipitation. It would be indeed interesting

to see if a soybean expert would be able to identify these new conditions.

It appears that one of Rapture's keys to success is its ability to stay very close to the

original theory whenever possible. This is apparent by the large numbers of rules that remain

constant. Rapture is able, however, to make rather large changes to a few key features, and this

allows examples to be classi�ed correctly.

4.9 Summary of the Results

One of the overriding conclusions from the experimental data presented here is the bene�t gained

through the use of domain knowledge. Except for the �nal domain, systems given initial problem-

solving knowledge performed uniformly better than those that were not given this knowledge.

Even in the Soybean data, this holds true for smaller numbers of training examples. The ablation

69

Rapture{Null clearly demonstrates this point. This system begins with no background knowl-

edge, and has uniformly inferior performance. With larger numbers of training examples, it also

takes much longer to train, and creates very complex rule bases.

Similar claims can be made for systems allowing evidence summation. While this is perhaps

an obvious claim when dealing with DNA data, which is widely believed to have the M-of-N

property, results from the diagnosis domains show similar success. The systems C4.5 and Either

are both unable to easily represent such concepts, and their performances su�er. While C4.5 is

very fast, and produces relatively less complex rule bases, it has signi�cantly inferior performance.

The contributions of the three Rapture modules are demonstrated in the ablation graphs.

In the promoter experiments, where CFBP alone can train (most of)the data, there are very few

di�erences. In the splice and soybean experiments, Rapture performs signi�cantly better than

CFBP, and the di�erences are dramatic in the soybean experiments. This is due to the inability

of the initial set of soybean rules to e�ectively discriminate between certain diseases. This is also

the one domain where Rapture outperforms Rapture{Add.

One of the biggest surprises from the results is the performance of CF-Net. Because of

the randomness of the initial network, along with the abundance of local minima in the space

of certainty-factor weights, this system was generally unable to learn. The weight-adjustment of

CFBP generally reaches such a minimum point after many fewer epochs than BackProp. This

combined with the random weight settings caused CF-Net to be quite unsuccessful.

Rapture{Kbann performs at a slightly less accurate level than Rapture, but su�ers from

extremely large rule bases, and slow training time. This system has the same di�culty as CF-Net

above, as is unable to train on the Soybean data due to the large size of the rule base.

4.9.1 Concept Drift

One of the claims of this research is that the revised rule bases will be easier to understand than

the translated output of other learning systems. Since the learning remains in a certainty-factor

framework, and the resulting sets of rules are reasonably small, it is hypothesized that an expert

will have little di�culty in understanding the new rules.

Unfortunately, it is not known whether or not the CFBP stage of the algorithm will cause

some of the concepts to \drift" in meaning. When certainty-factor values change dramatically, it

is possible that intermediate terms will have new meaning in the revised rule bases. Fortunately,

as can be witnessed in the revised rule bases, Rapture leaves many certainty factors virtually

untouched, while changing only a few in a more dramatic fashion. Presenting revised rule bases to

an expert will provide some answers to these questions.

70

Chapter 5

Related Work

This chapter reviews some of the related work in rule base revision, from both the connectionist

and symbolic areas. Compared with much of the previous work, Rapture deals with a greater

range of re�nement problems and has been more thoroughly tested on actual expert knowledge

bases.

5.1 Symbolic and Weight Adjustment Systems

Perhaps the earliest success with automatically performing weight adjustment in an Arti�cial In-

telligence system comes from Samuel (1959). This was the landmark checker-playing program.

Though this system did not actually revise rules in a rule base, it did automatically tune the

coe�cients in its polynomial evaluation functions to improve learning, with great success.

An early attempt at properly setting weights in a certainty-factor rule base was Rada (1985).

This system attempted to combine credit assignment with weight adjustment in order to improve

performance. Unfortunately, much of the weight adjustment was ad hoc, and their were no mech-

anisms for architecture modi�cation.

Another early attempt at automating rule-base revision is the Seek2 system of (Ginsberg,

1988). This system is able to specialize and generalize choice-component rules, which are simply

M-of-N rules. Guided by heuristics that estimate the net gain of various rule modi�cations, this

system could adjust the threshold, N, of individual rules. Experiments show that this leads to a

performance increase on both training and test data results. Training with Seek2, however, does

not guarantee 100% accuracy with the training data, and has no mechanisms for adding new rules,

intermediate concepts, or new conjuncts. Unlike Rapture, Seek2 is unable to allow the individual

antecedents of a rule to carry di�ering amounts of weight.

Ma and Wilkins (1991) have developed methods for improving the accuracy of a certainty-

factor rule base by deleting rules. They report only modest improvements in the accuracy of the

same Mycin rule base (used in section 4.7). Their experiments increase accuracy from 26:8% to

36:0%. Rapture has the advantage of being able to adjust certainty factors, add rules, and add

new intermediate terms in addition to deleting rules.

The PTR system by Koppel, Feldman, and Segre (1994a) takes an initial rule base expressed

as a collection of Horn clause rules, along with an expert's con�dence values in the accuracy of

each of these rules. Unlike in Rapture, these values do not represent the strength, or amount of

71

evidence suggested by each of these rules, but rather one's con�dence that the rule is correct. By

using these values, along with a set of training examples, PTR is able to incrementally reformulate

the rule base in such a way that is consistent with the training data, as well as maximizing one's

con�dence in the rules. They further demonstrate the signi�cance of the rule base for identifying

promoters. By simply noting how closely each example is satis�ed by the rules, and categorizing

the top 50% as promoters, results similar to those of Rapture are obtained (Koppel, Segre, &

Feldman, 1994b). It is unclear how well this technique would do on further domains.

A similar result has been obtained by Ortega (1995). By modifying the promoter rules into

a set of M-of-N rules, accuracy of 93:4% is achieved.

Either (Ourston, 1991) was one of the inspirations for Rapture. This is a completely

symbolic system that modi�es initial rule-bases by adding and deleting antecedents and rules. By

attempting to make as few changes to the initial rules as possible, while correctly processing all

training examples, much of the original expertise remains intact, resulting in good performance.

Unfortunately, the system is not capable of e�ectively representing uncertain rule-bases.

Valtorta and Ling (Valtorta, 1988, 1990; Ling & Valtorta, 1991) have examined the computa-

tional complexity of various re�nement tasks for uncertain knowledge bases. They have considered

networks using various combination functions, such as MIN, MAX, and probabilistic sum. For most

combination functions and network architectures, they show that re�ning the weights to �t a set

of training data is an NP-Hard problem. However, they present a simple linear-time algorithm for

determining a correct setting of weights (or proving none exist) in the special case of a one-layer

network with MAX as the combining function. They further make assumptions that each training

example is paired with its correct certainty factor. However, even with these assumptions, they pro-

vide no mechanisms for adding new features or otherwise altering the network architecture. Their

NP-completeness results motivated the use of a hill-climbing technique, such as gradient descent,

in Rapture.

The work of Caruana (1989) uses truth maintenance, along with gradient descent in order

to train rule bases that incorporate uncertainty. This system, however, has only been tested in toy

domains, and no signi�cant results are presented, though a claim is made that the truth maintenance

played heavily in the resulting revisions.

5.2 Connectionist Systems

Gallant (1988) was among the �rst to design and implement a system that combines expert domain-

knowledge with connectionist learning. Given a set of training examples and expert-supplied depen-

dency information, his system builds a connectionist network that correctly classi�es the training

data. However, the training method is a variation of perceptron learning and is not suitable for

multi-layer networks or for alternative combination functions like probabilistic sum.

Fu (1989) and Lacher, Hruska, and Kuncicky (1992) have also used backpropagation tech-

niques to revise certainty factors on rules. Fu has apparently derived formulas for CFBP, although

they are not given in the paper. Unlike Rapture, Fu's method does not implement complete

CFBP, but rather uses it only on every other layer of the network, and uses a di�erent hill-

climbing method on the alternate layers. The claim is that this approach is required since the MIN

and MAX functions are not di�erentiable. In Rapture, this does not cause a major problem since

72

although these functions are not everywhere di�erentiable, they are trivially so almost everywhere.

When working with real-valued weights, the problem of having two non-zero activation levels that

are exactly the same, and both being the minimum value into another node is a rare occurrence.

Lacher apparently concurs with this assessment, and has independently implemented a complete

version of CFBP. However, recent publications on these two projects do not address the problem

of altering the network architecture (i.e. adding new rules) and do not present results on revising

actual expert knowledge bases. Fu does, however, present data on a rule base which is initially

100% accurate, and then corrupted by adding contradictory rules.

There have been a number of methods for building a connectionist networks from scratch

that are able to correctly classify a set of training examples, e.g. Cascade Correlation (Fahlman

& Lebiere, 1989), the Upstart algorithm (Frean, 1990), and the Tiling algorithm (Mezard &

Nadal, 1989). Rapture makes use of one of these (Upstart) in creating new hidden units in

existing networks, and also uses methods from decision-tree induction (Quinlan, 1986) to add

observable units. Currently, however, Rapture is limited to adding new units that directly feed

into the output layer, and there exists no way to add a new link into an existing non-output

unit, other than a newly created Upstart node. This inability does not appear to create major

di�culties for Rapture, based on the empirical results.

The most closely related work to that described here has been done in conjunction with

Kbann (Towell et al., 1990; Towell & Shavlik, 1992). This system uses standard backpropagation

to re�ne a symbolic rule base. A propositional Horn-clause rule base is mapped into a standard

neural network, the network is re�ned using normal backpropagation, and the result is mapped

back into rules with real-valued antecedent weights. Unlike Rapture, the mapping between the

symbolic rules and the network is only an approximation. Also, it is unclear how certainty-factor

rules might be mapped into aKbann network. Kbann allows the learning of new rules by including

an underlying fully-connected network of low-weighted links. These links can be \recruited" by

backpropagation and eventually mapped back into new rules. Weight decay (Hinton, 1986) is used

to keep weights small and therefore help minimize the number of new rules that are eventually

introduced. By contrast, Rapture uses symbolic methods to add a minimal number of new

connections (rules) as needed. The results on promoter recognition in Section 4.5, and splice-

junction recognition in Section 4.6 indicate that the Rapture approach produces a slightly more

accurate revised knowledge base than Kbann, and a signi�cantly less complex rule base than

Rapture{Kbann. The original Kbann work contained a suggestion for adding new hidden units

into a Kbann-net that would seem to work only in very specialized domains|such as promoter

recognition. This was achieved through adding \cone" units that would connect contiguous features.

Kbann-Daid (Towell & Shavlik, 1992) is an attempt to improve the way that backpropaga-

tion adjusts network weights. In a standard neural network with many hidden layers, backpropa-

gation tends to modify weights equally throughout the layers. By placing more emphasis on weight

adjustment at the lowest layers, better performances can result.

TopGen (Opitz & Shavlik, 1993) is a method for adding new hidden units to a Kbann-

network. By keeping track of of the false negative and false positives for which each node is

responsible, the algorithm locates areas of the network requiring additional units. However, when

TopGen adds a new hidden unit, it adopts the Kbann approach of fully connecting it to the input

layer. By contrast, Rapture uses information gain to add new input features only as needed.

73

5.3 Bayesian Approaches

Schwalb (1993) has shown how the parameters of Bayesian networks can also be re�ned by mapping

them into neural networks with SIGMA-PI nodes, and performing backpropagation. However, his

method creates a neural network whose size is exponential in the fan-in of the Bayesian network.

Because of this, it is unable to run on rule bases of even modest size such as promoter. This work

also does not address the issue of adding new features or hidden units, and was not tested on

revising actual knowledge bases.

Cooper and Herskovits (1992) have proposed a Bayesian method for the inductive learning

of Bayesian networks. By hill-climbing through the space of Bayesian networks, and determining

the probability of each network given the training data, a network with high conditional probability

can be produced. This approach unfortunately requires extensive search.

The work of Musick (1994) attempts to inductively learn the parameters of a Bayesian

network using statistical techniques. This approach assumes that the structure of the network is

provided, and creates parameters that are actually distributions of values.

Finally, the work of Ramachandran (1995) was an outgrowth of Rapture. Her Banner

system attempts to re�ne rule bases speci�ed in a Bayesian-network framework. Once a Bayesian

rule base has been obtained, it is converted into an equivalent neural network. This network is then

modi�ed with standard backpropagation. In order to alleviate the exponential number of links that

are required, noisy AND and OR nodes are created. Though this system has yet to implement and test

architecture modi�cation techniques, initial results suggest that this approach is very promising.

74

Chapter 6

Future Work

The development of Rapture has raised many questions, and left many problems for future re-

search. One of the �rst tasks that should be addressed is running on more domains. In the

experiments to date, Rapture has performed as well or better than other learning systems. Per-

haps this is due to the fact that the tested domains all suggested the use of uncertain reasoning,

which is one of Rapture's strongest points. Further, most of the tested domains had little use of

new intermediate terms. Because of this, the Upstart algorithm often failed to improve gener-

alization over Rapture{Add. It would indeed be interesting to perform tests in domains where

intermediate terms were known to be required.

One of the claims of this work is that Rapture is able to produce less complex and hence

hopefully more humanly-understandable sets of rules. It would be extremely bene�cial to work

closely with a domain expert, and examine the changes that Rapture is making to a particular rule

base. Such a person would be able to indicate the validity of any new rules, new intermediate terms,

or modi�ed weights. By pointing out any perceived errors, or suggesting alternative modi�cations,

perhaps even better performance can be realized. An interactive version of Rapture that suggests

a number of revisions at each stage to a domain expert, who then selects the most appropriate

revision, could prove quite powerful.

Further study is also in order for new methods of architecture modi�cation. Currently,

Rapture can only add links that directly connect into output nodes. By working recursively, this

has the e�ect of creating hidden units, but there is no mechanism for directly creating them. As

mentioned previously, the Upstart algorithm only enhanced the performance of one of the test

domains (soybean), while greatly increasing training times. Perhaps the use of other connectionist

techniques would prove signi�cantly better. By examining those nodes in the network that appear

to be creating network error, revisions can perhaps be better focused. TopGen (Opitz & Shavlik,

1993) o�ers an approach similar to this.

One aspect of Rapture that has gone almost completely untested is the setting of param-

eters. One of the undesirable characteristics that Rapture inherited from backpropagation is the

usage of many parameters. These include the learning rate, momentum, weight-decay rate, etc.

Throughout most of the testing of this system, parameters were set once at obvious levels, and

not adjusted further. Momentum has yet to be tested during training (has been continually set at

0). The favorable results are certainly an indication of the robustness of the system, but perhaps

even better performance could be achieved through a �ne-tuning of all parameters. The work of

75

Kohavi and John (1995) o�ers one approach to automatically tuning parameters through the use

of cross-validation.

The problem of over�tting has only been partially addressed in the development ofRapture-

. By attempting to limit the number of new links that are added directly into the output layer,

some improvement in over�tting has resulted. Using Upstart as early as possible in the ar-

chitecture modication has produced better generalizations, but it is possible that this routine is

causing some over�tting as well. Indications of this can be seen in the graph of Figure 4.11, where

the performance of Rapture declines slightly after the �rst 50 training examples. More exten-

sive over�tting-prevention techniques could result in better performance. This could perhaps be

achieved with the use of tuning sets during training, or adapting the Minimum Description Length

principle (Rissanen, 1978) to the Rapture system.

Also, Rapture is currently limited to propositional rule bases. It should be feasible to

modify the system to handle �rst-order systems. I am currently unaware of the existence of �rst-

order certainty-factor rule bases, and am not convinced that the Horn-clause to certainty-factor

conversion technique described earlier will be e�ective for �rst-order rules. Once obtained, however,

such a set of rules should be amenable to the techniques of Rapture. One problem may occur

when trying to add new features. Currently, Rapture considers every possible combination of

features and values as a new input feature. In �rst-order logic, this may require the consideration

of every possible value for each �rst-order variable. Heuristic techniques will probably be required.

Although they have proven quite useful in practice, certainty factors have frequently been

criticized as ad hoc and restrictive (Shafer & Pearl, 1990). Actually, certainty factors have been

shown to have a clear probabilistic semantics, but only under very restrictive independence as-

sumptions (Heckerman, 1986). Nevertheless, the basic revision framework in Rapture should

be applicable to other uncertain reasoning formalisms such as Bayesian networks (Pearl, 1988),

Dempster-Shafer theory (Shafer, 1976), or fuzzy logic (Zadeh, 1965). Although Schwalb's approach

to revising Bayesian networks is intractable in the general case (Schwalb, 1993), it may be useful for

networks with limited fan-in. The approach of Ramachandran (1995), utilizing noisy-or and noisy-

and nodes seems to con�rm that the Bayesian approach is worthy of further study. In addition,

techniques for inducing Bayesian networks from data (Connolly, 1993; Cooper & Herskovits, 1992)

could potentially be used to re�ne the underlying causal structure as well. Finally, there has also

been some recent work on combining symbolic and neural-network methods to revise fuzzy-logic

controllers (Berenji, 1990).

76

Chapter 7

Conclusions

Automatic re�nement of uncertain rule-bases is an under-studied problem with important applica-

tions to the development of intelligent systems. This dissertation has described and evaluated an

approach to re�ning certainty-factor rule bases that integrates connectionist and symbolic learning.

The approach is implemented in a system called Rapture, which uses a revised backpropagation

algorithm to modify certainty factors, ID3's information gain criteria to determine new rules to

add, and the Upstart algorithm to create new intermediate terms in the network. In other words,

connectionist methods are used to adjust parameters and symbolic methods are used to make

structural changes to the knowledge base.

In domains with limited training data or domains requiring meaningful explanations for

conclusions, re�ning existing expert knowledge has clear advantages. Results on revising four real-

world knowledge bases indicates that Rapture performs generally better than purely inductive

systems (C4.5 and BackProp), a purely symbolic revision system (Either), and purely connec-

tionist revision system (Kbann).

As mentioned in Section 2.3, certainty factors have received some criticism since the original

Mycin experiments. Much criticism was focused on the idea that that the performance of a

certainty-factor system was relatively insensitive to the precision of the weights on the rules. The

experiments discussed here do not support this notion. Since the original Mycin experiments only

involved adjusting the precision of the weight of a rule, and not on their relative ranking, the

values of the weights were unnecessarily con�ned. One of the lessons learned from the experiments

of Rapture is that it does not matter whether the certainty factor of the output category with

the highest value for a given example is 0:5 or 0:99. It is only the relative value that determines

classi�cation. This was one reason why a threshold of 0:9 was kept constant throughout training

in experiments involving single-category problems. This prevented a gradual drifting of certainty

factors towards 0, and a threshold being set at 0:05. This seemed undesirable.

Further, upon examination of the revised rule bases, much of the characteristics of Rapture

can be seen. Many of the original rules remain virtually intact throughout training. This is due

to Rapture's bias for making modi�cations only as dictated by training examples. While many

rules remain constant, a few rules with key features are changed dramatically. This can be done by

deleting the rule entirely, or giving it a very high or low certainty-factor value. This has the e�ect

of changing many of the relative weights of the rules.

The certainty-factor networks used in Rapture blur the distinction between connectionist

77

and symbolic representations. They can be viewed either as connectionist networks or symbolic rule

bases. Rapture demonstrates the utility of applying connectionist learning methods to \symbolic"

knowledge bases and employing symbolic methods to modify \connectionist" networks. Hopefully

these results will encourage others to explore similar opportunities for cross-fertilization of ideas

between connectionist and symbolic learning.

It was the hypothesis of this thesis that rule bases could be created that were more ac-

curate, more understandable, less complex, and in less time with the use of Rapture than with

other systems. Experimental results have demonstrated some of the trade-o�s. C4.5 appears to

create uniformly the fastest and smallest rule bases, but su�ers from poor generalization accuracy.

Rapture appears to be the optimal compromise as it consistently produces the best performance,

with reasonably small rule bases, and in reasonable time. Its major advantages are its ability to

incorporate expert background-knowledge into its learning, and to keep all of the rules in a symbolic

form. This creates rules that should generally be easier to comprehend.

78

Appendix A

Derivation of the CFBP Formulae

Using the designed Rapture network, we wish to perform backpropagation on the certainty fac-

tors (which are the weights on the links between the nodes). Following the presentation given in

(Rumelhart et al., 1986), we can de�ne the network error due to input pattern p as

Ep =
1

2

X

j

(tpj � opj)
2 (A.1)

and total error is similarly measured as E =
P
Ep. For any p-sum unit j, the net input to this unit

for input pattern p is de�ned as the certainty factor of all incoming activation values.

netpj = CF(wjiopi)8i (A.2)

Certainty factor (CF) is de�ned in (Shortli�e & Buchanan, 1975) as

CF =
MB� MD

1�min(MB; MD)
(A.3)

where MB (Measure of Belief) is the positive or con�rming evidence, and MD (Measure of Disbelief)

is the negative or discon�rming evidence. For any p-sum unit j, these are de�ned as

MBj =
X

+i

� wjiopi MDj =
X

�i

� wjiopi

where the �rst term is summed over only belief links, and the second summed over disbelief links.

Note that
P
� xi is shorthand for x1 � x2 � :::� xn (the probabilistic sum of the xi, where x � y �

x+ y � x � y). Also 0 � MB � 1, 0 � MD � 1, and -1� CF �1. Expanding equation A.2 gives

netpj =

P
+i� wjiopi �

P
�i� wjiopi

1�min(MBj; MDj)
(A.4)

Since in RAPTURE we de�ne a units output as simply the certainty factor of its inputs, we get

opj = netpj (A.5)

In order to achieve gradient descent, we need to have

�pwji / �
@Ep

@wji
(A.6)

79

The term on the right can be expressed as

@Ep

@wji
=

@Ep

@netpj

@netpj
@wji

(A.7)

Looking at the rightmost term, and applying equation A.2 gives us

@netpj
@wji

=
@

@wji
CF(wjkopk)8k =

@

@wji

P
+k� wjkopk +

P
�k� wjkopk

1�min(MBj; MDj)
(A.8)

Further examination shows that
@netpj
@wji

breaks down into four cases depending on whether wji is

contributing positive or negative evidence, and on which of (MB, MD) has the smaller value. As

the two former cases are symmetrical, the following assumes wji is contributing positive evidence,

leaving the following cases for
@netpj
@wji

.

1. MB > MD: This is the more common case in the domains studied to date. Noting that
@

@xk

P
i� xi = 1�

P
i 6=k� xi gives us

@netpj
@wji

=
opi(1�

P
+k 6=i� wjkopk)

1� MDj
(A.9)

2. MB < MD: This gives us

@netpj
@wji

=
opi(1�

P
+k 6=i� wjkopk)(1� MDj)

(1� MBj)2
(A.10)

In the event that MB=MD, the certainty factor becomes zero, and a zero derivative is assumed as

well. For simplicity, the following assumes the more frequent MB > MD. By de�ning

�pj = �
@Ep

@netpj
(A.11)

and combining with equations A.7 and A.9 we get

�
@Ep

@wji
=

�pjopi(1�
P

+k 6=i� wjkopk)

1� MDj
(A.12)

Therefore, in order to implement gradient descent in total error E, we need to make our weight

adjustments according to

�pwji =
��pjopi(1�

P
+k 6=i� wjkopk)

1� MDj
(A.13)

where � is the learning rate. All that now remains is to calculate �pj for each unit uj in the network.

This can be done by applying the chain rule to our original de�nition (A.11), giving us

�pj � �
@Ep

@netpj
= �

@Ep

@opj

@opj
@netpj

(A.14)

The rightmost factor is trivial. Since opj = netpj (A.5), this results in

@opj
@netpj

=
@x

@x
= 1: (A.15)

80

In order to calculate the left-hand factor, we need to consider two separate cases. Beginning at the

top of the network and working our way down, we �rst consider that uj is an output unit. From

our de�nition of Ep (A.1) we see that

@Ep

@opj
= �(tpj � opj); (A.16)

and by combining this with equations A.14 and A.15 we get

�pj = (tpj � opj) (A.17)

for any output unit uj . If uj is not an output unit, then we must remember that the output

produced may �rst pass through a min node before its value can be forward propagated. Therefore,

the e�ective output for any such node j is either 0, or the netpj value previously calculated. In

other words, a probabilistic-sum unit j's value only propagates into certain k's, which I label as

kmin. Clearly, if j's value does not pass successfully through the min node, then its value is not a

factor in the network's output. This can be shown formally by again applying the chain rule.

@Ep

@opj
=
X

kmin

@Ep

@netpk

@netpk
@opj

=
X

kmin

@Ep

@netpk

@

@opj
CF (wkiopi)8i =

�
X

kmin

�pkwkj(1�
P

+i6=j� wkiopi)

1� MDk
(A.18)

Therefore, in order to modify weights using certainty factor backpropagation, we need to utilize

the following three equations:

�pwji =
��pjopi(1�

P
+k 6=i� wjkopk)

1� MDj
(A.19)

If uj an output unit

�pj = (tpj � opj) (A.20)

If uj is not an output unit

�pj =
X

kmin

�pkwkj(1�
P

+i6=j� wkiopi)

1� MDk
(A.21)

While backpropagating, the only di�culty occurs while passing through MIN nodes, and

determining which of the connected certainty-factor nodes actually passes a value through. This

is easily determined, by checking each certainty-factor node's value, and comparing with value at

the MIN. The only possible problem arises when two or more nodes each have the same value, and

they have the same value as the MIN node. In this case the MIN function is not di�erentiable. This

problem turns out to be negligible in practice, as it occurs rarely, and usually this involves two or

more 0 values. In these cases, Rapture simply picks one of these nodes at random and continues

backpropagating.

81

Appendix B

The Initial Rule-Bases in Original and

Certainty-Factor Format

B.1 The Promoter Recognition Rule-Base

B.1.1 The Original Rules

(promoter ?x) <- (contact ?x)(conformation ?x)

(contact ?x) <- (minus_35 ?x)(minus_10 ?x)

(minus_35 ?x) <- (p-37 c)(p-36 t)(p-35 t)(p-34 g)(p-33 a)(p-32 c)

(minus_35 ?x) <- (p-36 t)(p-35 t)(p-34 g)(p-32 c)(p-31 a)

(minus_35 ?x) <- (p-36 t)(p-35 t)(p-34 g)(p-33 a)(p-32 c)(p-31 a)

(minus_35 ?x) <- (p-36 t)(p-35 t)(p-34 g)(p-33 a)(p-32 c)

(minus_10 ?x) <- (p-14 t)(p-13 a)(p-12 t)(p-11 a)(p-10 a)(p-9 t)

(minus_10 ?x) <- (p-13 t)(p-12 a)(p-10 a)(p-8 t)

(minus_10 ?x) <- (p-13 t)(p-12 a)(p-11 t)(p-10 a)(p-9 a)(p-8 t)

(minus_10 ?x) <- (p-12 t)(p-11 a)(p-7 t)

(conformation ?x) <- (p-47 c)(p-46 a)(p-45 a)(p-43 t)(p-42 t)

(p-40 a)(p-39 c)(p-22 g)(p-18 t)(p-16 c)(p-8 g)

(p-7 c)(p-6 g)(p-5 c)

(p-4 c)(p-2 c)(p-1 c)

(conformation ?x) <- (p-45 a)(p-44 a)(p-41 a)

(conformation ?x) <- (p-49 a)(p-44 t)(p-27 t)(p-22 a)(p-18 t)(p-16 t)

(p-15 g)(p-1 a)

(conformation ?x) <- (p-45 a)(p-41 a)(p-28 t)(p-27 t)(p-23 t)(p-21 a)

(p-20 a)(p-17 t) (p-15 t) (p-4 t)

82

B.1.2 The Certainty-Factor Rules

promoter <-0.68-- (contact) conformation <-0.08-- (p-47 c)

promoter <-0.68-- (conformation) conformation <-0.08-- (p-46 a)

conformation <-0.08-- (p-45 a)

conformation <-0.08-- (p-44 t)

contact <-0.68-- (minus_35) conformation <-0.08-- (p-44 a)

contact <-0.68-- (minus_10) conformation <-0.08-- (p-43 t)

conformation <-0.08-- (p-42 t)

conformation <-0.08-- (p-41 a)

minus_35 <-0.28-- (p-37 c) conformation <-0.08-- (p-40 a)

minus_35 <-0.28-- (p-36 t) conformation <-0.08-- (p-39 c)

minus_35 <-0.28-- (p-35 t) conformation <-0.08-- (p-28 t)

minus_35 <-0.28-- (p-34 g) conformation <-0.08-- (p-27 t)

minus_35 <-0.28-- (p-33 a) conformation <-0.08-- (p-23 t)

minus_35 <-0.28-- (p-32 c) conformation <-0.08-- (p-22 a)

minus_35 <-0.28-- (p-31 a) conformation <-0.08-- (p-22 g)

conformation <-0.08-- (p-21 a)

conformation <-0.08-- (p-20 a)

minus_10 <-0.25-- (p-14 t) conformation <-0.08-- (p-18 t)

minus_10 <-0.25-- (p-13 t) conformation <-0.08-- (p-17 t)

minus_10 <-0.25-- (p-13 a) conformation <-0.08-- (p-16 t)

minus_10 <-0.25-- (p-12 t) conformation <-0.08-- (p-16 c)

minus_10 <-0.25-- (p-12 a) conformation <-0.08-- (p-15 t)

minus_10 <-0.25-- (p-11 t) conformation <-0.08-- (p-15 g)

minus_10 <-0.25-- (p-11 a) conformation <-0.08-- (p-8 g)

minus_10 <-0.25-- (p-10 a) conformation <-0.08-- (p-7 c)

minus_10 <-0.25-- (p-9 t) conformation <-0.08-- (p-6 g)

minus_10 <-0.25-- (p-9 a) conformation <-0.08-- (p-5 c)

minus_10 <-0.25-- (p-8 t) conformation <-0.08-- (p-4 t)

minus_10 <-0.25-- (p-7 t) conformation <-0.08-- (p-4 c)

conformation <-0.08-- (p-2 c)

conformation <-0.08-- (p-1 a)

conformation <-0.08-- (p-1 c)

B.2 The Splice-Junction Rule-Base

B.2.1 The Original Rules

% The rules use a shorthand notation for expressing sequences.

% Namely, the rule:

% EI-stop ::- @-3 `TAA'.

% which means that at position -3, there exists the sequence 'TAA',

% and this could be expanded to:

% EI-stop ::- @-3=T, @-2=A, @-1=A.

83

% In this shorthand, there is no position 0.

% An exon->intron boundary is defined by a short sequence arround

% the boundary and the absence of a "stop" codon on the exon side

% of the boundary.

EI :- @-3 `MAGGTRAGT', not(EI-stop).

EI-stop ::- @-3 `TAA'.

EI-stop ::- @-3 `TAG'.

EI-stop ::- @-3 `TGA'.

EI-stop ::- @-4 `TAA'.

EI-stop ::- @-4 `TAG'.

EI-stop ::- @-4 `TGA'.

EI-stop ::- @-5 `TAA'.

EI-stop ::- @-5 `TAG'.

EI-stop ::- @-5 `TGA'.

% An intro->exon boundary is defined by a short sequence arround the

% boundary, the absence of a "stop" codon immediately following the

% boundary and a "pryamidine rich" region preceeding the boundary.

IE :- pyramidine-rich, @-3 `YAGG', not(IE-stop).

pyramidine-rich :- 6 of (@-15 `YYYYYYYYYY').

IE-stop1 ::- @1 `TAA'.

IE-stop2 ::- @1 `TAG'.

IE-stop3 ::- @1 `TGA'.

IE-stop4 ::- @2 `TAA'.

IE-stop5 ::- @2 `TAG'.

IE-stop6 ::- @2 `TGA'.

IE-stop7 ::- @3 `TAA'.

IE-stop8 ::- @3 `TAG'.

IE-stop9 ::- @3 `TGA'.

% In addition to the above rules, the following iterative constructs

% can be used as needed to define letters other than {A G C T}.

% These letters represent disjunctive combinations of the nucleotides.

% The codes are standard in the biological literature.

For i from ((-30 to -1) and (+1 to +30))

{@<i>`Y' ::- @<i>`C'.

@<i>`Y' ::- @<i>`T'.}

For i from ((-30 to -1) and (+1 to +30))

{@<i>`M' ::- @<i>`C'.

@<i>`M' ::- @<i>`A'.}

For i from ((-30 to -1) and (+1 to +30))

{@<i>`R' ::- @<i>`A'.

@<i>`R' ::- @<i>`G'.}

84

B.2.2 The Certainty-Factor Rules

EI <-0.23-- (p-3 A) IE-stop <-1.0-- (p1 T)(p2 A)(p3 A)

EI <-0.23-- (p-3 C) IE-stop <-1.0-- (p1 T)(p2 A)(p3 G)

EI <-0.23-- (p-2 A) IE-stop <-1.0-- (p1 T)(p2 G)(p3 A)

EI <-0.23-- (p-1 G) IE-stop <-1.0-- (p2 T)(p3 A)(p4 A)

EI <-0.23-- (p1 G) IE-stop <-1.0-- (p2 T)(p3 A)(p4 G)

EI <-0.23-- (p2 T) IE-stop <-1.0-- (p2 T)(p3 G)(p4 A)

EI <-0.23-- (p3 A) IE-stop <-1.0-- (p3 T)(p4 A)(p5 A)

EI <-0.23-- (p3 G) IE-stop <-1.0-- (p3 T)(p4 A)(p5 G)

EI <-0.23-- (p4 A) IE-stop <-1.0-- (p3 T)(p4 G)(p5 A)

EI <-0.23-- (p5 G)

EI <-0.23-- (p6 T)

EI <-0.68-- (NOT EI-stop) pyramidine-rich <-0.32-- (p-15 C)

pyramidine-rich <-0.32-- (p-15 T)

pyramidine-rich <-0.32-- (p-14 C)

IE <-0.68-- (pyramidine-rich) pyramidine-rich <-0.32-- (p-14 T)

IE <-0.25-- (p-3 C) pyramidine-rich <-0.32-- (p-13 C)

IE <-0.25-- (p-3 T) pyramidine-rich <-0.32-- (p-13 T)

IE <-0.25-- (p-2 A) pyramidine-rich <-0.32-- (p-12 C)

IE <-0.25-- (p-1 G) pyramidine-rich <-0.32-- (p-12 T)

IE <-0.25-- (p1 G) pyramidine-rich <-0.32-- (p-11 C)

IE <-0.68-- (NOT IE-stop) pyramidine-rich <-0.32-- (p-11 T)

pyramidine-rich <-0.32-- (p-10 C)

pyramidine-rich <-0.32-- (p-10 T)

EI-stop<-1.0--(p-3 T)(p-2 A)(p-1 A) pyramidine-rich <-0.32-- (p-9 C)

EI-stop<-1.0--(p-3 T)(p-2 A)(p-1 G) pyramidine-rich <-0.32-- (p-9 T)

EI-stop<-1.0--(p-3 T)(p-2 G)(p-1 A) pyramidine-rich <-0.32-- (p-8 C)

EI-stop<-1.0--(p-4 T)(p-3 A)(p-2 A) pyramidine-rich <-0.32-- (p-8 T)

EI-stop<-1.0--(p-4 T)(p-3 A)(p-2 G) pyramidine-rich <-0.32-- (p-7 C)

EI-stop<-1.0--(p-4 T)(p-3 G)(p-2 A) pyramidine-rich <-0.32-- (p-7 T)

EI-stop<-1.0--(p-5 T)(p-4 A)(p-3 A) pyramidine-rich <-0.32-- (p-6 C)

EI-stop<-1.0--(p-5 T)(p-4 A)(p-3 G) pyramidine-rich <-0.32-- (p-6 T)

EI-stop<-1.0--(p-5 T)(p-4 G)(p-3 A)

B.3 The Mycin Certainty-Factor Rules

acute_bacterial_meningitis <- 0.30 -- finding(seizures,yes)

subarachnoid_hemorrhage <- 0.10 -- greater(wbc,Wbc,10.5)

subarachnoid_hemorrhage <- 0.10 -- greater(pmns,Pmns,78)

subarachnoid_hemorrhage <- 0.10 -- greater(bands,Bands,10)

acute_bacterial_meningitis <- 0.20 -- finding(seizures,yes)

acute_bacterial_meningitis <- -0.80 --

lessthan(csfprotein, Csfprotein,45)

acute_bacterial_meningitis <- 0.20 --

between(csfprotein, Csfprotein,45,100)

85

acute_bacterial_meningitis <- 0.70 --

greater(csfprotein, Csfprotein,100)

viral_meningitis <- 0.30 -- lessthan(csfprotein, Csfprotein,45)

viral_meningitis <- 0.20 -- between(csfprotein, Csfprotein,45,100)

viral_meningitis <- -0.50 -- greater(csfprotein, Csfprotein,500)

chronic_meningitis <- -0.50 -- lessthan(csfprotein, Csfprotein,45)

chronic_meningitis <- 0.0 -- between(csfprotein, Csfprotein,45,100)

chronic_meningitis <- 0.70 -- greater(csfprotein, Csfprotein,100)

acute_bacterial_meningitis <- 0.80 --

lessthan(csfglucose, Csfglucose,25) finding(csfglucnormal,no)

acute_bacterial_meningitis <- 0.10) --

between(csfglucose, Csfglucose,25,40) finding(csfglucnormal,no)

acute_bacterial_meningitis <- -0.80 --

greater(csfglucose, Csfglucose,39) finding(csfglucnormal,no)

chronic_meningitis <- 0.40 -- lessthan(csfglucose, Csfglucose,25)

finding(csfglucnormal,no)

chronic_meningitis <- 0.60 -- between(csfglucose, Csfglucose,25,40)

finding(csfglucnormal,no)

chronic_meningitis <- 0.0 -- greater(csfglucose, Csfglucose,40)

finding(csfglucnormal,no)

viral_meningitis <- -0.80 -- lessthan(csfglucose, Csfglucose,25)

finding(csfglucnormal,no)

viral_meningitis <- 0.0 -- between(csfglucose, Csfglucose,25,40)

finding(csfglucnormal,no)

viral_meningitis <- 0.50 -- greater(csfglucose, Csfglucose,40)

finding(csfglucnormal,no)

acute_bacterial_meningitis <- -0.80 --

greater(csfcellcount, Csfcellcount,4)

lessthan(csfpoly, Csfpoly,35)

acute_bacterial_meningitis <- 0.0 --

greater(csfcellcount, Csfcellcount,4)

between(csfpoly, Csfpoly,35,65)

acute_bacterial_meningitis <- 0.80 --

greater(csfcellcount, Csfcellcount,4)

greater(csfpoly, Csfpoly,65)

viral_meningitis <- 0.80 -- greater(csfcellcount, Csfcellcount,4)

lessthan(csfpoly, Csfpoly,35)

viral_meningitis <- 0.0 -- greater(csfcellcount, Csfcellcount,4)

between(csfpoly, Csfpoly,35,65)

viral_meningitis <- -0.80 -- greater(csfcellcount, Csfcellcount,4)

greater(csfpoly, Csfpoly,65)

chronic_meningitis <- 0.50 -- greater(csfcellcount, Csfcellcount,4)

lessthan(csfpoly, Csfpoly,35)

chronic_meningitis <- 0.0 -- greater(csfcellcount, Csfcellcount,4)

between(csfpoly, Csfpoly,35,65)

chronic_meningitis <- -0.50 -- greater(csfcellcount, Csfcellcount,4)

greater(csfpoly, Csfpoly,65)

acute_bacterial_meningitis <- -0.90 -- greater(wbc,Wbc,1)

lessthan(csfcellcount, Csfcellcount,10)

acute_bacterial_meningitis <- 0.20 -- greater(wbc,Wbc,1)

between(csfcellcount, Csfcellcount,10,100)

acute_bacterial_meningitis <- 0.60 -- greater(wbc,Wbc,1)

between(csfcellcount, Csfcellcount,100,1500)

acute_bacterial_meningitis <- 0.80 -- greater(wbc,Wbc,1)

greater(csfcellcount, Csfcellcount,1500)

acute_bacterial_meningitis <- -0.90 -- finding(wbc,unknown)

lessthan(csfcellcount, Csfcellcount,10)

acute_bacterial_meningitis <- 0.20 -- finding(wbc,unknown)

between(csfcellcount, Csfcellcount,10,100)

acute_bacterial_meningitis <- 0.60 -- finding(wbc,unknown)

between(csfcellcount, Csfcellcount,100,1500)

acute_bacterial_meningitis <- 0.80 -- finding(wbc,unknown)

86

greater(csfcellcount, Csfcellcount,1500)

viral_meningitis <- -0.70 -- greater(wbc,Wbc,1)

lessthan(csfcellcount, Csfcellcount,10)

viral_meningitis <- 0.10 -- greater(wbc,Wbc,1)

between(csfcellcount, Csfcellcount,10,100)

viral_meningitis <- 0.60 -- greater(wbc,Wbc,1)

between(csfcellcount, Csfcellcount,100,1500)

viral_meningitis <- -0.50 -- greater(wbc,Wbc,1)

greater(csfcellcount, Csfcellcount,1500)

viral_meningitis <- -0.70 -- finding(wbc,unknown)

lessthan(csfcellcount, Csfcellcount,10)

viral_meningitis <- 0.10 -- finding(wbc,unknown)

between(csfcellcount, Csfcellcount,10,100)

viral_meningitis <- 0.60 -- finding(wbc,unknown)

between(csfcellcount, Csfcellcount,100,1500)

viral_meningitis <- -0.50 -- finding(wbc,unknown)

greater(csfcellcount, Csfcellcount,1500)

chronic_meningitis <- -0.70 -- greater(wbc,Wbc,1)

lessthan(csfcellcount, Csfcellcount,10)

chronic_meningitis <- 0.10 -- greater(wbc,Wbc,1)

between(csfcellcount, Csfcellcount,10,100)

chronic_meningitis <- 0.60 -- greater(wbc,Wbc,1)

between(csfcellcount, Csfcellcount,100,1500)

chronic_meningitis <- -0.50 -- greater(wbc,Wbc,1)

greater(csfcellcount, Csfcellcount,1500)

chronic_meningitis <- -0.70 -- finding(wbc,unknown)

lessthan(csfcellcount, Csfcellcount,10)

chronic_meningitis <- 0.10 -- finding(wbc,unknown)

between(csfcellcount, Csfcellcount,10,100)

chronic_meningitis <- 0.60 -- finding(wbc,unknown)

between(csfcellcount, Csfcellcount,100,1500)

chronic_meningitis <- -0.50 -- finding(wbc,unknown)

greater(csfcellcount, Csfcellcount,1500)

subarachnoid_hemorrhage <- 0.10 --

greater(csfcellcount.Csfcellcount,5)

greater(csfpoly, Csfpoly,0)

greater(csfprotein, Csfprotein,65)

subarachnoid_hemorrhage <- 0.50 -- finding(stiff_neck_on_flexion,yes)

hypertension <- 0.10 -- finding(saccular_aneurysm,yes)

pckd <- 0.20 -- finding(saccular_aneurysm,yes)

pckd <- 0.90 -- finding(hx_pckd,yes)

pckd <- 0.50 -- finding(family_hx_pckd,yes)

cluster_headache <- 0.30 -- finding(headache_location,unilateral)

diplococcus_pneumoniae <- 0.20 --

finding(pneumococcal_pneumonia_hx,yes)

subarachnoid_hemorrhage <- 60 --

finding(headache_physical_exertion,yes)

finding(headache_frequency,first_time)

migraine <- 0.40 -- finding(headache_location,unilateral)

subarachnoid_hemorrhage <- 0.80 -- finding(retinal_hemorrhage,yes)

diplococcus_pneumoniae <- 0.30 -- finding(cough,yes)

headache_episodic <- -1.00 -- finding(headache_frequency,first_time)

chronic_bacterial_sinusitis <- 0.60 -- finding(nasal_congestion,yes)

leptospirosis <- 0.10 -- finding(headache_location,generalized)

leptospirosis <- 0.10 -- finding(scleral_injection,yes)

cluster_headache <- 0.30 -- finding(scleral_injection,yes)

cluster_headache <- 0.30 -- finding(lacrimation,yes)

allergic_sinusitis <- 0.30 -- finding(scleral_injection,yes)

allergic_sinusitis <- 0.30 -- finding(itchy_eyes,yes)

allergic_sinusitis <- 0.30 -- finding(sneezing,yes)

allergic_sinusitis <- 0.30 -- finding(headache_location,frontal)

acute_meningitis <- 0.30 -- finding(photophobia,yes)

87

allergic_sinusitis <- 0.30 -- finding(nasal_congestion,yes)

headtrauma <- 0.20 -- finding(headache,yes)

necktrauma <- 1.00 -- finding(necktraumasigns,yes)

necktrauma <- 0.20 -- finding(stiff_neck_signs,yes)

meningitis <- 0.70 -- finding(redflag_cns_finding,yes)

psychogenic <- 0.30 -- finding(sedatives,yes)

increased_intracranial_pressure <- 0.90 -- finding(tense_fontanel,yes)

high_grade_fever <- 1.00 -- greater(temperature,Temperature,102)

low_grade_fever <- -1.00 -- greater(temperature,Temperature,102)

low_grade_fever <- 1.00 -- between(temperature,Temperature,99,102)

high_grade_fever <- -1.00 -- between(temperature,Temperature,99,102)

acute_bacterial_meningitis <- 0.50 -- finding(high_grade_fever,yes)

increased_intracranial_pressure <- 0.95 --

finding(ctscan_ventricular_size,yes)

otitis_media <- 0.90 -- finding(otitis_media_signs,yes)

brain_abscess <- 1.00 -- finding(intracerebral_pus,yes)

av_malformation <- 0.20 -- finding(subarachnoid_hemorrhage,yes)

neoplastic <- 0.30 -- finding(weight_loss,yes)

brain_aneurysm <- 0.30 -- finding(intracerebral_hemorrhage,yes)

hypertension <- 0.30 -- finding(intracerebral_hemorrhage,yes)

traumatic_process <- 0.20 -- finding(alcoholic,yes)

epi_subdural_hemorrhage <- 1.00 -- finding(epi_subdural_hematoma,yes)

headtrauma <- 0.80 -- finding(epi_subdural_hemorrhage,yes)

chronic_bacterial_sinusitis <- 0.30 --

finding(epi_subdural_empyema,yes)

subarachnoid_hemorrhage <- 0.20 --

finding(increased_intracranial_pressure,yes)

other_ic_pressure_causes <- 0.30 --

finding(increased_intracranial_pressure,yes)

chronic_lung_infection <- 0.30 -- finding(brain_abscess,yes)

chronic_bacterial_sinusitis <- 0.30 -- finding(brain_abscess,yes)

chronic_ear_infection <- 0.30 -- finding(brain_abscess,yes)

hemorrhage <- 0.30 -- finding(bleeding_disorder,yes)

csfglucnormal <- -1.00 -- lessthan(csfglucose, Csfglucose,40)

csfglucnormal <- -1.00 --

lessthan(quotient,quotient(csfglucose,bloodgluc),0.4)

increased_intracranial_pressure <- 0.95 --

finding(increased_csf_pressure,yes)

neonate <- -1.00 -- greater(age,Age,0.4167)

meningitis <- 0.50 -- finding(stiff_neck_on_flexion,yes)

finding(neonate,yes)

febrile <- 0.70 -- finding(shaking_chills,yes)

neisseria_meningitidis <- 0.20 -- finding(crowded_environment,yes)

mycobacterium_tb_meningitis <- 0.80 -- finding(cxrsug_active_tb,yes)

mycobacterium_tb_meningitis <- 0.20 -- finding(steroids,yes)

mycobacterium_tb_meningitis <- 0.20 -- finding(cytotoxic,yes)

migraine <- 0.20 -- finding(nausea,yes)

mycobacterium_tb_meningitis <- 0.20 -- finding(granuloma_hx,yes)

chronic_ear_infection <- 0.30 -- finding(epi_subdural_empyema,yes)

csfglucnormal <- 1.00 -- greater(csfglucose, Csfglucose,40)

finding(bloodgluc,unknown)

csfglucnormal <- 1.00 -- greater(csfglucose, Csfglucose,40)

greater(quotient,quotient(csfglucose,bloodgluc),0.4)

cryptococcus <- 0.70 -- finding(crypto_serology,yes)

coccidioides <- 0.70 -- finding(cocci_serology,yes)

leukopenia <- 1.00 -- lessthan(wbc,Wbc,2.5)

headtrauma <- 0.90 -- finding(headtraumasigns,yes)

migraine <- 0.30 -- finding(headache_episodic,yes)

temporal_arteritis <- 40 -- finding(temporal_tenderness,yes)

e_coli <- 0.525 -- finding(neurosurgery,no) greater(age,Age,10)

finding(nosocomial,yes)

pseudomonas_aeruginosa <- 0.21 -- finding(neurosurgery,no)

88

greater(age,Age,10) finding(nosocomial,yes)

klebsiella_pneumoniae <- 0.35 -- finding(neurosurgery,no)

greater(age,Age,10) finding(nosocomial,yes)

staphylococcus_coag_pos <- 0.21 -- finding(neurosurgery,no)

greater(age,Age,10)

finding(nosocomial,yes)

viral_meningitis <- 0.30 -- finding(csfglucnormal,yes)

bacterial_endocarditis <- 0.90 -- finding(mycotic_aneurysm,yes)

intracranial_mass_lesion <- 0.90 -- finding(ctscan_mass_lesion,yes)

brain_abscess <- 0.80 -- finding(ctscan_abscess,yes)

intracranial_hematoma <- 0.80 -- finding(ctscan_hematoma,yes)

intracranial_tumor <- 0.80 -- finding(ctscan_tumor,yes)

cryptococcus <- 0.20 -- finding(low_grade_fever,yes)

intracranial_mass_lesion <- 0.50 -- finding(focalsigns,yes)

cryptococcus <- 0.90 -- finding(india_ink,yes)

mycobacterium_tb_meningitis <- 0.60 -- finding(pos_ppd,yes)

mycobacterium_tb_meningitis <- -0.30 -- finding(pos_ppd,no)

migraine <- 0.30 -- finding(headache_episodic,yes)

migraine <- 0.70 -- finding(headache_visual_prodrome,yes)

glaucoma <- 0.30 -- finding(headache,yes) finding(red_painful_eye,yes)

increased_intracranial_pressure <- 0.90 -- finding(papilledema,yes)

temporal_arteritis <- 0.50 -- finding(headache_location,temporal)

greater(headache_severity,Headache_severity,2)

greater(age,Age,60)

temporal_arteritis <- 0.40 -- finding(temporal_tenderness,yes)

increased_intracranial_pressure <- 0.90 -- finding(enlarged_head,yes)

increased_intracranial_pressure <- 0.70 --

finding(headache_chronicity, chronic)

finding(vomiting,yes)

intracranial_mass_lesion <- 0.75 --

finding(increased_intracranial_pressure,yes)

brain_abscess <- 0.40 -- finding(immunosuppressed,yes)

finding(redflag_cns_finding,yes)

increased_intracranial_pressure <- 0.20 -- finding(seizures,yes)

intracranial_mass_lesion <- 0.40 --

finding(headache_progression,steadily_worsening)

finding(headache_chronicity, chronic)

subarachnoid_hemorrhage <- 0.30 -- finding(syncope,yes)

increased_csf_pressure <- 1.00 --

greater(csf_pressure, Csf_pressure,20)

tension_headache <- 0.30 -- finding(headache_chronicity, chronic)

tension_headache <- 0.815 -- finding(headache_quality,pressure)

tension_headache <- 0.70 -- finding(headache_emotional,yes)

headache_chronicity(acute) <- 0.80 --

lessthan(headache_duration,Headache_duration,3)

headache_chronicity(acute) <- 0.20 --

between(headache_duration,Headache_duration,3,9)

headache_chronicity(acute) <- 0.0 --

between(headache_duration,Headache_duration,9,183)

headache_chronicity(acute) <- 0.0 --

greater(headache_duration,Headache_duration,183)

headache_chronicity(subacute) <- 0.20 --

lessthan(headache_duration,Headache_duration,3)

headache_chronicity(subacute) <- 0.80 --

between(headache_duration,Headache_duration,3)

headache_chronicity(subacute) <- 0.30 --

between(headache_duration,Headache_duration,9,183)

headache_chronicity(subacute) <- 0.0 --

greater(headache_duration,Headache_duration,183)

headache_chronicity(chronic) <- 0.0 --

lessthan(headache_duration,Headache_duration,3)

headache_chronicity(chronic) <- 0.0 --

89

between(headache_duration,Headache_duration,3,9)

headache_chronicity(chronic) <- 0.80 --

between(headache_duration,Headache_duration,9,183)

headache_chronicity(chronic) <- 1.00 --

greater(headache_duration,Headache_duration,183)

meningitis <- 0.80 -- finding(seizures,yes)

finding(tense_fontanel,yes)

neonate <- 1.00 -- lessthan(age,Age,0.4167)

acute_bacterial_meningitis <- 0.60 --

lessthan(cns_finding_duration, Cns_finding_duration,2)

acute_bacterial_meningitis <- 0.30 --

between(cns_finding_duration, Cns_finding_duration,2,5)

acute_bacterial_meningitis <- 0.0 --

between(cns_finding_duration, Cns_finding_duration,5,8)

acute_bacterial_meningitis <- 0.0 --

between(cns_finding_duration, Cns_finding_duration,8,12)

acute_bacterial_meningitis <- -0.60 --

between(cns_finding_duration, Cns_finding_duration,12,60)

acute_bacterial_meningitis <- -0.80 --

greater(cns_finding_duration, Cns_finding_duration,60)

viral_meningitis <- -0.20 --

lessthan(cns_finding_duration, Cns_finding_duration,2)

viral_meningitis <- 0.30 --

between(cns_finding_duration, Cns_finding_duration,2,5)

viral_meningitis <- 0.60 --

between(cns_finding_duration, Cns_finding_duration,5,8)

viral_meningitis <- 0.20 --

between(cns_finding_duration, Cns_finding_duration,8,12)

viral_meningitis <- -0.20 --

between(cns_finding_duration, Cns_finding_duration,12,60)

viral_meningitis <- -0.60 --

greater(cns_finding_duration, Cns_finding_duration,60)

chronic_meningitis <- -0.80 --

lessthan(cns_finding_duration, Cns_finding_duration,2)

chronic_meningitis <- -0.20 --

between(cns_finding_duration, Cns_finding_duration,2,5)

chronic_meningitis <- 0.0 --

between(cns_finding_duration, Cns_finding_duration,5,8)

chronic_meningitis <- 0.20 --

between(cns_finding_duration, Cns_finding_duration,8,12)

chronic_meningitis <- 0.60 --

between(cns_finding_duration, Cns_finding_duration,12,60)

chronic_meningitis <- 0.80 --

greater(cns_finding_duration, Cns_finding_duration,60)

acute_bacterial_meningitis <- 0.60 --

finding(headache_chronicity,acute)

finding(headache_onset,abrupt)

greater(headache_severity,Headache_severity,3)

viral_meningitis <- 0.40 -- finding(headache_chronicity,acute)

finding(headache_onset,abrupt)

greater(headache_severity,Headache_severity,3)

subarachnoid_hemorrhage <-0.60 -- finding(headache_chronicity,acute)

finding(headache_onset,abrupt)

greater(headache_severity,Headache_severity,3)

mycobacterium_tb_meningitis <- 0.80 -- finding(cxrsug_active_tb)

meningitis <- -0.80 -- lessthan(csfcellcount, Csfcellcount,10)

lessthan(csfprotein, Csfprotein,40)

meningitis <- -0.70 -- lessthan(csfcellcount, Csfcellcount,5)

greater(wbc,Wbc,1)

coccidioides <- 0.50 -- finding(cocci_endemic,yes)

finding(race,asian) finding(compromised,yes)

coccidioides <- 0.50 -- finding(cocci_endemic,yes)

90

finding(race,black) finding(compromised,yes)

coccidioides <- 0.50 -- finding(cocci_endemic,yes)

finding(race,indian) finding(compromised,yes)

viral_meningitis <- 0.40 -- finding(exanthems,yes)

viral_meningitis <- 0.10 -- finding(exp_exanthems,yes)

finding(exanthems,no)

staphylococcus_coag_pos <- 0.525 -- finding(skininfect,yes)

streptococcus_group_a <- 0.35 -- finding(skininfect,yes)

mycobacterium_tb_meningitis <- 0.20 -- finding(steroids,yes)

mycobacterium_tb_meningitis <- 0.20 -- finding(cytotoxic,yes)

infectious_process <- 0.50 -- greater(wbc,Wbc,10.5)

infectious_process <- 0.50 -- greater(pmns,Pmns,78)

infectious_process <- 0.50 -- greater(bands,Bands,10)

mycobacterium_tb_meningitis <- 0.20 -- finding(ocnerve,yes)

increased_intracranial_pressure <- 0.80 -- finding(diplopia,yes)

viral_meningitis <- 0.20 -- finding(vesicerupt,yes)

e_coli <- 0.525 -- finding(systemic_compromised,yes)

klebsiella_pneumoniae <- 0.35 -- finding(systemic_compromised,yes)

pseudomonas_aeruginosa <- 0.28 -- finding(systemic_compromised,yes)

infectious_process <- 0.70 -- finding(febrile,yes)

meningitis <- 0.50 -- finding(stiff_neck_on_flexion,yes)

finding(headache,yes)

partially_treated_bacterial_meningitis <- -1.00 --

finding(antimicrobialrx,no)

intracerebral_hemorrhage <- 1.00 --

finding(intracerebral_hematoma,yes)

headtrauma <- 0.30 -- finding(intracerebral_hemorrhage,yes)

brain_aneurysm <- 0.60 -- finding(subarachnoid_hemorrhage,yes)

staphylococcus_coag_pos <- 0.525 -- finding(cnsradiate,yes)

staphylococcus_coag_pos <- 0.525 -- lessthan(age,Age,9)

finding(cnsmalform,yes)

low_platelets <- 0.70 -- finding(leukemia,yes)

low_platelets <- 0.70 -- finding(lymphoma,yes)

low_platelets <- 0.70 -- finding(cytotoxic,yes)

e_coli <- 0.20 -- finding(cns_compromised,no)

lessthan(age,Age,0.166667)

e_coli <- 0.0 -- finding(cns_compromised,no)

between(age,Age,0.166667,1)

e_coli <- 0.0 -- finding(cns_compromised,no) between(age,Age,1,5)

e_coli <- 0.0 -- finding(cns_compromised,no) between(age,Age,5,15)

e_coli <- 0.0 -- finding(cns_compromised,no) between(age,Age,15,55)

e_coli <- 0.0 -- finding(cns_compromised,no) greater(age,Age,55)

klebsiella_pneumoniae <- 0.14 -- finding(cns_compromised,no)

lessthan(age,Age,0.166667)

klebsiella_pneumoniae <- 0.0 -- finding(cns_compromised,no)

between(age,Age,0.166667,1)

klebsiella_pneumoniae <- 0.0 -- finding(cns_compromised,no)

between(age,Age,1,5)

klebsiella_pneumoniae <- 0.0 -- finding(cns_compromised,no)

between(age,Age,5,15)

klebsiella_pneumoniae <- 0.0 -- finding(cns_compromised,no)

between(age,Age,15,55)

klebsiella_pneumoniae <- 0.0 -- finding(cns_compromised,no)

greater(age,Age,55)

listeria <- 0.112 -- finding(cns_compromised,no)

lessthan(age,Age,0.166667)

listeria <- 0.0 -- finding(cns_compromised,no)

between(age,Age,0.166667,1)

listeria <- 0.0 -- finding(cns_compromised,no) between(age,Age,1,5)

listeria <- 0.0 -- finding(cns_compromised,no) between(age,Age,5,15)

listeria <- 0.0 -- finding(cns_compromised,no) between(age,Age,15,55)

listeria <- 0.0 -- finding(cns_compromised,no) greater(age,Age,55)

91

streptococcus_group_b <- 0.20 -- finding(cns_compromised,no)

lessthan(age,Age,0.166667)

streptococcus_group_b <- 0.0 -- finding(cns_compromised,no)

between(age,Age,0.166667,1)

streptococcus_group_b <- 0.0 -- finding(cns_compromised,no)

between(age,Age,1,5)

streptococcus_group_b <- 0.0 -- finding(cns_compromised,no)

between(age,Age,5,15)

streptococcus_group_b <- 0.0 -- finding(cns_compromised,no)

between(age,Age,15,55)

streptococcus_group_b <- 0.0 -- finding(cns_compromised,no)

greater(age,Age,55)

hemophilus_influenzae <- 0.0 -- finding(cns_compromised,no)

lessthan(age,Age,0.166667)

hemophilus_influenzae <- 0.20 -- finding(cns_compromised,no)

between(age,Age,0.166667,1)

hemophilus_influenzae <- 0.20 -- finding(cns_compromised,no)

between(age,Age,1,5)

hemophilus_influenzae <- 0.20 -- finding(cns_compromised,no)

between(age,Age,5,15)

hemophilus_influenzae <- 0.0 -- finding(cns_compromised,no)

between(age,Age,15,55)

hemophilus_influenzae <- 0.0 -- finding(cns_compromised,no)

greater(age,Age,55)

diplococcus_pneumoniae <- 0.0 -- finding(cns_compromised,no)

lessthan(age,Age,0.166667)

diplococcus_pneumoniae <- 0.112 -- finding(cns_compromised,no)

between(age,Age,0.166667,1)

diplococcus_pneumoniae <- 0.112 -- finding(cns_compromised,no)

between(age,Age,1,5)

diplococcus_pneumoniae <- 0.20 -- finding(cns_compromised,no)

between(age,Age,5,15)

diplococcus_pneumoniae <- 0.20 -- finding(cns_compromised,no)

between(age,Age,15,55)

diplococcus_pneumoniae <- 0.20 -- finding(cns_compromised,no)

greater(age,Age,55)

neisseria_meningitidis <- 0.0 -- finding(cns_compromised,no)

lessthan(age,Age,0.166667)

neisseria_meningitidis <- 0.112 -- finding(cns_compromised,no)

between(age,Age,0.166667,1)

neisseria_meningitidis <- 0.112 -- finding(cns_compromised,no)

between(age,Age,1,5)

neisseria_meningitidis <- 0.20 -- finding(cns_compromised,no)

between(age,Age,5,15)

neisseria_meningitidis <- 0.20 -- finding(cns_compromised,no)

between(age,Age,15,55)

neisseria_meningitidis <- 0.0 -- finding(cns_compromised,no)

greater(age,Age,55)

staphylococcus_coag_pos <- 0.0 -- finding(cns_compromised,no)

lessthan(age,Age,0.166667)

staphylococcus_coag_pos <- 0.0 -- finding(cns_compromised,no)

between(age,Age,0.166667,1)

staphylococcus_coag_pos <- 0.0 -- finding(cns_compromised,no)

between(age,Age,1,5)

staphylococcus_coag_pos <- 0.0 -- finding(cns_compromised,no)

between(age,Age,5,15)

staphylococcus_coag_pos <- 0.0 -- finding(cns_compromised,no)

between(age,Age,15,55)

staphylococcus_coag_pos <- 0.112 -- finding(cns_compromised,no)

greater(age,Age,55)

streptococcus_species <- 0.0 -- finding(cns_compromised,no)

lessthan(age,Age,0.166667)

92

streptococcus_species <- 0.0 -- finding(cns_compromised,no)

between(age,Age,0.166667,1)

streptococcus_species <- 0.0 -- finding(cns_compromised,no)

between(age,Age,1,5)

streptococcus_species <- 0.0 -- finding(cns_compromised,no)

between(age,Age,5,15)

streptococcus_species <- 0.0 -- finding(cns_compromised,no)

between(age,Age,15,55)

streptococcus_species <- 0.112 -- finding(cns_compromised,no)

greater(age,Age,55)

recentcnsdefect <- 1.00 -- finding(cnsdef,yes)

lessthan(cnsdeftime, Cnsdeftime,2)

staphylococcus_coag_pos <- 0.525 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,other_ventricular_shunt)

staphylococcus_coag_pos <- 0.525 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,no_shunt)

staphylococcus_coag_neg <- 0.35 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,other_ventricular_shunt)

staphylococcus_coag_neg <- 0.35 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,no_shunt)

staphylococcus_group_a <- 0.21 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,other_ventricular_shunt)

staphylococcus_group_a <- 0.21 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,no_shunt)

e_coli <- 0.28 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,other_ventricular_shunt)

e_coli <- 0.28 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,no_shunt)

klebsiella_pneumoniae <- 0.21 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,other_ventricular_shunt)

klebsiella_pneumoniae <- 0.21 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,no_shunt)

pseudomonas_aeruginosa <- 0.20 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,other_ventricular_shunt)

pseudomonas_aeruginosa <- 0.20 -- finding(neurosurgery,yes)

lessthan(neurotime,Neurotime,2)

finding(neurosurgtype,no_shunt)

e_coli <- 0.56 -- finding(neurosurgtype,ventricular_ureteral_shunt)

klebsiella_pneumoniae <- 0.525 --

finding(neurosurgtype,ventricular_ureteral_shunt)

proteus_non_mirabilis <- 0.35 --

finding(neurosurgtype,ventricular_ureteral_shunt)

proteus_mirabilis <- 0.35 --

finding(neurosurgtype,ventricular_ureteral_shunt)

pseudomonas_aeruginosa <- 0.28 --

finding(neurosurgtype,ventricular_ureteral_shunt)

staphylococcus_coag_pos <- 0.42 --

finding(neurosurgtype,ventricular_ureteral_shunt)

staphylococcus_coag_neg <- 0.28 --

finding(neurosurgtype,ventricular_ureteral_shunt)

diplococcus_pneumoniae <- 0.35 -- finding(lymphoma,yes)

93

diplococcus_pneumoniae <- 0.35 -- finding(leukemia,yes)

listeria <- 0.35 -- finding(lymphoma,yes)

listeria <- 0.35 -- finding(leukemia,yes)

cryptococcus <- 0.70 -- finding(lymphoma,yes)

cryptococcus <- 0.70 -- finding(leukemia,yes)

mycobacterium_tb_meningitis <- 0.10 -- finding(exp_tb,yes)

diplococcus_pneumoniae <- 0.35 -- finding(cxrsug_lobar_pneumonia,yes)

diplococcus_pneumoniae <- 0.525 -- finding(sicklecell,yes)

e_coli <- 0.20 -- finding(alcoholic,yes)

diplococcus_pneumoniae <- 0.21 -- finding(alcoholic,yes)

neisseria_meningitidis <- 0.56 --

finding(epid_meningococcal_disease,yes)

neisseria_meningitidis <- 0.525 -- finding(purpuric_rash,yes)

neisseria_meningitidis <- 0.21 -- finding(petechial_rash,yes)

finding(purpuric_rash,no)

finding(low_platelets,no)

listeria <- 0.20 -- finding(steroids,yes) finding(lymphoma,no)

finding(leukemia,no)

listeria <- 0.20 -- finding(cytotoxic,yes) finding(lymphoma,no)

finding(leukemia,no)

hemophilus_influenzae <- 0.35 -- finding(epiglottitis,yes)

diplococcus_pneumoniae <- 0.28 -- finding(epiglottitis,yes)

hemophilus_influenzae <- 0.525 -- finding(otitis_media_signs,yes)

diplococcus_pneumoniae <- 0.49 -- finding(otitis_media_signs,yes)

staphylococcus_coag_pos <- 0.525 -- finding(pent_headtrauma,yes)

finding(traumadate,unknown)

staphylococcus_coag_pos <- 0.525 -- finding(pent_headtrauma,yes)

lessthan(traumadate,Traumadate,60)

staphylococcus_coag_pos <- 0.21 -- finding(pent_headtrauma,yes)

greater(traumadate,Traumadate,59)

streptococcus_group_a <- 0.28 -- finding(pent_headtrauma,yes)

finding(traumadate,unknown)

streptococcus_group_a <- 0.28 -- finding(pent_headtrauma,yes)

lessthan(traumadate,Traumadate,60)

streptococcus_group_a <- 0.0 -- finding(pent_headtrauma,yes)

greater(traumadate,Traumadate,59)

diplococcus_pneumoniae <- 0.21 -- finding(pent_headtrauma,yes)

finding(traumadate,unknown)

diplococcus_pneumoniae <- 0.21 -- finding(pent_headtrauma,yes)

lessthan(traumadate,Traumadate,60)

diplococcus_pneumoniae <- 0.35 -- finding(pent_headtrauma,yes)

greater(traumadate,Traumadate,59)

diplococcus_pneumoniae <- 0.63 -- finding(headtraumasigns,yes)

finding(pent_headtrauma,no)

finding(traumadate,unknown)

diplococcus_pneumoniae <- 0.63 -- finding(headtraumasigns,yes)

finding(pent_headtrauma,no)

lessthan(traumadate,Traumadate,60)

diplococcus_pneumoniae <- 0.525 -- finding(headtraumasigns,yes)

finding(pent_headtrauma,no)

greater(traumadate,Traumadate,59)

diplococcus_pneumomiae <- 0.21 -- finding(splenectomy,yes)

coccidioides <- 0.30 -- finding(cocci_endemic,yes)

pseudomonas_aeruginosa <- 0.35 -- finding(burned,yes)

viral_meningitis <- 0.20 -- finding(epiglottitis,yes)

bacterial_meningitis <- 0.20 -- finding(pneumococcal_pneumonia_hx,yes)

bacterial_meningitis <- 0.30 -- finding(cough,yes)

bacterial_meningitis <- 0.20 -- finding(crowded_environment,yes)

fungal_meningitis <- 0.70 -- finding(crypto_serology,yes)

bacterial_meningitis <- 0.525 -- finding(neurosurgery,no)

greater(age,A,10)

finding(nosocomial,yes)

94

fungal_meningitis <- 0.20 -- finding(low_grade_fever,yes)

fungal_meningitis <- 0.90 -- finding(india_ink,yes)

fungal_meningitis <- 0.50 -- finding(cocci_endemic,yes)

finding(race,asian)

finding(compromised,yes)

fungal_meningitis <- 0.50 -- finding(cocci_endemic,yes)

finding(race,black)

finding(compromised,yes)

fungal_meningitis <- 0.50 -- finding(cocci_endemic,yes)

finding(race,indian)

finding(compromised,yes)

bacterial_meningitis <- 0.525 -- finding(skininfect,yes)

bacterial_meningitis <- 0.525 -- finding(systemic_compromised,yes)

bacterial_meningitis <- 0.525 -- finding(cnsradiate,yes)

bacterial_meningitis <- 0.525 -- lessthan(age,A,9)

finding(cnsmalform,yes)

bacterial_meningitis <- 0.20 -- finding(cns_compromised,no)

lessthan(age,A,0.166667)

bacterial_meningitis <- 0.20 -- finding(cns_compromised,no)

between(age,A,0.166667,1)

bacterial_meningitis <- 0.20 -- finding(cns_compromised,no)

between(age,A,1,5)

bacterial_meningitis <- 0.20 -- finding(cns_compromised,no)

between(age,A,5,15)

bacterial_meningitis <- 0.20 -- finding(cns_compromised,no)

between(age,A,15,55)

bacterial_meningitis <- 0.20 -- finding(cns_compromised,no)

greater(age,A,55)

bacterial_meningitis <- 0.525 -- finding(neurosurgery,yes)

lessthan(neurotime,A,2)

finding(neurosurgtype,other_ventricular_shunt)

bacterial_meningitis <- 0.525 -- finding(neurosurgery,yes)

lessthan(neurotime,A,2)

finding(neurosurgtype,no_shunt)

bacterial_meningitis <- 0.56 --

finding(neurosurgtype,ventricular_ureteral_shunt)

fungal_meningitis <- 0.70 -- finding(lymphoma,yes)

fungal_meningitis <- 0.70 -- finding(leukemia,yes)

bacterial_meningitis <- 0.35 -- finding(cxrsug_lobar_pneumonia,yes)

bacterial_meningitis <- 0.525 -- finding(sicklecell,yes)

bacterial_meningitis <- 0.21 -- finding(alcoholic,yes)

bacterial_meningitis <- 0.56 --

finding(epid_meningococcal_disease,yes)

bacterial_meningitis <- 0.525 -- finding(purpuric_rash,yes)

bacterial_meningitis <- 0.21 -- finding(petechial_rash,yes)

finding(purpuric_rash,no)

finding(low_platelets,no)

bacterial_meningitis <- 0.20 -- finding(steroids,yes)

finding(lymphoma,no)

finding(leukemia,no)

bacterial_meningitis <- 0.20 -- finding(cytotoxic,yes)

finding(lymphoma,no)

finding(leukemia,no)

bacterial_meningitis <- 0.35 -- finding(epiglottitis,yes)

bacterial_meningitis <- 0.525 -- finding(otitis_media_signs,yes)

bacterial_meningitis <- 0.525 -- finding(pent_headtrauma,yes)

finding(traumadate,unknown)

bacterial_meningitis <- 0.525 -- finding(pent_headtrauma,yes)

lessthan(traumadate,A,60)

bacterial_meningitis <- 0.35 -- finding(pent_headtrauma,yes)

greater(traumadate,A,59)

bacterial_meningitis <- 0.63 -- finding(headtraumasigns,yes)

95

finding(pent_headtrauma,no)

finding(traumadate,unknown)

bacterial_meningitis <- 0.63 -- finding(headtraumasigns,yes)

finding(pent_headtrauma,no)

lessthan(traumadate,A,60)

bacterial_meningitis <-0.525 -- finding(headtraumasigns,yes)

finding(pent_headtrauma,no)

greater(traumadate,A,59)

fungal_meningitis <- 0.30 -- finding(cocci_endemic,yes)

bacterial_meningitis <- 0.35 -- finding(burned,yes)

B.4 The Soybean Diagnosis Rule-Base

B.4.1 The Original Rules

The Significant conditions

diaporthe_stem_canker <- (date ?d)(>= ?d 8)(<= ?d 9)(high_precip)

(stem_cankers above_sec_nde)

(fruiting_bodies present)(fruit_pods norm)

charcoal_rot <- (date ?d)(>= ?d 7)(<= ?d 8)(low_precip)(high_temp)

(plant_growth abnorm)(leaves abnorm)(stem abnorm)

(sclerotia present)(roots rotted)(int_discolor black)

rhizoctonia_root_rot <- (date ?d)(>= ?d 5)(<= ?d 6)

(plant_stand <_normal)(temp <_norm)

(precip <_norm)(leaves abnorm)(stem abnorm)

(canker_lesion brown)

(roots rotted)(hail_canker_relation)

phytophthora_root_rot <- (date ?d)(>= ?d 4)(<= ?d 8)

(plant_stand <_normal)(date_precip_relation1)

(date_temp_relation1)

(area_damaged low_areas)

(plant_growth abnorm)

(leaves abnorm)(stem abnorm)

(stem_cankers above_soil)

(date_canker_relation)

(roots rotted)

brown_stem_rot <- (date ?d)(>= ?d 7)(<= ?d 9)(precip >_norm)

(low_temp)(leaves abnorm)(stem abnorm)

(int_discolor brown)(lodging yes)

powdery_mildew <- (leaves abnorm)(leaf_mild upper_surf)

downy_mildew <- (date ?d)(>= ?d 6)(<= ?d 8)(high_precip)

(area_damaged whole_field)

(leaves abnorm) (leafspots-halo no_yellow_halos)

(leaf_mild lower_surf)

(date_seed_condition)(mold_growth present)

brown_spot <- (leaves abnorm)(leafspots-halos)

(leafspots-marg no_w-s_marg)(leafspot_size >_1/8)

bacterial_blight <- (date_condition)(date_precip_relation2)

(date_temp_relation2)(leaves abnorm)

96

(leafspots-halo yellow_halos)

(leafspots-marg w-s_marg)(leafspot_size <_1/8)

(leaf_shread present)

bacterial_pustule <- (date ?d)(>= ?d 6)(<= ?d 8)(high_precip)

(leaves abnorm)

(leafspots-halo no_yellow_halos)

(leafspots-marg no_w-s_marg)(leafspot_size <_1/8)

(leaf_shread present)

purple_seed_stain <- (date ?d)(>= ?d 9)(<= ?d 10)(seed abnorm)

(seed_discolor present)(seed_size <_norm)

anthracnose <- (date ?d)(>= ?d 8)(<= ?d 10)(high_precip)(stem abnorm)

(canker_lesion brown)(fruiting_bodies present)

(date_seed_condition)(fruit_spot_condition)

phyllosticta_leaf_spot <- (date ?d)(>= ?d 4)(<= ?d 7)(high_precip)

(leaves abnorm)

(leafspots-halo no_yellow_halos)

(leafspots-marg no_w-s_marg)

(leafspot_size >_1/8)(leaf_shread present)

alternaria_leaf_spot <- (date ?d)(>= ?d 7)(<= ?d 10)(leaves abnorm)

(leafspots-halo no_yellow_halos)

(leafspots-marg no_w-s_marg)

(leafspot_size >_1/8)(leaf_shread absent)

frog_eye_leaf_spot <- (date ?d)(>= ?d 7)(<= ?d 9)(high_precip)

(leaves abnorm)(leafspots-halo no_yellow_halos)

(leafspots-marg no_w-s_marg)

(leafspot_size >_1/8)

The Confirmatory Conditions

diaporthe_stem_canker <- (>= temp norm)(canker_lesion brown)

(crop_hist_er1)

charcoal_rot <- (area_damaged upper_areas)(severity severe)

(seed_size <_norm)(crop_hist_er2)

rhizoctonia_root_rot <- (fruiting_bodies absent)

(external_decay firm_and_dry)(mycelium absent)

phytophthora_root_rot <- (>= crop_hist same_lst_two_yrs)

brown_stem_rot <- (seed_size <_norm)(crop_hist_er3)

powdery_mildew <- (>= date 8)(<= date 9)

brown_spot <- (dates1)(>= precip norm)

bacterial_pustule <- (>= crop_hist same_lst_yr)

purple_seed_stain <- (>= date 8)(<= date 9)(>= precip norm)

(leaves abnorm)

anthracnose <- (area_damaged whole_field))

phyllosticta_leaf_spot <- (damage_date_vs_temp)(date_vs_temp3)

97

alternaria_leaf_spot <- (date_vs_pods)(pods_vs_spots)(seed_vs_color)

frog_eye_leaf_spot) <- (date_vs_spots)(stem_cankers above_sec_nde)

(canker_lesion tan)(fruiting_bodies absent)

Definitional Conditions

high_precip <- (precip norm)

high_precip <- (precip >_norm)

low_precip <- (precip norm)

low_precip <- (precip <_norm)

high_temp <- (temp norm)

high_temp <- (temp >_norm)

low_temp <- (temp norm)

low_temp <- (temp <_norm)

hail_canker_relation <- (hail no) (stem_cankers below_soil)

hail_canker_relation <- (hail no) (stem_cankers above_soil)

hail_canker_relation <- (hail yes) (stem_cankers above_sec_nde)

date_precip_relation1 <- (date ?d) (>= ?d 4) (<= ?d 6) (precip norm)

date_precip_relation1 <- (date ?d) (>= ?d 7) (<= ?d 8) (precip >_norm)

date_precip_relation1 <- (date ?d) (> ?d 8)

date_temp_relation1 <- (date 4) (temp >_norm)

date_temp_relation1 <- (date ?d) (>= ?d 5) (<= ?d 8) (temp norm)

date_temp_relation1 <- (date ?d) (> ?d 8)

date_canker_relation <- (date ?d) (< ?d 5)

date_canker_relation <- (date ?d) (> ?d 8)

date_canker_relation <- (canker_lesion dk_brown-blk)

date_seed_condition <- (date ?d) (< ?d 9)

date_seed_condition <- (seed abnorm)

leafspots-halos <- (leafspots-halos no_yellow_halos)

leafspots-halos <- (leafspots-halos yellow_halos)

date_condition <- (date ?d) (>= ?d 4) (<= ?d 6)

date_condition <- (date ?d) (>= ?d 8) (<= ?d 9)

date_precip_relation2 <- (date ?d) (>= ?d 4) (<= ?d 6) (high_precip)

date_precip_relation2 <- (date ?d) (>= ?d 8) (<= ?d 9) (precip >_norm)

date_precip_relation2 <- (date 7)

date_precip_relation2 <- (date 10)

date_temp_relation2 <- (date ?d) (< ?d 8) (temp norm)

date_temp_relation2 <- (date ?d) (> ?d 8) (temp norm)

date_temp_relation2 <- (date 8) (temp <_norm)

fruit_spot_condition <- (fruit_spots absent)

fruit_spot_condition <- (fruit_spots brown_w/blk_specks)

crop_hist_relation1 <- (crop_hist same_lst_sev_yrs)

crop_hist_relation1 <- (crop_hist same_lst_two_yrs)

crop_hist_relation2 <- (crop_hist_relation1)

crop_hist_relation2 <- (crop_hist same_lst_yr)

damage_date_condition <- (area_damaged scattered)

damage_date_condition <- (area_damaged low_areas)

damage_date_condition <- (area_damaged upper_areas)

damage_date_condition <- (date 6)

damage_date_condition <- (temp norm)

date_temp_relation3 <- (date ?d) (< ?d 6)

date_temp_relation3 <- (date ?d) (> ?d 6)

date_temp_relation3 <- (temp <_norm)

date_pods_condition <- (date ?d) (< ?d 9)

date_pods_condition <- (fruit_pods diseased)

pods_spots_condition <- (fruit_pods norm)

pods_spots_condition <- (fruit_pods few_present)

pods_spots_condition <- (fruit_pods dna)

pods_spots_condition <- (fruit_spots colored)

seed_color_condition <- (seed norm)

98

seed_color_condition <- (seed_discolor present)

date_spots_condition <- (date ?d) (< ?d 9)

date_spots_condition <- (date ?d) (> ?d 9)

date_spots_condition <- (fruit_spots colored)

B.4.2 The Initial Certainty-Factor Rule-Base

diaporthe_stem_canker <- 0.37-- (>= date 8)(<= date 9)

diaporthe_stem_canker <- 0.37-- (precip_ep)

diaporthe_stem_canker <- 0.37-- (stem_cankers above_sec_nde)

diaporthe_stem_canker <- 0.37-- (fruiting_bodies present)

diaporthe_stem_canker <- 0.37-- (fruit_pods norm)

diaporthe_stem_canker <- 0.37-- (>= temp norm)

diaporthe_stem_canker <- 0.37-- (canker_lesion brown)

diaporthe_stem_canker <- 0.035-- (crop_hist_er1)

charcoal_rot <- 0.23-- (>= date 7)(<= date 8)

charcoal_rot <- 0.23-- (<= precip norm)

charcoal_rot <- 0.23-- (>= temp norm)

charcoal_rot <- 0.23-- (plant_growth abnorm)

charcoal_rot <- 0.23-- (leaves abnorm)

charcoal_rot <- 0.23-- (stem abnorm)

charcoal_rot <- 0.23-- (sclerotia present)

charcoal_rot <- 0.23-- (roots rotted)

charcoal_rot <- 0.23-- (int_discolor black)

charcoal_rot <- 0.026-- (area_damaged upper_areas)

charcoal_rot <- 0.026-- (severity severe)

charcoal_rot <- 0.026-- (seed_size <_norm)

charcoal_rot <- 0.026-- (crop_hist_er2)

rhizoctonia_root_rot <- 0.23-- (>= date 5)(<= date 6))

rhizoctonia_root_rot <- 0.23-- (plant_stand <_norm)

rhizoctonia_root_rot <- 0.23-- (temp <_norm)

rhizoctonia_root_rot <- 0.23-- (precip <_norm)

rhizoctonia_root_rot <- 0.23-- (leaves abnorm)

rhizoctonia_root_rot <- 0.23-- (stem abnorm)

rhizoctonia_root_rot <- 0.23-- (canker_lesion brown)

rhizoctonia_root_rot <- 0.23-- (roots rotted)

rhizoctonia_root_rot <- 0.23-- (hail_vs_cankers)

rhizoctonia_root_rot <- 0.035-- (fruiting_bodies absent)

rhizoctonia_root_rot <- 0.035-- (external_decay firm_and_dry)

rhizoctonia_root_rot <- 0.035-- (mycelium absent)

phytophthora_root_rot <- 0.19-- (date_et)

phytophthora_root_rot <- 0.19-- (plant_stand <_norm)

phytophthora_root_rot <- 0.19-- (date_vs_precip1)

phytophthora_root_rot <- 0.19-- (date_vs_temp1)

phytophthora_root_rot <- 0.19-- (area_damaged low_areas)

phytophthora_root_rot <- 0.19-- (plant_growth abnorm)

phytophthora_root_rot <- 0.19-- (leaves abnorm)

phytophthora_root_rot <- 0.19-- (stem abnorm)

phytophthora_root_rot <- 0.19-- (stem_cankers above_soil)

phytophthora_root_rot <- 0.19-- (date_vs_cankers)

phytophthora_root_rot <- 0.19-- (roots rotted)

phytophthora_root_rot <- 0.10-- (>= crop_hist same_lst_two_yrs)

brown_stem_rot <- 0.28-- (>= date 7)(<= date 9)

brown_stem_rot <- 0.28-- (precip >_norm)

brown_stem_rot <- 0.28-- (<= temp norm)

99

brown_stem_rot <- 0.28-- (leaves abnorm)

brown_stem_rot <- 0.28-- (stem abnorm)

brown_stem_rot <- 0.28-- (int_discolor brown)

brown_stem_rot <- 0.28-- (lodging yes)

brown_stem_rot <- 0.05-- (seed_size <_norm)

brown_stem_rot <- 0.05-- (crop_hist_er3)

powdery_mildew <- 0.68-- (leaves abnorm)

powdery_mildew <- 0.68-- (leaf_mild upper_surf)

powdery_mildew <- 0.10-- (>= date 8)(<= date 9)

downy_mildew <-0.25-- (>= date 6)(<= date 8)

downy_mildew <-0.25-- (>= precip norm)

downy_mildew <-0.25-- (area_damaged whole_field)

downy_mildew <-0.25-- (leaves abnorm)

downy_mildew <-0.25-- (leafspots-halo no_yellow_halos)

downy_mildew <-0.25-- (leaf_mild lower_surf)

downy_mildew <-0.25-- (date_vs_seed)

downy_mildew <-0.25-- (mold_growth present)

brown_spot <- 0.44-- (leaves abnorm)

brown_spot <- 0.44-- (leafspots-halos)

brown_spot <- 0.44-- (leafspots-marg no_w-s_marg)

brown_spot <- 0.44-- (leafspot_size >_1/8)

brown_spot <- 0.05-- (dates1)

brown_spot <- 0.05-- (>= precip norm)

bacterial_blight <- 0.25-- (dates2)

bacterial_blight <- 0.25-- (date_vs_precip2)

bacterial_blight <- 0.25-- (date_vs_temp2)

bacterial_blight <- 0.25-- (leaves abnorm)

bacterial_blight <- 0.25-- (leafspots-halo yellow-halos)

bacterial_blight <- 0.25-- (leafspots-marg w-s_marg)

bacterial_blight <- 0.25-- (leafspot_size <_1/8)

bacterial_blight <- 0.25-- (leaf_shred present)

bacterial_pustule <- 0.28-- (>= date 6)(<= date 8)

bacterial_pustule <- 0.28-- (>= precip norm)

bacterial_pustule <- 0.28-- (leaves abnorm)

bacterial_pustule <- 0.28-- (leafspots-halo no_yellow_halos)

bacterial_pustule <- 0.28-- (leafspots-marg no_w-s_marg)

bacterial_pustule <- 0.28-- (leafspot_size <_1/8)

bacterial_pustule <- 0.28-- (leaf_shread present)

bacterial_pustule <- 0.10-- (>= crop_hist same_lst_yr)

purple_seed_stain <- 0.44-- (>= date 9)(<= date 10)

purple_seed_stain <- 0.44-- (seed abnorm)

purple_seed_stain <- 0.44-- (seed_discolor present)

purple_seed_stain <- 0.44-- (seed_size <_norm)

purple_seed_stain <- 0.035-- (>= date 8)(<= date 9)

purple_seed_stain <- 0.035-- (>= precip norm)

purple_seed_stain <- 0.035-- (leaves abnorm)

anthracnose <- 0.28-- (>= date 8)(<= date 10)

anthracnose <- 0.28-- (>= precip norm)

anthracnose <- 0.28-- (stem abnorm)

anthracnose <- 0.28-- (canker_lesion brown)

anthracnose <- 0.28-- (fruiting_bodies present)

anthracnose <- 0.28-- (date_vs_seed)

anthracnose <- 0.28-- (fruit_spots absent)

anthracnose <- 0.28-- (fruit_spots brn_w/blk_specks)

anthracnose <- 0.10-- (area_damaged whole_field)

100

phyllosticta_leaf_spot <- 0.28-- (>= date 4)(<= date 7)

phyllosticta_leaf_spot <- 0.28-- (>= precip norm)

phyllosticta_leaf_spot <- 0.28-- (leaves abnorm)

phyllosticta_leaf_spot <- 0.28-- (leafspots-halo no_yellow_halos)

phyllosticta_leaf_spot <- 0.28-- (leafspots-marg no_w-s_marg)

phyllosticta_leaf_spot <- 0.28-- (leafspot_size >_1/8)

phyllosticta_leaf_spot <- 0.28-- (leaf_shread present)

phyllosticta_leaf_spot <- 0.10-- (damage_date_vs_temp)

phyllosticta_leaf_spot <- 0.10-- (date_vs_temp3)

alternaria_leaf_spot <- 0.32-- (>= date 7)(<= date 10)

alternaria_leaf_spot <- 0.32-- (leaves abnorm)

alternaria_leaf_spot <- 0.32-- (leafspots-halo no_yellow_halos)

alternaria_leaf_spot <- 0.32-- (leafspots-marg no_w-s_marg)

alternaria_leaf_spot <- 0.32-- (leafspot_size >_1/8)

alternaria_leaf_spot <- 0.32-- (leaf_shread absent)

alternaria_leaf_spot <- 0.035-- (date_vs_pods)

alternaria_leaf_spot <- 0.035-- (pods_vs_spots)

alternaria_leaf_spot <- 0.035-- (seed_vs_color)

frog_eye_leaf_spot <- 0.32-- (>= date 7)(<= date 9)

frog_eye_leaf_spot <- 0.32-- (>= precip norm)

frog_eye_leaf_spot <- 0.32-- (leaves abnorm)

frog_eye_leaf_spot <- 0.32-- (leafspots-halo no_yellow_halos)

frog_eye_leaf_spot <- 0.32-- (leafspots-marg no_w-s_marg)

frog_eye_leaf_spot <- 0.32-- (leafspot_size >_1/8)

frog_eye_leaf_spot <- 0.026-- (date_vs_spots)

frog_eye_leaf_spot <- 0.026-- (stem_cankers above_sec_nde)

frog_eye_leaf_spot <- 0.026-- (canker_lesion tan)

frog_eye_leaf_spot <- 0.026-- (fruiting_bodies absent)

precip_ep <- 1.0-- (precip >_norm)

precip_ep <- 0.7-- (precip norm)

crop_hist_er1 <- 1.0-- (crop_hist same_lst_sev_yrs)

crop_hist_er1 <- 0.8-- (crop_hist same_lst_two_yrs)

crop_hist_er1 <- 0.7-- (crop_hist same_lst_yr)

crop_hist_er1 <- 0.2-- (crop_hist diff_lst_yr)

crop_hist_er2 <- 1.0-- (crop_hist same_lst_sev_yrs)

crop_hist_er2 <- 1.0-- (crop_hist same_lst_two_yrs)

crop_hist_er2 <- 0.6-- (crop_hist same_lst_yr)

crop_hist_er2 <- 0.2-- (crop_hist diff_lst_yr)

hail_vs_cankers <- 1.0-- (hail no)(stem_cankers below_soil)

hail_vs_cankers <- 1.0-- (hail no)(stem_cankers above_soil)

hail_vs_cankers <- 1.0-- (hail no)(stem_cankers above_sec_nde)

date_et <- 1.0-- (>= date 5)(<= date 7)

date_et <- 0.7-- (= date 4)

date_et <- 0.7-- (= date 8)

date_vs_precip1 <- 1.0-- (>= date 4)(<= date 6)(precip norm)

date_vs_precip1 <- 1.0-- (>= date 7)(<= date 8)(precip >_norm)

date_vs_precip1 <- 1.0-- (> date 8)

date_vs_temp1 <- 1.0-- (= date 4)(temp >_norm)

date_vs_temp1 <- 1.0-- (>= date 5)(<= date 8)(temp norm)

date_vs_temp1 <- 1.0-- (> date 4)

date_vs_cankers <- 1.0-- (>= date 5)(<= date 8)

101

(canker_lesion dk_brn-blk)

date_vs_cankers <- 1.0-- (< date 5)

date_vs_cankers <- 1.0-- (> date 8)

crop_hist_er3 <- 1.0-- (crop_hist same_lst_sev_yrs)

crop_hist_er3 <- 1.0-- (crop_hist same_lst_two_yrs)

crop_hist_er3 <- 0.5-- (crop_hist same_lst_yr)

crop_hist_er3 <- 0.1-- (crop_hist diff_lst_yr)

date_vs_seed <- 1.0-- (>= date 9)(<= date 10)(seed abnorm)

date_vs_seed <- 1.0-- (< date 9)

leafspots-halos <- 1.0-- (leafspots-halo yellow_halos)

leafspots-halos <- 1.0-- (leafspots-halo no_yellow_halos)

dates1 <- 1.0-- (= date 5)

dates1 <- 1.0-- (>= date 8)(<= date 9)

dates2 <- 1.0-- (>= date 4)(<= date 6)

dates2 <- 1.0-- (>= date 8)(<= date 9)

date_vs_precip2 <- 1.0-- (>= date 4)(<= date 6)(>= precip norm)

date_vs_precip2 <- 1.0-- (>= date 8)(<= date 9)(precip >_norm)

date_vs_precip2 <- 1.0-- (= date 7)

date_vs_precip2 <- 1.0-- (> date 9)

date_vs_temp2 <- 1.0-- (/= date 8)(temp norm)

date_vs_temp2 <- 1.0-- (= date 8)(temp <_norm)

damage_date_vs_temp <- 1.0-- (area_damaged whole_field)

(/= date 6)(temp norm)

damage_date_vs_temp <- 1.0-- (/= area_damaged whole_field)

damage_date_vs_temp <- 1.0-- (= date 6)

date_vs_temp3 <- 1.0-- (= date 6)(temp <_norm)

date_vs_temp3 <- 1.0-- (/= date 6)

date_vs_pods <- 1.0-- (>= date 9)(<= date 10)(fruit_pods diseased)

date_vs_pods <- 1.0-- (< date 9)

pods_vs_spots <- 1.0-- (fruit_pods diseased)(fruit_spots colored)

pods_vs_spots <- 1.0-- (/= fruit_pods diseased)

seed_vs_color <- 1.0-- (seed abnorm)(seed_discolor present)

seed_vs_color <- 1.0-- (seed norm)

date_vs_spots <- 1.0-- (date 9)(fruit_spots colored)

date_vs_spots <- 1.0-- (/= date 9)

B.4.3 A Revised Certainty-Factor Rule-Base

diaporthe_stem_canker <- 0.20-- (= fruit_spots dna)

diaporthe_stem_canker <- 0.17-- (>= date 8)(<= date 9)

diaporthe_stem_canker <- 0.24-- (precip_ep)

diaporthe_stem_canker <- 0.25-- (stem_cankers above_sec_nde)

diaporthe_stem_canker <- 0.24-- (fruiting_bodies present)

diaporthe_stem_canker <- 0.24-- (fruit_pods norm)

diaporthe_stem_canker <- 0.04-- (>= temp norm)

diaporthe_stem_canker <- -0.03-- (canker_lesion brown)

charcoal_rot <- 0.22-- (>= date 7)(<= date 8)

102

charcoal_rot <- 0.17-- (<= precip norm)

charcoal_rot <- 0.17-- (>= temp norm)

charcoal_rot <- 0.17-- (plant_growth abnorm)

charcoal_rot <- 0.23-- (leaves abnorm)

charcoal_rot <- 0.17-- (stem abnorm)

charcoal_rot <- 0.23-- (sclerotia present)

charcoal_rot <- 0.23-- (roots rotted)

charcoal_rot <- 0.23-- (int_discolor black)

charcoal_rot <- 0.026-- (area_damaged upper_areas)

charcoal_rot <- 0.026-- (severity severe)

charcoal_rot <- 0.026-- (seed_size <_norm)

charcoal_rot <- -0.02-- (crop_hist_er2)

rhizoctonia_root_rot <- 0.25-- (>= date 5)(<= date 6))

rhizoctonia_root_rot <- 0.24-- (plant_stand <_norm)

rhizoctonia_root_rot <- 0.29-- (temp <_norm)

rhizoctonia_root_rot <- 0.20-- (precip <_norm)

rhizoctonia_root_rot <- 0.16-- (leaves abnorm)

rhizoctonia_root_rot <- 0.24-- (stem abnorm)

rhizoctonia_root_rot <- 0.26-- (canker_lesion brown)

rhizoctonia_root_rot <- 0.23-- (roots rotted)

rhizoctonia_root_rot <- 0.18-- (hail_vs_cankers)

rhizoctonia_root_rot <- 0.084-- (fruiting_bodies absent)

rhizoctonia_root_rot <- 0.104-- (external_decay firm_and_dry)

rhizoctonia_root_rot <- -0.02-- (mycelium absent)

phytophthora_root_rot <- 0.19-- (date_et)

phytophthora_root_rot <- 0.20-- (plant_stand <_norm)

phytophthora_root_rot <- 0.14-- (date_vs_precip1)

phytophthora_root_rot <- 0.14-- (date_vs_temp1)

phytophthora_root_rot <- 0.17-- (area_damaged low_areas)

phytophthora_root_rot <- 0.17-- (plant_growth abnorm)

phytophthora_root_rot <- 0.17-- (leaves abnorm)

phytophthora_root_rot <- 0.17-- (stem abnorm)

phytophthora_root_rot <- 0.19-- (stem_cankers above_soil)

phytophthora_root_rot <- 0.14-- (date_vs_cankers)

phytophthora_root_rot <- 0.19-- (roots rotted)

phytophthora_root_rot <- 0.05-- (>= crop_hist same_lst_two_yrs)

brown_stem_rot <- 0.28-- (>= date 7)(<= date 9)

brown_stem_rot <- 0.06-- (precip >_norm)

brown_stem_rot <- 0.23-- (<= temp norm)

brown_stem_rot <- 0.24-- (leaves abnorm)

brown_stem_rot <- 0.38-- (stem abnorm)

brown_stem_rot <- 0.88-- (int_discolor brown)

brown_stem_rot <- 0.09-- (lodging yes)

brown_stem_rot <- 0.05-- (seed_size <_norm)

brown_stem_rot <- -0.069-- (crop_hist_er3)

powdery_mildew <- 0.10-- (<= precip norm)

powdery_mildew <- -0.10-- (precip >_norm)

powdery_mildew <- -0.10-- (precip_ep)

powdery_mildew <- 0.51-- (leaves abnorm)

powdery_mildew <- 0.70-- (leaf_mild upper_surf)

powdery_mildew <- 0.09-- (>= date 8)(<= date 9)

downy_mildew <- -0.10-- (seed_vs_color)

downy_mildew <- 0.10-- (seed abnorm)

downy_mildew <- 0.15-- (>= date 6)(<= date 8)

downy_mildew <- 0.23-- (>= precip norm)

downy_mildew <- 0.05-- (area_damaged whole_field)

downy_mildew <- 0.17-- (leaves abnorm)

103

downy_mildew <- 0.03-- (leafspots-halo no_yellow_halos)

downy_mildew <- 0.49-- (leaf_mild lower_surf)

downy_mildew <- 0.18-- (date_vs_seed)

downy_mildew <- 0.49-- (mold_growth present)

brown_spot <- 0.42-- (new-intermediate-term-for-br_s)

brown_spot <- 0.10-- (canker_lesion brown)

brown_spot <- -0.079-- (fruiting_bodies absent)

brown_spot <- -0.070-- (leaf_shread absent)

brown_spot <- -0.059-- (hail no)

brown_spot <- -0.026-- (<= precip norm)

brown_spot <- 0.057-- (seed_vs_color)

brown_spot <- -0.026-- (precip <_norm)

brown_spot <- 0.07-- (date_vs_temp2)

brown_spot <- -0.10-- (precip norm)

brown_spot <- 0.14-- (precip >_norm)

brown_spot <- 0.14-- (precip_ep)

brown_spot <- 0.13-- (leaf_shread present)

brown_spot <- -0.022-- (= severity minor)

brown_spot <- 0.057-- (fruit_spots absent)

brown_spot <- -0.022-- (< severity pot_severe)

brown_spot <- 0.40-- (fruiting_bodies present)

brown_spot <- 0.193-- (fruit_pods norm)

brown_spot <- 0.46-- (leaves abnorm)

brown_spot <- 0.46-- (leafspots-halos)

brown_spot <- 0.29-- (leafspots-marg no_w-s_marg)

brown_spot <- 0.59-- (leafspot_size >_1/8)

brown_spot <- 0.53-- (dates1)

brown_spot <- -0.89-- (>= precip norm)

new-intermediate-term-for-br_s <- 0.10-- (canker_lesion brown)

new-intermediate-term-for-br_s <- -0.10-- (stem_cankers above_sec_nde)

new-intermediate-term-for-br_s <- 0.10-- (date 9)

new-intermediate-term-for-br_s <- -0.10-- (fruiting_bodies absent)

new-intermediate-term-for-br_s <- -0.10-- (/= date 6)

new-intermediate-term-for-br_s <- 0.10-- (stem_cankers absent)

new-intermediate-term-for-br_s <- 0.10-- (fruiting_bodies present)

new-intermediate-term-for-br_s <- 0.10-- (area_damaged whole_filed)

(/= date 6)(temp norm)

new-intermediate-term-for-br_s <- -0.28-- (date_vs_temp3)

new-intermediate-term-for-br_s <- 0.38-- (date 6)

new-intermediate-term-for-br_s <- -0.10--

(/= area_damaged whole_field)

new-intermediate-term-for-br_s <- 0.91-- (area_damaged whole_field)

bacterial_blight <- 0.22-- (dates2)

bacterial_blight <- 0.26-- (date_vs_precip2)

bacterial_blight <- 0.21-- (date_vs_temp2)

bacterial_blight <- 0.21-- (leaves abnorm)

bacterial_blight <- 0.20-- (leafspots-halo yellow-halos)

bacterial_blight <- 0.25-- (leafspots-marg w-s_marg)

bacterial_blight <- 0.28-- (leafspot_size <_1/8)

bacterial_blight <- 0.23-- (leaf_shred present)

bacterial_pustule <- 0.10-- (leafspots-halo yellow_halos)

bacterial_pustule <- 0.25-- (>= date 6)(<= date 8)

bacterial_pustule <- 0.24-- (>= precip norm)

bacterial_pustule <- 0.24-- (leaves abnorm)

bacterial_pustule <- 0.15-- (leafspots-halo no_yellow_halos)

bacterial_pustule <- 0.38-- (leafspots-marg no_w-s_marg)

bacterial_pustule <- 0.32-- (leafspot_size <_1/8)

bacterial_pustule <- 0.21-- (leaf_shread present)

104

bacterial_pustule <- 0.045-- (>= crop_hist same_lst_yr)

purple_seed_stain <- -0.10-- (shriveling present)

purple_seed_stain <- 0.10-- (canker_lesion tan)

purple_seed_stain <- 0.10-- (stem_cankers absent)

purple_seed_stain <- -0.10-- (leafspot_size >_1/8)

purple_seed_stain <- 0.52-- (>= date 9)(<= date 10)

purple_seed_stain <- 0.48-- (seed abnorm)

purple_seed_stain <- 0.48-- (seed_discolor present)

purple_seed_stain <- 0.01-- (seed_size <_norm)

purple_seed_stain <- 0.214-- (>= date 8)(<= date 9)

purple_seed_stain <- 0.065-- (>= precip norm)

purple_seed_stain <- 0.065-- (leaves abnorm)

anthracnose <- -0.10-- (canker_lesion brown)

anthracnose <- 0.10-- (fruiting_bodies absent)

anthracnose <- 0.10-- (leaf_shread absent)

anthracnose <- 0.10-- (shriveling present)

anthracnose <- -0.10-- (canker_lesion tan)

anthracnose <- -0.10-- (leaf_shread present)

anthracnose <- -0.10-- (stem_cankers absent)

anthracnose <- -0.10-- (fruiting_bodies present)

anthracnose <- -0.10-- (fruit_spots dna)

anthracnose <- -0.10-- (fruit_pods norm)

anthracnose <- 0.28-- (>= date 8)(<= date 10)

anthracnose <- 0.28-- (>= precip norm)

anthracnose <- 0.28-- (stem abnorm)

anthracnose <- 0.28-- (canker_lesion brown)

anthracnose <- 0.28-- (fruiting_bodies present)

anthracnose <- 0.28-- (date_vs_seed)

anthracnose <- 0.28-- (fruit_spots absent)

anthracnose <- 0.28-- (fruit_spots brn_w/blk_specks)

anthracnose <- 0.10-- (area_damaged whole_field)

phyllosticta_leaf_spot <- 0.56 -- (new-intermediate-term-for-pls)

phyllosticta_leaf_spot <- 0.10-- (precip <_norm)

phyllosticta_leaf_spot <- -0.10-- (precip >_norm)

phyllosticta_leaf_spot <- -0.10-- (leafspots-halo yellow_halos)

phyllosticta_leaf_spot <- -0.10-- (precip_ep)

phyllosticta_leaf_spot <- 0.10-- (severity minor)

phyllosticta_leaf_spot <- -0.10-- (fruit_spots absent)

phyllosticta_leaf_spot <- 0.10-- (< severity pot_severe)

phyllosticta_leaf_spot <- 0.17-- (<= precip_norm)

phyllosticta_leaf_spot <- 0.28-- (>= date 4)(<= date 7)

phyllosticta_leaf_spot <- -0.10-- (>= precip norm)

phyllosticta_leaf_spot <- 0.25-- (leaves abnorm)

phyllosticta_leaf_spot <- 0.25-- (leafspots-halo no_yellow_halos)

phyllosticta_leaf_spot <- 0.28-- (leafspots-marg no_w-s_marg)

phyllosticta_leaf_spot <- 0.25-- (leafspot_size >_1/8)

phyllosticta_leaf_spot <- 0.27-- (leaf_shread present)

phyllosticta_leaf_spot <- 0.04-- (damage_date_vs_temp)

phyllosticta_leaf_spot <- 0.077-- (date_vs_temp3)

new_intermediate-term-for-pls <- 0.100-- (crop_hist same_lst_two_yrs)

new_intermediate-term-for-pls <- 0.100-- (<= precip norm)

new_intermediate-term-for-pls <- -0.100-- (precip >_norm)

new_intermediate-term-for-pls <- 0.100-- (date 7)

new_intermediate-term-for-pls <- -0.100-- (precip_ep)

new_intermediate-term-for-pls <- 0.100-- (area_damaged scattered))

new_intermediate-term-for-pls <- -0.100-- (>= precip norm)

new_intermediate-term-for-pls <- 0.100-- (precip <_norm)

new_intermediate-term-for-pls <- 0.100-- (hail no)

105

new_intermediate-term-for-pls <- -0.100-- (hail yes)

alternaria_leaf_spot <- -0.10-- (date_vs_temp2)

alternaria_leaf_spot <- -0.10-- (germination <_80%)

alternaria_leaf_spot <- -0.10-- (leaf_shread present)

alternaria_leaf_spot <- -0.10-- (crop_hist same_lst_sev_yrs)

alternaria_leaf_spot <- 0.10-- (fruit_pods norm)

alternaria_leaf_spot <- -0.10-- (fruiting_bodies present)

alternaria_leaf_spot <- 0.084-- (stem_cankers absent)

alternaria_leaf_spot <- 0.25-- (precip >_norm)

alternaria_leaf_spot <- -0.10-- (stem_cankers above_sec_nde)

alternaria_leaf_spot <- 0.37-- (>= date 7)(<= date 10)

alternaria_leaf_spot <- 0.34-- (leaves abnorm)

alternaria_leaf_spot <- 0.34-- (leafspots-halo no_yellow_halos)

alternaria_leaf_spot <- 0.32-- (leafspots-marg no_w-s_marg)

alternaria_leaf_spot <- 0.34-- (leafspot_size >_1/8)

alternaria_leaf_spot <- -0.011-- (leaf_shread absent)

alternaria_leaf_spot <- -0.011-- (pods_vs_spots)

frog_eye_leaf_spot <- 0.10-- (precip_norm)

frog_eye_leaf_spot <- 0.10-- (germination <_80%)

frog_eye_leaf_spot <- 0.10-- (crop_hist same_lst_sev_yrs)

frog_eye_leaf_spot <- -0.10-- (fruit_spots absent)

frog_eye_leaf_spot <- -0.10-- (fruit_pods norm)

frog_eye_leaf_spot <- -0.10-- (fruiting_bodies present)

frog_eye_leaf_spot <- -0.10-- (<= precip norm)

frog_eye_leaf_spot <- -0.10-- (stem_cankers absent)

frog_eye_leaf_spot <- 0.10-- (leafspot_size >_1/8)

frog_eye_leaf_spot <- 0.32-- (>= date 7)(<= date 9)

frog_eye_leaf_spot <- 0.32-- (>= precip norm)

frog_eye_leaf_spot <- 0.32-- (leaves abnorm)

frog_eye_leaf_spot <- 0.32-- (leafspots-halo no_yellow_halos)

frog_eye_leaf_spot <- 0.32-- (leafspots-marg no_w-s_marg)

frog_eye_leaf_spot <- 0.32-- (leafspot_size >_1/8)

frog_eye_leaf_spot <- 0.026-- (date_vs_spots)

frog_eye_leaf_spot <- 0.13-- (stem_cankers above_sec_nde)

frog_eye_leaf_spot <- 0.026-- (canker_lesion tan)

frog_eye_leaf_spot <- 0.026-- (fruiting_bodies absent)

precip_ep <- 1.0-- (precip >_norm)

precip_ep <- 0.7-- (precip norm)

crop_hist_er2 <- 1.0-- (crop_hist same_lst_sev_yrs)

crop_hist_er2 <- 1.0-- (crop_hist same_lst_two_yrs)

crop_hist_er2 <- 0.6-- (crop_hist same_lst_yr)

crop_hist_er2 <- 0.2-- (crop_hist diff_lst_yr)

hail_vs_cankers <- 1.0-- (hail no)(stem_cankers below_soil)

hail_vs_cankers <- 1.0-- (hail no)(stem_cankers above_soil)

hail_vs_cankers <- 1.0-- (hail no)(stem_cankers above_sec_nde)

date_et <- 1.0-- (>= date 5)(<= date 7)

date_et <- 0.7-- (= date 4)

date_et <- 0.7-- (= date 8)

date_vs_precip1 <- 1.0-- (>= date 4)(<= date 6)(precip norm)

date_vs_precip1 <- 1.0-- (>= date 7)(<= date 8)(precip >_norm)

date_vs_precip1 <- 1.0-- (> date 8)

date_vs_temp1 <- 1.0-- (= date 4)(temp >_norm)

date_vs_temp1 <- 1.0-- (>= date 5)(<= date 8)(temp norm)

date_vs_temp1 <- 1.0-- (> date 4)

106

date_vs_cankers <- 1.0-- (>= date 5)(<= date 8)

(canker_lesion dk_brn-blk)

date_vs_cankers <- 1.0-- (< date 5)

date_vs_cankers <- 1.0-- (> date 8)

crop_hist_er3 <- 1.0-- (crop_hist same_lst_sev_yrs)

crop_hist_er3 <- 1.0-- (crop_hist same_lst_two_yrs)

crop_hist_er3 <- 0.5-- (crop_hist same_lst_yr)

crop_hist_er3 <- 0.1-- (crop_hist diff_lst_yr)

date_vs_seed <- 1.0-- (>= date 9)(<= date 10)(seed abnorm)

date_vs_seed <- 1.0-- (< date 9)

leafspots-halos <- 1.0-- (leafspots-halo yellow_halos)

leafspots-halos <- 1.0-- (leafspots-halo no_yellow_halos)

dates1 <- 1.0-- (= date 5)

dates1 <- 1.0-- (>= date 8)(<= date 9)

dates2 <- 1.0-- (>= date 4)(<= date 6)

dates2 <- 1.0-- (>= date 8)(<= date 9)

date_vs_precip2 <- 1.0-- (>= date 4)(<= date 6)(>= precip norm)

date_vs_precip2 <- 1.0-- (>= date 8)(<= date 9)(precip >_norm)

date_vs_precip2 <- 1.0-- (= date 7)

date_vs_precip2 <- 1.0-- (> date 9)

date_vs_temp2 <- 1.0-- (/= date 8)(temp norm)

date_vs_temp2 <- 1.0-- (= date 8)(temp <_norm)

damage_date_vs_temp <- 1.0-- (area_damaged whole_field)(/= date 6)

(temp norm)

damage_date_vs_temp <- 1.0-- (/= area_damaged whole_field)

damage_date_vs_temp <- 1.0-- (= date 6)

date_vs_temp3 <- 1.0-- (= date 6)(temp <_norm)

date_vs_temp3 <- 1.0-- (/= date 6)

pods_vs_spots <- 1.0-- (fruit_pods diseased)(fruit_spots colored)

pods_vs_spots <- 1.0-- (/= fruit_pods diseased)

seed_vs_color <- 1.0-- (seed abnorm)(seed_discolor present)

seed_vs_color <- 1.0-- (seed norm)

date_vs_spots <- 1.0-- (date 9)(fruit_spots colored)

date_vs_spots <- 1.0-- (/= date 9)

107

Bibliography

Alberts, B. (1988). Mapping and Sequencing the Human Genome. National Academy Press,

Washington, D.C.

Ba�es, P., & Mooney, R. J. (1992). Using theory revision to model students and acquire stereotyp-

ical errors. In Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,

pp. 617{622 Bloomington, IN.

Ba�es, P., & Mooney, R. (1993a). Symbolic revision of theories with M-of-N rules. In Proceedings of

the Thirteenth International Joint Conference on Arti�cial Intelligence, pp. 1135{1140 Chambery,

France.

Ba�es, P. T., & Mooney, R. J. (1993b). Extending theory re�nement to M-of-N rules. Informatica,

17, 387{397.

Berenji, H. (1990). Re�nement of approximate reasoning-based controllers by reinforcement learn-

ing. In Proceedings of the Eighth International Workshop on Machine Learning, pp. 475{479

Evanston, IL.

Buchanan, G., & Shortli�e, E. (Eds.). (1984). Rule-Based Expert Systems:The MYCIN Experi-

ments of the Stanford Heuristic Programming Project. Addison-Wesley Publishing Co., Reading,

MA.

Buntine, W. (1991). Theory re�nement on Bayesian networks. In Proceedings of the Conference

on Uncertainty in Arti�cial Intelligence, pp. 52{60.

Cain, T. (1991). The DUCTOR: A theory revision system for propositional domains. In Proceed-

ings of the Eighth International Workshop on Machine Learning, pp. 485{489 Evanston, IL.

Caruana, R. (1989). The automatic training of rule bases that use numerical uncertainty represen-

tations. In Proceedings of the Conference on Uncertainty in Arti�cial Intelligence, pp. 347{356.

Clark, K. (1978). Negation as failure. In Gallaire, H., & Minker, J. (Eds.), Logic and Data Bases.

Plenum Press, New York, NY.

Cohen, W. (1992). Compiling prior knowledge into an explicit bias. In Proceedings of the Ninth

International Conference on Machine Learning, pp. 102{110 Aberdeen, Scotland.

Connolly, D. (1993). Constructing hidden variables in bayesian networks via conceptual clustering.

In Proceedings of the Tenth International Conference on Machine Learning, pp. 65{72 Amherst,

MA.

108

Cooper, G. (1990). Computational complexity of probabilistic inference using Bayesian belief

networks (research note). Arti�cial Intelligence, 42, 393{405.

Cooper, G. G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic

networks from data. Machine Learning, 9, 309{347.

Davis, L. (1995). Genetic algorithms and trading. In Proceedings of the Sixth Annual Conference

on Advanced Technologies for Trading and Asset Management, pp. 79{88 New York, New York.

DeJong, G. F., & Mooney, R. J. (1986). Explanation-based learning: An alternative view. Machine

Learning, 1 (2), 145{176. Reprinted in Readings in Machine Learning, J. W. Shavlik and T. G.

Dietterich (eds.), Morgan Kaufman, San Mateo, CA, 1990.

Fahlman, S., & Lebiere, C. (1989). The cascade-correlation learning architecture. In Advances in

Neural Information Processing Systems, Vol. 2, pp. 524{532 San Mateo, CA. Morgan Kaufmann.

Feigenbaum, E., Buchanan, B., & Lederberg, J. (1971). On generality and problem solving: A

case study involving the dendral program. Machine Intelligence, 6, 165{190.

Feigenbaum, E., & McCorduck, P. (1983). The Fifth Generation: Arti�cial Intelligence and

Japan's Computer Challenge to the World. Addison-Wesley Publishing Co., Reading, MA.

Feigenbaum, E., McCorduck, P., & Nii, H. (1988). The Rise of the Expert Company. Times

BooksAcademic Press, New York, NY.

Frank-Kamenetskii, M. (1993). Unraveling DNA. VCH Publishers, Inc., New York, N.Y.

Frean, M. (1990). The Upstart algorithm: A method for constructing and training feedforward

neural networks. Neural Computation, 2, 198{209.

Fu, L.-M. (1989). Integration of neural heuristics into knowledge-based inference. Connection

Science, 1 (3), 325{339.

Fu, L., & Lacher, C. (Eds.). (1994). Proceedings of the International Symposium on Integrating

Knowledge and Neural Heuristics, 1994, Pensacola, FL.

Gallant, S. (1988). Connectionist expert systems. Communications of the Association for Com-

puting Machinery, 31, 152{169.

Ginsberg, A. (1988). Theory revision via prior operationalization. In Proceedings of the Seventh

National Conference on Arti�cial Intelligence, pp. 590{595 St. Paul, MN.

Ginsberg, A. (1990). Theory reduction, theory revision, and retranslation. In Proceedings of the

Eighth National Conference on Arti�cial Intelligence, pp. 777{782 Detroit, MI.

Heckerman, D. (1986). Probabilistic interpretations for Mycin's certainty factors. In Kanal,

L. N., & Lemmer, J. F. (Eds.), Uncertainty in Arti�cial Intelligence, pp. 167{196. North Holland,

Amsterdam.

Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings of the

Eighth Annual Conference of the Cognitive Science Society, pp. 1{12 Amherst, MA.

109

Kandel, A., & Langholz, G. (Eds.). (1992). Hybrid Architectures for Intelligent Systems. CRC

Press, Inc., Boca Raton, FL.

Kohavi, R., & John, G. (1995). Automatic parameter setting by minimizing estimated error.

In Proceedings of the Twelfth International Conference on Machine Learning, pp. 304{312 San

Francisco, CA. Morgan Kaufman.

Koppel, M., Feldman, R., & Segre, A. M. (1994a). Bias-driven revision of logical domain theories.

Journal of Arti�cial Intelligence Research, 1, 1{50.

Koppel, M., Segre, A., & Feldman, R. (1994b). Getting the most from awed theories. In

Proceedings of the Eleventh International Conference on Machine Learning, pp. 139{147 New

Brunswick, NJ.

Kornberg, A. (1974). DNA Synthesis. W.H. Freeman and Company, San Francisco, CA.

Lacher, R. (1992). Node error assignment in expert networks. In Kandel, A., & Langholz, G.

(Eds.), Hybrid Architectures for Intelligent Systems, pp. 29{48. CRC Press, Inc., Boca Raton, FL.

Lacher, R., Hruska, S., & Kuncicky, D. (1992). Back-propagation learning in expert networks.

IEEE Transaction on Neural Networks, 3 (1), 62{72.

Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. Com-

munications of the Association for Computing Machinery, 38 (11), 55{64.

Ling, X., & Valtorta, M. (1991). Revision of reduced theories. In Proceedings of the Eighth

International Workshop on Machine Learning, pp. 519{523 Evanston, IL.

Ma, Y., & Wilkins, D. C. (1991). Improving the performance of inconsistent knowledge bases via

combined optimization method. In Proceedings of the Eighth International Workshop on Machine

Learning, pp. 23{27 Evanston, IL.

Merz, C., Murphy, P. M., & Aha, D. W. (1996). Repository of machine learning databases

http://www.ics.uci.edu/~mlearn/mlrepository.html. Department of Information and Computer Sci-

ence, University of California, Irvine, CA.

Mezard, M., & Nadal, J. (1989). Learning in feedforward layered networks: The tiling algorithm.

Journal of Physics, A22 (12), 2191{2203.

Michalksi, R., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning

system AQ15 and its testing application to three medical domains. In Proceedings of the Fifth

National Conference on Arti�cial Intelligence, pp. 1041{1045 Philadelphia, PA.

Michalski, R. S., & Chilausky, S. (1980). Learning by being told and learning from examples: An

experimental comparison of the two methods of knowledge acquisition in the context of developing

an expert system for soybean disease diagnosis. Journal of Policy Analysis and Information

Systems, 4 (2), 126{161.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generalization:

A unifying view. Machine Learning, 1 (1), 47{80.

110

Mooney, R. J., & Ourston, D. (1991). A multistrategy approach to theory re�nement. In Proceed-

ings of the First International Workshop on Multistrategy Learning, pp. 115{130 Harper's Ferry,

W.Va.

Musick, R. C. (1994). Belief Network Induction. Ph.D. thesis, University of California at Berkeley.

Noordewier, M. O., Towell, G. G., & Shavlik, J. W. (1991). Training knowledge-based neural

networks to recognize genes in DNA sequences. In Advances in Neural Information Processing

Systems, Vol. 3 San Mateo, CA. Morgan Kaufman.

O'Neill, M., & Chiafari, F. (1989). Escherichia coli promoters. Journal of Biological Chemistry,

264, 5531{5534.

Opitz, D. W., & Shavlik, J. W. (1993). Heuristically expanding knowledge-based neural networks.

In Proceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence, pp.

512{517 Chamberry, France.

Ortega, J. (1995). On the informativeness of the dna promoter sequences domain theory. Journal

of Arti�cial Intelligence Research, 2, 361{367.

Ourston, D. (1991). Using Explanation-Based and Empirical Methods in Theory Revision. Ph.D.

thesis, University of Texas, Austin, TX. Also appears as Arti�cial Intelligence Laboratory Tech-

nical Report AI 91-164.

Ourston, D., & Mooney, R. (1990). Changing the rules: A comprehensive approach to theory

re�nement. In Proceedings of the Eighth National Conference on Arti�cial Intelligence, pp. 815{

820 Detroit, MI.

Ourston, D., & Mooney, R. J. (1994). Theory re�nement combining analytical and empirical

methods. Arti�cial Intelligence, 66, 311{344.

Pazzani, M., & Kibler, D. (1992). The utility of background knowledge in inductive learning.

Machine Learning, 9, 57{94.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, Inc., San Mateo,CA.

Portugal, F., & Cohen, J. (1977). A Century of DNA: A History of the Discovery of the Structure

and Function of the Genetic Substance. MIT Press, Cambridge, MA.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1 (1), 81{106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,CA.

Rada, R. (1985). Gradualness facilitates knowledge re�nement. IEEE transactions on Pattern

Analysis and Machine Intelligence, 7 (5).

Ramachandran, S. (1995). Re�nement of Bayesian networks by combining connectionist and

symbolic techniques. cs.utexas.edu FTP archive.

111

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465{471.

Rosen�eld, I., Zi�, E., & van Loon, B. (1983).DNA For Beginners. Writers and Readers Publishing

Cooperative Ltd., London.

Rumelhart, D. E., Hinton, G. E., & Williams, J. R. (1986). Learning internal representations

by error propagation. In Rumelhart, D. E., & McClelland, J. L. (Eds.), Parallel Distributed

Processing, Vol. I, pp. 318{362. MIT Press, Cambridge, MA.

Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM Journal of

Research and Development, pp. 211{229.

Schwalb, E. (1993). Compiling Bayesian networks into neural networks. In Proceedings of the

Tenth International Conference on Machine Learning, pp. 291{297 Amherst, MA.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton,

NJ.

Shafer, G., & Pearl, J. (Eds.). (1990). Readings in Uncertain Reasoning. Morgan Kaufmann, Inc.,

San Mateo,CA.

Shavlik, J. W., Mooney, R. J., & Towell, G. G. (1991). Symbolic and neural learning algorithms:

An experimental comparison. Machine Learning, 6, 111{143. Reprinted in Readings in Knowledge

Acquisition and Learning, B. G. Buchanan and D. C. Wilkins (eds.), Morgan Kaufman, San Mateo,

CA, 1993.

Shortli�e, E. (1976). Computer-Based Medical Consultations: MYCIN. American Elsevier Pub-

lishing Company, INC., New York, NY.

Shortli�e, E., & Buchanan, B. (1975). A model of inexact reasoning in medicine. Mathematical

Biosciences, 23, 351{379.

Swartout, W. (1981). Explaining and justifying in expert consulting programs. In Proceedings of

the Seventh International Joint Conference on Arti�cial Intelligence, pp. 203{208 Vancouver, BC.

Thompson, K., Langley, P., & Iba, W. (1991). Using background knowledge in concept formation.

In Proceedings of the Eighth International Workshop on Machine Learning, pp. 554{558 Evanston,

IL.

Towell, G., & Shavlik, J. (1991). Re�ning symbolic knowledge using neural networks. In Proceed-

ings of the First International Workshop on Multistrategy Learning, pp. 257{272 Harper's Ferry,

W.Va.

Towell, G., & Shavlik, J. (1992). Interpretation of arti�cial neural networks: Mapping knowledge-

based neural networks into rules. In Lippmann, R., Moody, J., & Touretzky, D. (Eds.), Advances

in Neural Information Processing Systems, Vol. 4. Morgan Kaufmann.

Towell, G. G., Shavlik, J. W., & Noordewier, M. O. (1990). Re�nement of approximate domain

theories by knowledge-based arti�cial neural networks. In Proceedings of the Eighth National

Conference on Arti�cial Intelligence, pp. 861{866 Boston, MA.

112

Towell, G., & Shavlik, J. (1992). Using symbolic learning to improve knowledge-based neural

networks. In Proceedings of the Tenth National Conference on Arti�cial Intelligence, pp. 177{182

San Jose, CA.

Towell, G., & Shavlik, J. (1994). Knowledge-based arti�cial neural networks. Arti�cial Intelligence,

69.

Valtorta, M. (1988). Some results on the complexity of knowledge-base re�nement. In Proceedings

of the Sixth International Workshop on Machine Learning, pp. 326{331 Ithaca, NY.

Valtorta, M. (1990). More results on the complexity of knowledge-base re�nement:belief networks.

In Proceedings of the Seventh International Conference on Machine Learning, pp. 419{424 Austin,

TX.

von Heijne, G. (1987). Sequence Analysis in Molecular Biology: Treasure Trove or Trivial Pursuit.

Academic Press, San Diego, CA.

Wade, N. (1995). Rapid gains are reported on genome. The New York Times, Section A, 13.

Watson, J., Roberts, H., Steitz, J., & Weiner, A. (1987). The Molecular Biology of the Gene.

Benjamin-Cummings, Menlo, Park, CA.

Yu, Y.-H., & Simmons, R. (1990). Descending epsilon in back-propagation: A technique for better

generalization. Tech. rep. AI90-130, Arti�cial Intelligence Laboratory, The University of Texas at

Austin, Austin, TX.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338{353.

113

