
Using Multi-Strategy Learning to Improve
Planning E�ciency and Quality

Tara Adrienne Estlin

Report AI98-269 May 1998

estlin@cs.utexas.edu

http://www.cs.utexas.edu/users/estlin/

Arti�cial Intelligence Laboratory
The University of Texas at Austin

Austin, TX 78712

Copyright

by

Tara Adrienne Estlin

1998

Using Multi-Strategy Learning to Improve

Planning E�ciency and Quality

by

Tara Adrienne Estlin, M.S., B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 1998

Using Multi-Strategy Learning to Improve

Planning E�ciency and Quality

Approved by
Dissertation Committee:

Raymond Mooney

Benjamin Kuipers

Risto Miikkulainen

Steven Minton

Bruce Porter

To my father, for giving me the belief that I could accomplish whatever I set my mind to.

Acknowledgments

There are many people who I would like to thank for their support and for their contributions to

this research. First and foremost, I would like to thank my advisor, Ray Mooney, for all of his help

and guidance throughout my time as a graduate student. Working with Ray has been a continuous

learning experience. He was always available to help point me in the right direction and I am very

grateful for all of his advice and teachings. I also I would also like to thank the other members of

my committee, which include Bruce Porter, Ben Kuipers, Risto Miikkulainen and Steve Minton for

all of their helpful suggestions and comments.

I would like to give special thanks to my husband, David Moriarty. Without David's en-

couragement I would have never even considered the getting a PhD. David was always there to

listen to my concerns and questions and to provide his unfailing support. Many times he brought

me back down to reality when I was lost in worry over some inconsequential thing. I am very glad

we were able to go through this together.

There are many other people I would like to thank. I have had many wonderful o�ce mates

and colleagues over the years who I will miss. I have enjoyed countless o�ce banter with Dan

Clancy, John Zelle, Je� Mahoney and Paul Ba�es. Thank you guys for all the times you made me

laugh. Begin stuck up in the attic of Taylor didn't seem so bad when I had you around for all the

wonderful conversation. Also, a special thank you to John Zelle for helping me start along this

research path and for always providing his help and advice.

There are many other friends and colleagues who have o�ered both support when I needed

help and distractions when I needed a break. In particular, I would like to thank Mary Elaine

Cali�, Sowmya Ramachandran, Cindi Thompson, Andrea Haessley, Charles Calloway and Lance

Tokuda.

I also would like to thank other colleagues outside of my department who have made much

of this research possible. In particular, I'd like to mention the AI group at the University of

Washington and the Prodigy group at Carnegie Mellon for both providing your code and for

inspiring me in my research.

This research was supported by the NASA Graduate Student Researchers Program, grant

#NGT-51332.

Tara Adrienne Estlin

vi

The University of Texas at Austin

May 1998

vii

Using Multi-Strategy Learning to Improve

Planning E�ciency and Quality

Technical Report AI98-269

Tara Adrienne Estlin, Ph.D.

The University of Texas at Austin, 1998

Supervisor: Raymond Mooney

Arti�cial intelligence planning systems have become an important tool for automating a

wide variety of tasks. However, even the most current planning algorithms su�er from two major

problems. First, they often require infeasible amounts of computation time to solve problems in

most domains. And second, they are not guaranteed to return the best solution to a planning

problem, and in fact can sometimes return very low-quality solutions. One way to address these

problems is to provide a planning system with domain-speci�c control knowledge, which helps guide

the planner towards more promising search paths. Machine learning techniques enable a planning

system to automatically acquire search-control knowledge for di�erent applications. A considerable

amount of planning and learning research has been devoted to acquiring rules that improve planning

e�ciency, also known as speedup learning. Much less work has been down in learning knowledge to

improve the quality of plans, even though this is an essential feature for many real-world planning

systems. Furthermore, even less research has been done in acquiring control knowledge to improve

both these metrics.

The learning system presented in this dissertation, called Scope, is a unique approach to

learning control knowledge for planning. Scope learns domain-speci�c control rules for a planner

that improve both planning e�ciency and plan quality, and it is one of the few systems that can

learn control knowledge for partial-order planning. Scope's architecture integrates explanation-

based learning (EBL) with techniques from inductive logic programming. Speci�cally, EBL is used

to constrain an inductive search for control heuristics that help a planner choose between competing

plan re�nements. Since Scope uses a very exible training approach, its learning algorithm can

be easily focused to prefer search paths that are better for particular evaluation metrics. Scope is

extensively tested on several planning domains, including a logistics transportation domain and a

production manufacturing domain. In these tests, it is shown to signi�cantly improve both planning

e�ciency and quality and is shown to be more robust than a competing approach.

viii

Contents

Acknowledgments vi

Abstract viii

Chapter 1 Introduction 1

1.1 Acquiring Planning Control Knowledge . 1

1.2 Scope: A Control Knowledge Acquisition System 5

1.3 Organization of Dissertation . 5

1.4 Summary . 6

Chapter 2 Background on Planning Methods 7

2.1 A Planning Problem . 7

2.2 Search Methods . 8

2.3 Plan Evaluation Metrics . 10

2.4 Summary . 11

Chapter 3 Learning Planning Control Knowledge 12

3.1 EBL . 12

3.2 Induction . 14

3.2.1 General Inductive Methods . 15

3.2.2 Inductive Logic Programming . 16

3.2.3 ILP for Control . 18

3.3 Multi-Strategy Learning . 20

3.4 Summary . 20

Chapter 4 Learning Control for Partial-Order Planning 22

4.1 The UCPOP Planner . 22

4.1.1 Planner Representation . 22

4.1.2 Universal Quanti�cation in UCPOP . 23

4.1.3 Algorithm . 24

4.2 UCPOP in Prolog . 26

4.3 Planning Decision Points . 26

4.3.1 Control Rule Format . 27

4.4 Summary . 28

ix

Chapter 5 The Scope Control-Rule Learning System 29

5.1 Example Analysis . 29

5.2 Control Rule Induction . 32

5.2.1 foil in scope . 32

5.2.2 Building Control Rules from Proof Trees . 33

5.2.3 Types of Antecedents . 35

5.3 Program Specialization Phase . 38

5.4 Why Multi-Strategy Learning? . 39

5.4.1 Using Pure Induction to Learn Control Rules 40

5.4.2 Using Pure EBL to Learn Control Rules . 41

5.5 Improving Upon Di�erent Planning Metrics . 41

5.6 Improving Learning Time . 42

5.6.1 Caching Relational Clich�es . 42

5.6.2 Incremental Training . 42

5.7 Summary . 43

Chapter 6 Experimental Evaluation - Improving E�ciency and Plan Length 44

6.1 Domain Descriptions . 44

6.2 Focusing Scope on Improving E�ciency and Plan Length 44

6.3 Experimental Design . 45

6.4 Results . 46

6.5 Scalability . 49

6.6 Training on Simple Problems . 49

6.7 Training on Harder Problems . 52

6.8 Ablation Results . 53

6.9 Learning Time . 55

6.10 Summary . 57

Chapter 7 Experimental Evaluation - Improving E�ciency and Plan Cost 58

7.1 Domain Description . 58

7.2 Plan Quality in the Process Planning Domain . 60

7.3 Focusing Scope on Improving E�ciency and Plan Cost 61

7.4 Experimental Design . 64

7.5 E�ciency Results . 65

7.6 Quality Results . 65

7.7 Learning Time . 68

7.8 Summary . 68

Chapter 8 Experimental Evaluation - Improving only E�ciency 70

8.1 Experimental Design . 70

8.2 E�ciency Results . 72

8.3 Quality Results . 73

8.4 Summary . 73

x

Chapter 9 Related Work 76

9.1 Learning Control for Problem Solving . 76

9.2 Learning Control for Planner Performance . 77

9.2.1 Systems Applied to State-Based planners . 77

9.2.2 Systems Applied to Partial-Order Planners 79

9.2.3 Systems Applied to Decomposition Planners 81

9.3 Learning Control for Plan Quality . 81

Chapter 10 Future Work 83

10.1 Enhancements to Scope's Algorithm . 83

10.1.1 Constructive Induction and Shared Concepts 83

10.1.2 Learning at Other Decision Points . 84

10.1.3 Evaluating Control Rule Utility . 84

10.1.4 Induction Bias . 85

10.1.5 Employing Failure Information . 85

10.2 Further Experimental Evaluation . 86

10.3 Applying Scope to Other Planning Systems . 86

Chapter 11 Conclusions 88

Appendix A Domain De�nitions 90

A.1 Blocksworld Domain . 90

A.2 Three Versions of the Blocksworld Domain . 90

A.2.1 BW-Prop . 90

A.2.2 BW-Cond . 91

A.2.3 BW-Univ . 91

A.3 Logistics Transportation Domain . 91

A.4 Process Planning Domain . 92

A.4.1 Process Planning Operators . 92

A.4.2 Process Planning Axioms . 103

A.4.3 Process Planning Functions . 106

Appendix B Learned Control Rules 108

Bibliography 111

xi

Chapter 1

Introduction

Planning is a ubiquitous and integral part of every day life. We plan when we go to the grocery

store, when we take a trip, and even when we take the dog for a walk. Small tasks take very simple

plans, such as driving to a restaurant for dinner, while larger tasks can take very extensive and

complicated plans. For instance building a new house requires a set of long and detailed plans to

be done correctly. Planning also has an important role in the workplace and is used for a variety of

tasks such as building pieces of machinery or designing e�ciency delivery routes. Much time and

e�ort is often required to construct correct and e�cient plans for such problems and many human

hours can be spent on this process.

Arti�cial intelligence (AI) planning systems provide a way to automate many of these plan-

ning tasks. Given a set of goals, AI planners generally search through a list of relevant domain

actions until a correct list of those actions has been found that can achieve the desired goals. These

systems can save countless hours by quickly constructing the necessary steps to perform a particular

task. They can also be helpful in constructing optimal or high-quality plans that will perform the

task in the best possible manner. For instance, it may be important to a manufacturer that plans

for building machinery minimize certain types of resource consumption. Similarly, it is important

for a package delivery service to design delivery routes that allow for the quickest delivery of all

packages.

Once a plan has been constructed by a planning system, it can be used in several di�erent

ways. The plan is sometimes passed to a human operator who then carries out the speci�ed steps.

Another option is to give the plan to a computer execution agent which performs the task with

little or no human intervention. Planning systems have become a powerful and popular tool for

performing a range of activities, from manufacturing semiconductors (Fargher & Smith, 1994), to

cleaning up oil-spills (Agosa & Wilkins, 1996), to scheduling antenna communications with orbiting

spacecraft (Chien, Govindjee, Estlin, Wang, & Jr., 1997). As the desire for automation grows more

prevalent in today's society, the need for e�cient and intelligent planning systems grows as well.

1.1 Acquiring Planning Control Knowledge

Researchers have introduced numerous approaches to planning that have been tested and utilized

on a variety of toy and real-world domains. Yet, even the newest domain-independent planning

algorithms su�er from two major drawbacks. First, they often require large amounts of computa-

1

tion to solve even relatively simple problems and cannot tractably handle most realistic problems.

Second, these algorithms are usually not guaranteed to return the best solution, and often return

sub-par solutions to many planning problems. In many real-world settings, returning an optimal

or near-optimal solution can be critical and is often more important than returning the solution

quickly.

One way to address these problems is to provide a planner with considerable amounts of

extra knowledge about a domain. This additional domain information is often termed \control

knowledge" and indicates how a planner should best achieve its goals. Control knowledge is usually

represented in the form of search-control rules or heuristics that can be easily utilized by the

planner. Control rules can specify information such as what actions should be added to achieve

particular goals, or in what order problem goals should be examined.

For example, consider the simple planning problem shown in Figure 1.1 from a logistics

transportation domain created by Veloso (1992). In this domain, packages must be delivered to

di�erent locations in di�erent cities. Packages must be transported between cities by airplane

and within a city by truck. In Figure 1.1 there are two packages that must be transported from

the Austin airport to the Chicago airport. Two possible solutions to this problem are shown in

Figure 1.2. Though the problem in Figure 1.1 is relatively simple, a planner will often perform

much unnecessary search before arriving at one of these or other possible solutions. For instance,

in trying to achieve the �rst goal, at-obj(pkg1,chicago-airport), the planner may �rst try to use

the truck, by adding the action unload-truck(pkg1,truck1,chicago-airport), and continue along that

search path until it �nally fails since the truck cannot be used for inter-city delivery. To avoid this

unnecessary search, the control rule shown in Figure 1.3 could be utilized. This rule checks if the

goal location of the package (the Chicago airport) and the current package location (the Austin

airport) are in di�erent cities. If this condition is found to be true, then the control rule directs

the planner to select the appropriate action unload-airplane(pkg1,plane1,chicago-airport). This rule

could also be expanded to check for other conditions; for instance, it could be bene�cial to check if

the goal location is an airport. Other rules could also be used that apply in other domain situations.

Control knowledge, such as the rule shown in Figure 1.3, is not necessary for normal or

correct planner operation. Without it, the planner is still guaranteed to return a correct plan if given

enough time and if a plan does exist. Yet control knowledge can be very useful in addressing the

two drawbacks mentioned previously. First, control rules can help a planner to avoid considerable

search by directing it towards the most promising search paths early in the planning process. The

rule shown in Figure 1.3 is an example of this type of knowledge. Second, rules can also be used

to direct a planner towards optimal or high-quality solutions. For instance, in Figure 1.2, Plan 2

is a more satisfactory plan since it requires fewer steps. Control rules could be added that direct

the planner towards �nding Plan 2 as opposed to �nding Plan 1. Without the addition of control

rules, a planner may be unable to produce solutions in a reasonable amount of time, and the few

solutions it can produce may be considered infeasible or of low quality.

Thus, control rules can be a very important component of any planning system. Unfortu-

nately, constructing control rules for a domain is a di�cult, laborious task. One way to acquire

rules is to consult with a domain expert. However, acquiring the necessary domain information

from an expert and coding that information in a form usable by the planner can be a very hard if

not impossible task. This problem is one form of the well-known \knowledge-bottleneck problem."

2

Austin-Airport

pkg1

Chicago-Airport

pkg1 pkg2pkg2

at-obj(pkg1,austin-airport)

at-obj(pkg2,austin-airport)

at-truck(truck1,austin-airport)

at-airplane(plane1,austin-airport)

at-obj(pkg1,chicago-airport)

at-obj(pkg2,chicago-airport)

Figure 1.1: A problem from a logistics transportation domain. This problem speci�es a problem
initial state on the left-hand side and a list of goals that must be achieved on the right. The goals
for this problem specify that two packages must be moved from the Austin airport to the Chicago
airport.

Plan1

load-airplane(pkg1,plane1,austin-airport)
y-airplane(plane1,austin-airport,chicago-airport)
unload-airplane(plane1,chicago-airport,austin-airport)
y-airplane(plane1,chicago-airport,austin-airport)
load-airplane(pkg2,plane1,austin-airport)
y-airplane(plane1,austin-airport,chicago-airport)
unload-airplane(pkg2,plane1,chicago-airport)

Plan2

load-airplane(pkg1,plane1,austin-airport)
load-airplane(pkg2,plane1,austin-airport)
y-airplane(plane1,austin-airport,chicago-airport)
unload-airplane(plane1,chicago-airport,austin-airport)
unload-airplane(pkg2,plane1,chicago-airport)

Figure 1.2: Two plans for the problem shown in Figure 1.1.

3

IF current-goal(at-obj(X,Loc)) ^ true-in-state(at-obj(X,Loc2)) ^ di�erent-city(Loc,Loc2)
THEN use operator unload-airplane(X,Plane,Loc)

Figure 1.3: A simple control rule for the logistics transportation domain. This rule would direct the
planner to choose the action \unload object X from airplane Plane at location Loc" if the current
goal was to have object X be at location Loc and if it's true that X's location in the current world
state (Loc2) is in a di�erent city than its goal location (Loc).

Many experts cannot easily relay the information that they use in constructing good plans; and

even once the information is given, hand-coding that information in the form of planning control

rules can be very di�cult and time-consuming. Plus, an expert may not always be easily accessible

for the domain we are working in. Additionally, every time the domain changes, or we apply the

planner to a new domain, we must acquire a new set of control rules.

Research in planning and machine learning attempts to address the problem of acquiring

usable control knowledge by developing methods that automatically build search-control rules for

di�erent domains. By examining past planning scenarios, a learning system can often construct

control heuristics that will help a planner perform well on future problems. In the past few decades,

a number of learning systems have been built that learn control knowledge for planning. However,

these systems are rarely used in planning systems that are prominently used today. The reasons

for this are two-fold. First, most past learning systems have been designed to learn control rules for

state-space planners. State-space planning is a older method of planning that is used infrequently

in present-day planners. A much more common and current style of planning is plan-space or

partial-order planning, which has been shown to be more e�ective than state-space planning in

many domains (Barrett & Weld, 1994; Kambhampati & Chen, 1993; Minton, Drummond, Bresina,

& Phillips, 1992). Most past learning systems, however, cannot be applied to partial-order planners

due to their reliance on the state-space approach.

A second reason many of these learning systems aren't used is that the majority of them

have only concentrated on improving planner e�ciency, also know as speedup learning. Another

very important goal is to improve the quality of �nal plans. The quality of a plan usually refers

to its optimality, which is measured by a prede�ned metric. For instance, one measure of plan

quality could be the number of steps contained in the plan. In this case, the optimal plan is the

one containing the least number of steps. Other quality metrics may also be important depending

on the domain. Only a few learning systems have addressed the problem of improving plan quality,

even though producing high-quality or near-optimal plans is a very important consideration in

most real-world planning domains. Additionally, even less work has been done on learning rules

to improve both e�ciency and quality. Little research has been done examining whether these two

metrics can be successfully improved simultaneously and what the tradeo�s are in improving one

over the other.

This dissertation presents a new approach to learning planning control knowledge that can

learn rules for a variety of planning algorithms, including partial-order planning techniques. This

approach is shown to not only improve both the e�ciency of a current planning system but also

the quality of its �nal solutions. By addressing both of these problems, this research is intended to

4

strengthen the bridge between building AI planning systems and applying these systems successfully

to real-world problems.

1.2 Scope: A Control Knowledge Acquisition System

The Scope Learning System is a new approach to acquiring domain-speci�c search-control knowl-

edge for planning. Scope stands for the Search Control Optimization of Planning through Experi-

ence. This system automatically constructs control rules that specify when certain plan re�nements

should be applied, where a plan re�nement is any modi�cation to the plan, such as adding a new

action or ordering constraint. For instance a control rule might specify when a particular action

should be added to a plan in order to achieve a certain goal. These rules help avoid inappropriate

plan re�nement applications during planning, and thus they help a planner to �nd solutions quickly

and can also lead a planner towards the best solution paths.

To acquire search-control rules for planning, Scope uses a unique combination of machine

learning techniques. Speci�cally, it combines a form of explanation-based learning (EBL) (Mitchell,

Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986) with techniques from inductive logic

programming (Quinlan, 1990; Muggleton, 1992; Lavra�c & D�zeroski, 1994). This integration allows

Scope to e�ciently build very general control knowledge that is useful in applying to unseen

planning problems. Control rules are built by performing an inductive search through the space

of possible control rules, where the goal is to build general but e�ective rules that always lead the

planners towards good search paths and never towards infeasible ones. In order to perform the

inductive search e�ciently, the search is biased by using explanation-based generalization (EBG) to

direct the search towards information that was found useful in solving previous planning examples.

Unlike most past approaches, Scope's algorithm is not tied to a particular type of planning,

but instead is intended to apply to many di�erent styles of problem solvers. Thus, Scope can be

e�ectively applied to the prominent partial-order style of planning. Most other learning approaches

are ine�ective at learning control rules for this type of planner. Another di�erence between Scope

and most past approaches is that Scope has a exible architecture and can be trained to improve

upon di�erent planning metrics. In particular, Scope has been focused to improve both plan-

ning e�ciency and �nal plan quality. Most other learning systems concentrate only on improving

planning e�ciency and almost no systems look at improving both these factors.

The Scope algorithm has been evaluated on a number of di�erent planning problems using

several di�erent domains, including the blocksworld domain, a transportation domain and a pro-

duction manufacturing domain. Scope is shown to signi�cantly improve both planning e�ciency

and quality on these problems. In particular, Scope is shown to signi�cantly increase planner

e�ciency, sometimes by an order of magnitude, and is also shown to produce optimal planning

solutions for many problems. Additionally, Scope is shown to be more robust than a competing

approach at providing speedup on di�erent types of domain de�nitions.

1.3 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapters 2 and 3 present background knowledge

on both planning systems and on learning planning control knowledge. Chapter 4 discusses learning

5

control rules for partial-order planning and presents the partial-order planning algorithm used as a

testbed for Scope. Chapter 5 presents the Scope approach to learning control rules for planning

and details the di�erent features of its algorithm. Chapters 6, 7, and 8 discuss how Scope was

experimentally evaluated on several planning domains and present the results of this evaluation.

Chapter 9 discusses related work in the area of learning control rules for planning and for other types

of problem solvers. Finally, Chapter 10 presents ideas for future research directions and Chapter

11 reviews the ideas and results presented in this dissertation and discusses relevant conclusions.

1.4 Summary

Control information can play a very important role in most planning systems by allowing the system

to solve problems e�ciently and also by helping the system to produce high quality solutions.

In the past, machine learning techniques have been employed to automatically acquire control

knowledge, however, the resulting knowledge has usually been directed at improving only one goal,

e.g. improving e�ciency or improving quality. Little work has been done in trying to learn control

rules that improve upon both these metrics.

This dissertation introduces the Scope learning system which can learn search-control rules

for planning that improve upon both e�ciency and quality. Scope uses a unique combination of

machine learning techniques to acquire control rules. And unlike most past systems, Scope can be

e�ectively applied to di�erent styles of planning and it can be used to improve both e�ciency and

plan quality.

6

Chapter 2

Background on Planning Methods

Learning search-control information for planning is very dependent on the type of planning system

being employed. Thus, the �rst part of this chapter discusses what is meant by plan generation

and reviews the di�erent methods that can be used to form a plan. The second part of the chapter

presents the two main metrics that are used to evaluate planning systems: e�ciency and plan

quality. These two metrics are de�ned and di�erent methods of measuring them are discussed.

2.1 A Planning Problem

A planning problem is traditionally de�ned as consisting of three main parts: an initial-state, a set

of goals, and a set of possible actions. Most planners operate by beginning with an empty plan and

then they add actions one at a time until a solution is found. A planner must be able to perform a

number of functions, including choosing a good action to add to the current plan, detecting when

a solution has been found, and recognizing dead-end search paths that should be abandoned.

Consider the planning problem introduced in Figure 1.1. The �rst two parts of this problem

would be de�ned as follows:

� Initial-state: at-obj(pkg1,austin-airport),at-obj(pkg2,austin-airport),

at-truck(truck1,austin-airport), at-airplane(plane1,austin-airport)

� Goals: at-obj(pkg1,chicago-airport), at-obj(pkg2,chicago-airport)

The third set of information is the set of available actions, which depends on the particular task or

problem domain. In many standard approaches to planning, domain actions are represented in a

STRIPS operator format (Fikes & Nilsson, 1971), which consists of a list of preconditions, an add

list and a delete list. De�nitions for several actions from the logistics transportation domain (Veloso,

1992) are shown in Figure 2.1. In order for an action to be applied in a plan, its preconditions must

be satis�ed in the current state of the world. For example, in order to apply the logistics action

load-truck(?X,?Y,?Z) it must be true in the current state that object ?X is at location ?Z, and that

truck ?Y is also at location ?Z. Once an action is applied, any conditions on its add list are added

to the current world state and all delete conditions are removed. In other words, an action's add

and delete list describe how the action changes the world.

7

load-truck(?X,?Y,?Z)
Preconditions: at-obj(?X,?Z), at-truck(?Y,?Z)
Add List: inside-truck(?X,?Y)
Delete List: at-obj(?X,?Z)

unload-truck(?X,?Y,?Z)
Preconditions: inside-truck(?X,?Y), at-truck(?Y,?Z)
Add List: at-obj(?X,?Z)
Delete List: inside-truck(?X)

drive-truck(?X,?Y,?Z)
Preconditions: at-truck(?X,?Y), same-city(?Y,?Z)
Add List: at-truck(?X,?Z)
Delete List: at-truck(?X,?Y)

Figure 2.1: Operator Schemas from the Logistics Transportation Domain

Unfortunately, this action format is insu�ciently expressive for most realistic planning do-

mains. In order to perform planning in real-world scenarios, the STRIPS-style action format has

been extended by many researchers to include more expressive constructs. One such format is the

Action Description Language (ADL) from Pendault (1989). Additional constructs used by ADL and

other extended representations include items such as conditional e�ects, universal quanti�cation

of precondition and e�ect variables, and disjunctive preconditions (Pendault, 1989; McDermott,

1991; Penberthy & Weld, 1992; Chien & DeJong, 1994). These constructs allow the domain writer

to create more complicated and expressive operator de�nitions. For an example of a domain that

uses these additional constructs, see the de�nition of the process planning domain (Gil, 1991) in

Appendix A.

2.2 Search Methods

Given a planning problem, many di�erent search methods have been developed for �nding a correct

plan. Most classical planners, including the original STRIPS planner, employ a state-based search.

In this approach, the planner always maintains a representation of the current world state to help

guides its search for a correct plan. An example of a state-based search in the blocksworld domain

(Nilsson, 1980) is shown in Figure 2.2. Here the planner starts with the initial state and searches

through new states until a state where all the goals are true is reached. New states are created by

applying a domain action. This type of planning can involve either a simple forward search from the

initial state, such as shown in Figure 2.2, or a more sophisticated goal-directed search that reasons

backwards from the goal state. A well-known goal-directed search technique is means-end analysis,

which selects operators to add to the plan that reduce the di�erence between the goal state and the

current state. In a state-based planner, all actions in the plan are ordered with respect to all other

actions so that the current state of the world can always be determined. This type of planning

algorithm is often termed a total-order approach since the current plan must be maintained as a

8

A B C

B

A C

A

B

C

C

B

A

A

B

C

Figure 2.2: A planning state-based search. Here the planner searches through a space of world
states until a state is reached where the problem goals are true.

completely ordered list of actions.

A second style of planning employs a plan-based search and does not maintain the current

world state as it proceeds. This type of planner begins with a null plan and then searches through

the space of possible plans until it �nds a solution. Actions are still added to the current plan until

a solution is reached, however, instead of saving the plan as a completely ordered list of actions, the

current plan is represented as a partially-ordered set of actions. During planning, only necessary

ordering decisions are saved in the plan; all others are postponed until later in the planning process

when more information is available. Though only necessary ordering constraints are included in

the current plan, a valid ordering of all operators must always exist. A plan-space planner typically

proceeds by repeatedly identifying an unachieved goal or precondition, selecting an operator that

will achieve it, and then adding an instantiated version of that operator to the current plan along

with any necessary ordering constraints. If a situation arises where one plan action interferes with

another plan action, then the planner will attempt to add an additional constraint to resolve the

problem. The planning cycle continues until all goals have been achieved. Figure 2.3 shows an

example of plan-space planning. This type of planner is often referred to as a partial-order planner

as opposed to the total-order planners discussed above. Many researchers consider partial-order

planning a more powerful and e�cient planning strategy since premature ordering commitments are

delayed until a more informative ordering decision can be made (Barrett & Weld, 1994; Kambham-

pati & Chen, 1993; Minton et al., 1992). For instance, Barrett and Weld (1994) show that a basic

partial-order planning algorithm signi�cantly outperforms two di�erent total-order planning algo-

rithms on a number of di�erent domains, including domains with independent subgoals, serializable

subgoals, nonserializable subgoals, heterogeneous sets of subgoals, and complex operator-selection

decisions.

One other important distinction that is often made between planning algorithms is whether

a planner is linear or nonlinear. Over the years, these terms have acquired several di�erent con-

notations and are often confused or mistaken with the terms state-based and plan-based. The most

common meaning is that they refer to the type of goal selection strategy employed by the planner.

Linear planners, which are usually equated with state-based planners, typically examine goals in

a \linear" order; if two (or more) goals exist, then the �rst goal and all of its subgoals must be

9

Stack C on B
Stack B on A

Stack A on B
Stack B on C

Stack B on A

Stack B on C

Figure 2.3: A planning plan-based search. Here the planner searches through a space of partial
plans until a plan where all goals are achieved is found. This type of search is also known as
partial-order planning.

achieved before the next goal is considered. In contrast, nonlinear planners do not employ the lin-

earity restriction and can examine goals in any order. Partial-order planners are typically nonlinear

planners, however they are not required to be. Similarly, state-based (or total-order planners) are

usually linear planners, however there are also nonlinear planning algorithms that employ a state-

based approach (Warren, 1974; Veloso et al., 1995). Since the terms linear planner and nonlinear

planner are not well-de�ned, many recent authors choose instead to refer to planners as either

total-order or partial-order.

2.3 Plan Evaluation Metrics

There are two main metrics that are commonly used to evaluate planning algorithms. The �rst

metric, which has perhaps received the most attention in the planning literature, is the e�ciency

of the planning system. Unfortunately, even with the most current algorithms, most planning

problems are di�cult to solve. Even toy domains, such as the blocksworld, quickly become com-

putationally intractable as problem di�culty increases. This intractability is further aggravated

by more expressive domain de�nitions, such as those that include conditional e�ects and univer-

sal quanti�cation. These constructs can be very important domain representation tools, however,

they also greatly contribute to planning complexity making many problems very di�cult to solve.

Much past planning research has concentrated on improving planning e�ciency, with the overall

goal of being able to tractably solve larger and harder problems (e.g. Minton, 1989; Etzioni, 1993;

Kambhampati et al., 1996).

The e�ciency of a planner can be measured in several ways. The most common measurement

is the time is takes to �nd a planning solution. Other ways to measure e�ciency include the number

of backtracks a planner performs, and the number of partial plans that must be explored before a

solution is found.

The second metric used to evaluate planning algorithms is the quality of the output plan. A

aw in most current planning methods is that they often return sub-optimal solutions to planning

problems. Solutions can be sub-optimal for a number of reasons; a solution may be costly to execute

10

or may use a larger number of resources than necessary. In many real-world planning systems the

quality of the �nal plan may be just as important, if not more important, than the time it takes

to generate the plan. For instance, it may be vital in a manufacturing domain for a planner to

produce plans with low resource consumption, or with least number of possible steps. There are a

variety of notions about what makes a good plan. Some of the more common quality metrics are

listed below (P�erez & Carbonell, 1994):

� The length of the plan (or the total number of steps)

� The execution time of the plan

� The resource consumption required

� The robustness of the plan

Depending on the domain being used, di�erent quality metrics will have varying importance. Some

research has been done on improving plan quality with the overall goal of consistently producing

optimal or near-optimal plans (e.g. P�erez, 1996; Iwamoto, 1994).

In order to make planning on many domains more tractable and also to produce high quality

plans, researchers often attempt to utilize domain-speci�c control knowledge (e.g Fikes & Nilsson,

1971; Minton, 1989; Langley & Allen, 1991). This knowledge can provide a planner with the extra

information needed to make wise decisions early in the planning process, thereby avoiding large

amounts of search and helping the planner to produce good solutions. The rest of this dissertation

discusses a new technique for automatically producing control knowledge for planning systems.

2.4 Summary

Several di�erent methods have been de�ned for �nding a correct plan when given a planning prob-

lem. One of the most prominent techniques is partial-order planning, where the current plan is

saved as a partially-ordered list of actions. Most learning techniques for acquiring control infor-

mation have been applied to an older style of planning known as the state-based planner, which

always maintains a representation of the current-world state during planning. Additionally, several

di�erent evaluation metrics are commonly used to judge the performance of a planning system.

The main two metrics utilized by most researchers are the e�ciency of a planning system and the

quality of its �nal solutions. E�ciency is usually measured by the planning time required to �nd

a solution. Final plan quality can be measured in several ways, with the most common being the

number of steps contained in the solution. The rest of this dissertation discusses how learning

methods can be applied to improve upon these two metrics.

11

Chapter 3

Learning Planning Control Knowledge

Planning systems can often automatically acquire control knowledge by utilizing machine learning

techniques. This knowledge can be based directly on user input or derived from past planning

experience. For instance, a system which acts as a learning apprentice is designed to acquire

control information by observing the behavior of a human expert. Other learning systems are built

to learn from their own experience without human intervention. These autonomous systems are

understandably more complex and di�cult to build, however, they are frequently more desirable

since they require little or no human overhead. A number of past learning systems have been built

that learn control knowledge automatically, with no user intervention. The rest of this section is

used to discuss the di�erent methods that have been used to accomplish this task.

3.1 EBL

The most common approach to learning control knowledge is to use analytical learning techniques,

where the systems learns by problem solving. The most popular analytical method is explanation-

based learning (EBL) (Mitchell et al., 1986; DeJong & Mooney, 1986), where the system learns

by analyzing explanations of problem-solving behaviors. Speci�cally, an EBL system builds an

explanation for why an example is a member of some target concept. When used to learn planning

control knowledge, the example usually corresponds to a planning decision and the target concept

is explaining why the decision was a good one or a bad one. The explanation built by EBL can

be used to construct a control rule, which can then be used to help make future planning decisions

that were similar to the original example.

This dissertation uses a form of EBL, called explanation-based generalization (EBG) to

acquire control knowledge. EBG operates by learning a set of su�cient conditions for being a

member of a target concept. These conditions are acquired by generalizing an explanation of why

a particular example �ts the target concept de�nition. Explanations are in the form of proof trees

composed of inference rules that prove the example is a member of the concept.

Figure 3.1 shows the inputs to an EBG system and gives a sample problem of learning

the de�nition of a cup. Given this set of information shown, the EBG system will determine a

generalization of the training example that is an operational de�nition for the goal concept, i.e. a

concept de�nition which satis�es the operationality criterion. EBG works in two main steps, which

are shown in Figure 3.2. The �rst step uses the domain theory to construct an explanation of

12

1. Goal concept: A de�nition of the concept to be learned in terms of high-level properties. For
example, a goal concept for a cup (from Winston, Binford, Katz, and Lowry (1983)) might be:

OPEN-VESSEL(x) ^ STABLE(x) ^ LIFTABLE(x) ! CUP(x)

2. Training example: An example of the goal concept. For example, a training example of a cup
might include the following:

COLOR(OBJ1,RED)
PART-OF(OBJ1,HANDLE1)
PART-OF(OBJ1,BOTTOM1)
...

3. Domain Theory: A set of rules and facts to be used in explaining how the training example is
an example of the goal concept. The domain theory for the cup might include a rule such as the
following:

IS(x,LIGHT) ^ PART-OF(x,y) ^ ISA(y,HANDLE) ! LIFTABLE

4. Operationality criterion: A speci�cation of how the learned concept de�nition must be ex-
pressed (i.e. the names of available low-level operational predicates). The operationality criterion
for a cup might be that the de�nition be in terms of only observable features, such as the weight
of the cup or whether it has certain physical parts.

Figure 3.1: Required inputs for an EBG system.

1. Explain: Construct an explanation in terms of the domain theory that proves how the training
example satis�es the goal concept. Each branch of the explanation must terminate in an expression
that satis�es the operationality criterion. An example of an explanation generated for the cup
example is shown in Figure 3.3.

2. Generalize: Determine a set of su�cient conditions under which the explanation structure holds.
This can be accomplished by regressing the goal concept through the explanation structure. The
conjunction of the resulting regressed expressions constitutes the desired concept de�nition. Thus,
after regressing the goal concept CUP(x) through the explanation shown in Figure 3.3 the following
de�nition is produced:

(PART-OF(x,xc) ^ ISA(xc,CONCAVITY) ^ IS(xc,UPWARD-POINTING) ^
PART-OF(x,xb) ^ ISA(xb,BOTTOM) ^ IS(xb,FLAT) ^ PART-OF(x,xh) ^
ISA(xh,HANDLE) ^ IS(x,LIGHT)) ! CUP(x)

Figure 3.2: Two main steps in the EBG process.

13

CUP(OBJ1)

STABLE(OBJ1)OPEN-VESSEL(OBJ1) LIFTABLE(OBJ1)

PART-OF(OBJ1,CONCAVITY)

PART-OF(OBJ,BOTTOM-1)

IS(OBJ1,LIGHT)
ISA(CONCAVITY-1,CONCAVITY)

IS(CONCAVITY-1,UPWARD-POINTING)

ISA(BOTTOM-1,BOTTOM)
IS(BOTTOM-1,FLAT)

PART-OF(OBJ1,HANDLE1)
ISA(HANDLE-1,HANDLE)

Figure 3.3: The explanation structure generated for the \cup" example.

why the example is a member of the target concept. Figure 3.3 shows an explanation which was

constructed for the cup example. The root of the explanation (or proof tree) is the target concept

of cup. The bottom leaves of the tree correspond to operational predicates that were used in

building the explanation. In the second step of EBG, this explanation is generalized by regressing

a generalized version of the target concept through the explanation structure. The operational

concepts contained in the generalized explanation are then used to construct a concept de�nition,

which can be utilized as a rule for correctly classifying that concept in future problems.

Explanation-based learning and other analytical techniques are considered knowledge-rich

due to their ability to explain why a particular concept de�nition was learned. A number of EBL

learning systems have been applied to acquire planning control knowledge (Minton, 1989; Etzioni,

1993; Bhatnagar & Mostow, 1994; Kambhampati et al., 1996). Unfortunately, due to its reliance on

only a few examples, standard EBL can often produce complex, overly-speci�c control rules that do

not generalize well to new planning situations (Minton, 1988). This situation is commonly known

as the utility problem (Minton, 1988; Mooney, 1989; Cohen, 1990), where even though the learned

rules are correct, the cost of testing their applicability to new planning situations often outweighs

their savings. Another problem is that EBL methods are di�cult to apply in domains where it is

hard to construct a complete and tractable domain theory (Chien, 1989). These drawbacks make

it di�cult to successfully apply EBL methods to real-world problems.

3.2 Induction

Another method of learning planning control rules is to employ a form of induction, which acquires

rules by examining a number of di�erent planning examples. One form of inductive techniques

used in this dissertation are inductive logic programming techniques, which use a combination of

logic programming and machine learning methods, and can provide a good platform for learning

control knowledge.

14

Solution!

S1

op1
op2

op3

op1

op1

op1

op1

op2

op2

op2

op2

op3

op3

op3

op3

S2 S3 S4

S5 S6 S7

S8 S9 S10

S12 S13

S16S14

S11

S15

Figure 3.4: A search tree for �nding a solution to a planning problem. The solid arrows show the
solution path through the tree.

3.2.1 General Inductive Methods

Inductive learning techniques can acquire planning control rules by looking at examples of positive

and negative planning decisions. These examples are usually found by solving a set of training

problems and extracting examples based on good and bad planning decisions. Positive examples

correspond to good planning decisions that occurred on search paths leading to a solution. Negative

examples correspond to bad planning decisions that were on other search paths that either failed

or were unexamined. Consider the search tree for a planning problem shown in Figure 3.4. Each

node corresponds to di�erent search states where a decision was made and each arrow corresponds

to di�erent planning operations that could be applied from that state. For instance, in a partial-

order planner, the arrows would correspond to di�erent plan re�nements that could be made to

the current plan. In the �gure, the solid arrows show the solution path through the tree, while the

dashed arrows show search paths that either failed or were never examined. Positive examples of

planning decisions are found along the solution path. Any other examples of planning decisions,

which are not along the solution path, could be collected as negative examples.

Empirical methods build control rules by performing an inductive search through the space

of possible rules, where the general goal is to build rules that cover some positive planning decisions

but don't cover any negative planning decisions. The inductive search is usually guided by a domain-

independent bias. For example, one commonly used bias is Occam's razor (Quinlan, 1983) which

prefers simple rules over more complex ones.

15

A main advantage of inductive learning techniques over other learning methods such as EBL

is that they tend to learn very general control knowledge since they examine a number of di�erent

examples. This quality is important for building very useful control knowledge; general control rules

are usually more e�ective than more speci�c rules at successfully applying to new planning problems.

Several past learning systems have successfully utilized induction for learning planning control

knowledge (Mitchell, Utgo�, & Banerji, 1983; Porter & Kibler, 1986; Langley & Allen, 1991; Leckie

& Zuckerman, 1993). Unfortunately, inductive techniques have several disadvantages as well. For

one, they usually require large numbers of examples to acquire e�ective control information. Also,

these methods can quickly become computationally intractable since they often search through large

amounts of information when building control rules. These disadvantages often prevent inductive

methods from being successfully used on many domains.

3.2.2 Inductive Logic Programming

Some learning systems, including SCOPE, employ techniques from the �eld of inductive logic

programming (ILP) to acquire knowledge. ILP research addresses the problem of inducing a �rst-

order, de�nite-clause logic program from a set of examples. This �eld represents the intersection

of standard logic programming and machine learning. Due to the expressiveness of �rst-order

logic, ILP methods can learn relational and recursive concepts that cannot be represented in the

attribute/value representations used by most machine-learning approaches. ILP systems have suc-

cessfully induced small programs for simple tasks such as sorting and list manipulation (Muggleton

& Buntine, 1988; Quinlan & Cameron-Jones, 1993); as well as performing well on more complicated

tasks such as learning properties of organic molecules (Muggleton et al., 1992) and predicting the

past tense of English verbs (Mooney & Cali�, 1995).

The ILP algorithm used in this dissertation is a version of the Foil induction algorithm

(Quinlan, 1990). Foil learns a function-free, �rst-order, Horn clause de�nition of a target concept.

When learning control for planning systems, the target concept can correspond to concepts such

as \when to apply a particular action" or \when to apply a particular ordering constraint". Once

a de�nition is learned for a target concept, it can be utilized as a control rule in solving future

problems.

The de�nition constructed by Foil is in terms of an input set of background predicates. The

input to Foil consists of an extensional de�nition for the target concept and extensional de�nitions

for all background predicates. Extensional de�nitions are in the form of tuples of constants of

speci�ed types. For example, suppose Foil is learning a de�nition of the simple concept \list

membership". The input to Foil might be the following:

member(Elt,List): (a,[a]), (a,[a,b]), (b,[a,b]), (a,[a,b,c]), ...

components(List,Elt,List): ([a],a,[]), ([a,b],a,[b]), ([a,b,c],a,[b,c]), ...

member(Elt,List) is the target predicate for which a de�nition is being learned. Listed above are a set

of positive examples of this concept. Foil also requires negative examples of the target predicate,

which can be supplied directly or computed using a closed-world assumption. components(A,B,C)

is a background predicate which is true if A is list whose �rst element is B and whose tail is C. Elt

is a type denoting possible elements, which include a, b, and c, and List is a type de�ned as a list

containing items of type Elt.

16

Initialization
De�nition := null
Remaining := all positive examples

While Remaining is not empty
Find a clause, C, that covers some examples in Remaining,

but no negative examples.
Remove examples covered by C from Remaining.
Add C to De�nition.

Figure 3.5: Basic Foil Covering Algorithm

Given these inputs, Foil learns a program one clause at a time using a greedy-covering

algorithm, which is summarized in Figure 3.5. Clauses are constructed one at a time where each

learned clause covers some positives examples of the target concept and no negative examples. For

example, a clause that might be learned for member after one iteration of this loop is:

member(A,B) :- components(B,A,C).

This clause covers all positive examples where the element is the �rst one in the list (e.g. mem-

ber(a,[a,b])) but does not cover any negatives. A clause that could be learned to cover the remaining

examples is:

member(A,B) :- components(B,C,D), member(A,D).

Together these two clauses constitute a correct program for the target predicate member.

The central part of the Foil algorithm is in the \�nd a clause" step, which is implemented

by a general-to-speci�c hill-climbing search. When building a clause, Foil adds antecedents to

the developing clause one at a time. At each step Foil evaluates all possible literals that might

be added and selects the one which maximizes an information-based gain heuristic. This heuristic

prefers literals that cover more positive examples and fewer negative examples. The algorithm

maintains a set of variable binding tuples for all positive and negative examples that satisfy the

current clause. Also included in the tuples are bindings for any new variables introduced in the

body. The pseudocode in Figure 3.6 summarizes this procedure.

Foil considers adding literals for all possible variable combinations of each background

predicate as long as type restrictions are satis�ed and at least one of the predicate arguments is an

existing variable bound by the head or a previous literal in the body. Literals are evaluated based

on the number of postive and negative tuples covered, where preferred literals are those that cover

many positives and few negatives. Let T+ denote the number of positive tuples in the set T and

de�ne:

I(T) = �log2(T+=jT j):

17

Initialize C to the target predicate.
Initialize T to contain the positive tuples in Remaining and all the negative tuples.
While T contains negative tuples

Find the best literal L to add to the clause.
Form a new training set T 0 that contains all positive and negative tuple

extensions that sati�y L. A tuple is extended by including a set of
bindings for the new variables introduced by L.

Replace T by T 0.

Figure 3.6: The \�nd-a-clause" step in the Foil algorithm.

The chosen literal is then the one that maximizes the following information-gain heuristic:

gain(L) = s � (I(T)� I(T 0));

where s is the number of tuples in T that have extensions in T 0 (i.e. number of current positive

tuples covered by L).

Foil also includes many additional features such as methods for testing equality, adding

useful literals that do not immediately provide gain (determinate literals), and the pre-pruning and

post-pruning of clauses to prevent over�tting. More information on Foil can be found in (Quinlan,

1990; Quinlan & Cameron-Jones, 1993; Cameron-Jones & Quinlan, 1994).

3.2.3 ILP for Control

It has also been argued that ILP techniques can be a useful tool for acquiring control information

(Cohen, 1990). Many di�erent problem solving strategies can be easily coded as logic programs and

learning mechanisms are also easily implemented in this framework. Logic programming also pro-

vides a well-understood representational and computational platform upon which to build. There

are a number of current learning systems that employ ILP techniques to induce Horn clause con-

cept de�nitions (Quinlan, 1990; Muggleton, 1992); the Foil learning system is one such example.

By casting the problem of learning control rules as a concept learning problem, these inductive

techniques can often successfully be used to acquire control information.

A logic program is expressed using the de�nite clause subset of �rst-order logic, where a

de�nite clause is a disjunction of literals having exactly one unnegated literal. The one unnegated

literal represents the clause head while the other literals comprise the clause body. Computation

in this representation is done using a resolution proof strategy on an existentially quanti�ed goal.

For example, a simple logic program to sort lists (written in Prolog) is shown in Figure 3.7. The

top-level goal of this program is sort(X,Y). An instantiation of this goal is true when Y is a sorted

version of the list represented by X. The arguments of a top-level goal are usually partitioned into

input and output argument sets. In this example, X is considered the input and Y the output. A

program is executed by providing a goal that has its input arguments instantiated. When such

a goal is provided, a theorem-prover constructively proves the existence of the goal meeting any

constraints provided through the input arguments. In this process, the prover will produce bindings

for the output arguments. For example, in our simple sorting program, a top-level goal of the form

sort([6,3,1,5,9],Y) would produce the output binding Y = [1,3,5,6,9].

18

sort(X,Y) :- permutation(X,Y), ordered(Y).

permutation([],[]) :- true.
permutation([XjXs],Ys) :- permutation(Xs,Ys), insert(X,Ys,Ys1).

insert(X,Xs,[XjXs]) :- true.
insert(X,[YjYs],[YjYs1]) :- insert(X,Ys,Ys1).

ordered([X]) :- true.
ordered([X,YjYs]) :- X � Y, ordered([YjYs]).

Figure 3.7: Simple Sorting Program

insert(X,[XjXs],Xs) :- insert control1(X,[XjXs],Xs),!.
insert(X,[YjYs],[YjYs1]) :- insert(X,Ys,Ys1).

insert control1(X,[],[X]).
insert control1(X,[XjZ],[X,YjZ]) :- X < Y.

Figure 3.8: Improved Insert Predicate

The Prolog programming language provides a practical instantiation of logic programming

using a simple control strategy. In Prolog, depth-�rst search with backtracking is used to search for

a proof. If during execution the current search path fails, then the last non-deterministic decision

point is backtracked upon and a new path explored. Search control in a Prolog program can be

viewed as a clause-selection problem (Cohen, 1990), where clause selection is the process of deciding

what program clause should be used to reduce a particular subgoal during program execution.

Di�erent options in a program are represented using separate clauses which have uni�able heads

but di�erent clause bodies. Thus the clause heads can all be matched with the same type of subgoal,

however, the bodies contain di�erent conditions which test whether that program option should be

selected. If an incorrect clause is selected to solve a program subgoal, then that clause application

will eventually be backtracked upon and another matching clause used. Control information is

usually incorporated into a Prolog program in the form of clause-selection rules. These rules help

avoid inappropriate clause applications, which both greatly reduces backtracking and can help lead

the program towards better solution paths.

As an example, consider the simple sorting program shown in Figure 3.7, which sorts a

list by generating permutations of the list until it �nds one that is ordered. Permutations are

generated by permuting the tail of the input list and then inserting the head somewhere in the

permuted tail. This program currently performs in O(N !) time. The only nondeterminism comes

from the de�nition of the predicate insert/3 which can either insert an item at the beginning of a

list or somewhere in the tail. This nondeterminism can be eliminated by learning a control rule for

the �rst clause that will correctly predict when the item should be placed at the head of the list.

Figure 3.8 shows a modi�ed version of the insert clause de�nition, which was constructed by

the Dolphin learning system (Zelle & Mooney, 1993). The �rst insert clause has been guarded with

19

control information so that attempts to use it inappropriately will immediately fail. This clause

will now only be applied when an element is being inserted into an empty list or if the new element

is less than the head of the current list. The cut \!" added to the end of the �rst insert clause

makes the clause deterministic. When the �rst insert clause is selected and the control conditions

are found true, then this decision cannot be backtracked upon. The result of adding the control

knowledge is an O(N2) insertion sort program.

Cohen (1990) and Zelle and Mooney (1993) have both introduced systems that acquire

control heuristics to improve the performance of Prolog programs. In these systems, a combination

of EBL and induction is used to learn control rules that eliminate backtracking in logic programs.

Combination learning techniques are discussed more in the next section. This dissertation presents

research that successfully extends these methods by applying ILP techniques for control knowledge

acquisition in a complex planning system. Also, unlike past systems, the SCOPE learning system

uses ILP techniques to learn control rules that not only improve program e�ciency, but also improve

the quality of produced solutions.

3.3 Multi-Strategy Learning

One other approach to learning control information is to use a combination of learning techniques.

Most of these methods attempt to combine EBL with an inductive algorithm where EBL is gen-

erally used to construct the control rules and then the rules are further re�ned using induction.

The main goal of these methods is to retain the bene�ts of a domain theory while also having

the exibility to learn from the data. For example, instead of building a complete proof, plausible

explanation-based learning (PEBL) (Zweben, Davis, Daun, Drascher, Deale, & Eskey, 1992) �rst

conjectures an example is a member of the target concept, and then con�rms the conjecture with

empirical data. Other systems have employed lazy explanation-based learning (LEBL) which gen-

erates incomplete explanations and then incrementally re�nes any overly-general knowledge using

new examples (Tadepalli, 1989; Borrajo & Veloso, 1994).

This dissertation presents a novel multi-strategy learning approach to control-knowledge

acquisition for planning systems. The Scope learning system also uses a combination of EBL

and induction to learn control information. However, instead of generating control rules through

EBL and then inductively re�ning them, Scope builds rules using an inductive algorithm. EBL is

used to focus the inductive search so that only highly relevant pieces of background information are

examined for possible inclusion in a rule. This technique biases the search towards more useful rules,

and also keeps the inductive search at a computationally tractable level. This methods also di�ers

from other control-rule learning techniques by employing inductive-logic programming techniques.

This type of learning combination has been used in the past to learn control rules for simple logic

programs, however, this dissertation presents its �rst application to a complicated planning system.

3.4 Summary

A number of learning techniques have been utilized to acquire search-control knowledge and many

of these have been applied to improve planning systems. The most popular method is explanation-

based learning, which constructs control rules by \explaining" why a planning decision was correct

20

or incorrect. Though EBL methods have the advantage of requiring only a few examples, they

also have a signi�cant drawback since the rules they construct are very speci�c and can be very

expensive to apply to future problems.

Another learning technique used by some researchers to acquire planning control knowledge

is induction. It construct rules by examining a number of examples and then using those examples

to perform an inductive search through the space of possible rules. Some inductive systems employ

methods from the �eld of inductive logic programming. ILP techniques combine methods from

the �elds of induction and logic programming. These techniques have been primarily used in the

past to induce logic programs for classifying examples, however, they are also a very e�ective tool

at acquiring control information. Logic programming provides a good platform for representing

control knowledge and for easily incorporating control rules into a planning system or other type

of problem solver.

Induction is bene�cial because it tends to learn very general control rules that can easily

apply to new planning situations. Unfortunately, induction also has several drawbacks in that a

large number of examples are often required to learn good rules, and also, the inductive search to

�nd a good rule can be computationally large or intractable.

Some learning systems have combined EBL and induction to acquire control information.

These combination techniques have the advantages of being able to utilize a domain theory and also

being able to learn more general control knowledge. Most combination methods have used EBL to

construct control rules and then have inductively re�ned the rules based on other examples.

The Scope learning system EBL and induction in a di�erent approach from past learning

systems; induction is used to learn rules and EBL is utilized to bias the inductive search towards

useful information. Scope also employs inductive logic programming techniques to learn rules,

which few past learning systems have done.

21

Chapter 4

Learning Control for Partial-Order

Planning

As mentioned in the introduction, previous research in planning and learning systems has been

based almost entirely on linear, state-based planning algorithms. Since the introduction of this

type of planner, a number of more sophisticated planning approaches have been developed that

typically outperform linear, state-based algorithms. Unfortunately, few control-knowledge acqui-

sition systems have been adapted to perform on these newer planning algorithms. One style of

planning that has acquired much prominence is partial-order planning. This type of approach is

widely used in many current planning systems and thus a partial-order planner was thus identi�ed

as a good testbed for the SCOPE control rule learning system.

4.1 The UCPOP Planner

The base planner that was chosen for experimentation is UCPOP (Penberthy & Weld, 1992), a

partial-order planner whose step descriptions can include conditional e�ects and universal quan-

ti�cation. UCPOP has been proven sound and complete, and a signi�cant amount of planning

research has been based around its algorithm (e.g. Poet & Smith, 1993; Gerevini & Schubert,

1996; Kambhampati et al., 1996).

4.1.1 Planner Representation

Given a planning problem, which contains an initial state, a set of goals, and a set of domain

operators, the goal of UCPOP is to determine a sequence of actions that will transform the initial

state into a state where all goals are satis�ed. Operators are speci�ed using Pednault's Action

Description Language (ADL) (Pendault, 1989), which was discussed in Section 2.1 and is an exten-

sion of the well-known STRIPS format (Fikes & Nilsson, 1971). Operators contain precondition,

add and delete lists, and they can also contain constructs such as conditional e�ects, disjunctive

preconditions, and universal quanti�cation.

UCPOP searches for a solution in a space of partial plans, where each plan consists of a

partial-ordering of actions. A partial plan is best described as a four-tuple hA,B,O,Li: where A

is a set of actions, O is a set of ordering constraints over A, L is a set of causal links, and B is a

22

set of binding constraints over variables appearing in A. Speci�cally, A contains all actions that

have been added as current plan steps. The set of orderings, O, speci�es a partial ordering of these

actions. Ordering constraints between steps are usually denoted by the \<" relation. For example

A1 < A2 means that step A1 is constrained to come before A2. During planning, there must always

exist at least one consistent total ordering of all plan steps.

Causal links, contained in L, record dependencies between the e�ects of one action and the

preconditions of another. A link is represented as A1

Q
! A2 where A1 and A2 are plan steps and Q

is an e�ect of A1 and a precondition of A2. In this case, A1 is considered the link's producer and

A2 its consumer. These links are used to detect threats, which occur when a new action interferes

with a past decision. More speci�cally, if A1

Q
! A2 is a causal link in the current plan and there

exists a separate action in the plan A3, which threatens the link, then the following two conditions

are satis�ed:

� O [A1 < A3 < A2 is consistent, and

� A3 has :Q as an e�ect (i.e. A has Q as a delete condition).

When a plan contains a threat, it is possible that it will not work as anticipated. To prevent

this from happening, the planner must check for and resolve any discovered threats. UCPOP

employs three main threat resolution strategies: promotion, demotion, and confrontation. For

promotion, the planner adds an additional ordering constraint to ensure that A3, the threatening

action, is executed before A1, the link's producer, i.e. A3 < A1. Similarly, for demotion, an ordering

constraint is added that requires A3 to be executed after A2, the link's consumer, i.e. A2 < A3.

Confrontation can be used to resolve a threat if A3's threatening e�ect is conditional. In this case,

the planner adds the negation of the conditional e�ect's antecedent to the agenda. For example,

if the threatening e�ect is conditional with antecedent S and consequent :Q, then :S would be

added as a new goal to the agenda.

Since, some actions in a plan can be partially instantiated, sometimes a threat is subject to

interpretation. For instance, if the link condition Q is clear(a) and A3 has an e�ect not(clear(?X)),

where ?X is currently uninstantiated, then A3 could possibly incur a threat. UCPOP's strategy in

this situation is to wait until a threat is undeniable (e.g. all variables are fully instantiated) before

imposing a threat resolution strategy to handle the threat.

The last set B contains a list of binding constraints, which are in the form of codesignation

and noncodesignation constraints. Codesignation constraints represent the required uni�cation of

two variables (?X =?Y) or a variable and a constant (?X = A). Conversely, noncondesignation

constraints prohibit the un�ciation of two variables (?X 6= ?Y). These constraints apply to variables

appearing in the pre- and post-conditions of the actions contained in A.

4.1.2 Universal Quanti�cation in UCPOP

Allowing universal quanti�cation in action preconditions and e�ects allows one to easily describe

many real-world situations. For instance, without universal quanti�cation it would be impossible

to specify an action such as the UNIX \rm �" which removes all �les in a directory. In order

to implement this type of expressiveness in domain de�nitions, UCPOP developers made several

simplifying assumptions. First, it is assumed that the world being modeled has a �nite, static

23

universe of objects. Thus objects cannot be created or deleted during planning. Second, each object

must have a type that is declared in the problem initial state. For example in the blocksworld,

for every block X mentioned in the problem, the predicate block(X) must be included in the list of

initial state predicates.

In order to establish goals that contain universally quanti�ed formulas, UCPOP maps these

formulas into a corresponding ground formula where all universally quanti�ed variables are replaced

with constants. This mapping is done by taking the univesal base of the quanti�ed formula. The

universal base � of a �rst-order, function-free sentence, �, is de�ned a follows:

�(�) = � if contains no quanti�ers

�(8t1��(�)) = �(�1) ^ ::: ^�(�n)

where the �i corresponds to each possible intrepretation of �(�) under the universe of discourse

(or all possible objects of type t1). For example, suppose that the universe of block is fa,b,cg . If

� is forall ((block ?x)) (clear ?x)), then the universal base is the following: (and (block a) (block b)

(block c)). The de�nition of � can also be extended to handle interleaved universal and existential

quanti�ers. Please see Weld (1994) for more information.

4.1.3 Algorithm

An overview of the UCPOP algorithm is shown in Figure 4.1. The algorithm takes three inputs: a

plan hA,B,O,Li, an agenda of outstanding goals, and a set of action schemata �. The initial plan for

a planning problem has two actions, A = fA0,A1g, one ordering constraint, O = fA0 < A1g, no

causal links, L = fg, and no binding constraints, B = fg. The initial and goal states are represented

in the initial plan by adding the two actions A0 and A1, where the e�ects of A0 correspond to the

initial state and the preconditions of A1 correspond to the desired goal state. The initial agenda

contains all top-level goals; each goal in the agenda is represented as a pair hQ;Aii where Q is a

precondition of Ai.

In each planning cycle, Step 1 checks if the agenda is empty and if not, Step 2 selects a goal

to work on. If this goal is quanti�ed then the universal base of this expression is posted to the

agenda and a new goal is selected. If the goal is a disjunction or conjunction than one goal in the

formula is chosen to work on, and if the original goal was a conjunction, then the remaining goals

are posted to the agenda to be established later. After a goal has been selected, Step 3 chooses an

existing or new action to assert the goal. Once an action is selected, the corresponding ordering

constraints, casual links and codesignation constraints are added to O, L, and B, and if a new action

was selected, it is added to A. Step 4 removes the selected goal from the agenda, and if a new action

was selected to assert it, that action's preconditions are added to the agenda. Step 5 checks for

possible threats and resolves any found by either adding an additional ordering constraint through

demotion or promotion, or by adding a new goal to the agenda through confrontation. UCPOP is

called recursively until the agenda is empty. On termination, UCPOP uses the constraints found

in O to determine a total ordering of the actions in A, and returns this as the �nal solution.

24

Algorithm UCPOP(hA,B,O,Li,agenda,�)

1. Termination: If agenda is empty, return hA,B,O,Li.

2. Goal Selection: Remove a goal hQ;Aneedi from agenda where Q is a
precondition of action Aneed.

(a) If Q is a quanti�ed sentence then post the universal base h�(Q); Aci
to agenda. Go to 2.

(b) If Q is a conjunction of Qi then post each hQi; Aneedi to agenda. Go
to 2.

(c) If Q is a disjunction of Qi then nondeterministically choose one dis-
junct, Qk, and post hQk; Aci to agenda. Go to 2.

(d) If Q is a literal and a link Ap
:Q
! Ac exists in L, fail (an impossible

plan).

3. Operator Selection: Choose either an existing action (from A) or a
new action Aadd (instantiated from �) that adds Q. Let O0 = O [

fAadd < Aneedg, L
0 = L [fAadd

Q
! Aneedg, and let B0 be the updated set

of bindings. If Aadd is a new action let A0 = A [Aadd and O0 = O0 [
Ao < Aadd < A1.

4. Update Goal Set: Let agenda' = agenda - fhQ;Aneedig. If Aadd is
newly instantiated, then for each condition, Qi, on its precondition list
add hQi; Aaddi to agenda'.

5. Causal Link Protection: For every action At in A that might threaten

a causal link Ap
R
! Ac in L choose one of the following:

(a) Demotion: Add At < Ap to O
0, or

(b) Promotion: Add Ac < At to O
0, or

(c) Confrontation: If At's threatening e�ect is conditional with an-
tecedent S and consequent R, then add h:S nMGU(P;:R); Ati to
agenda'.1

If no choice is consistent then fail.

6. Recursive Invocation: UCPOP(hA0,B0,O0,L0i,agenda',�)

Figure 4.1: The UCPOP Partial-Order Planning Algorithm

25

4.2 UCPOP in Prolog

In order to learn control rules for UCPOP using the logic programming platform, a version of

the UCPOP algorithm was implemented in Prolog. Planning decision points in this program are

represented as clause-selection problems (i.e. each decision option is formulated as a separate

clause). As explained in Section 3.2.3, this type of representation allows control rules to be easily

incorporated into program clauses.

Though the planning algorithm is directly based on UCPOP, there are implementation

di�erences. The most signi�cant di�erence is that the Prolog planner operates using a depth-

�rst backtracking search with a depth bound2, while UCPOP normally employs a best-�rst search

strategy. Kambhampati et al. (1996) also run UCPOP in a depth-�rst search mode in their control-

rule learning system. This system is discussed further in related work and to the author's knowledge,

is the only other system besides SCOPE that can learn control rules for UCPOP. To evaluate the

e�ciency of the Prolog planner as compared to the standard Lisp implementation of UCPOP (v2.0)

(Barrett et al., 1993), several experiments were run using problem sets from three domains, which

are also used for testing the learning algorithm. In these tests, which are discussed in Sections 6

and 7, the Prolog planner performed comparably to UCPOP and in some cases performed better.

Though these experiments are not intended to promote a particular search strategy or programming

language, they do indicate that the Prolog version of UCPOP is compatible in terms of e�ciency

to the standard Lisp version of UCPOP.

4.3 Planning Decision Points

There are several important decision points in the UCPOP algorithm where the planner must select

from one of several possible plan re�nements. Control rules can be very bene�cial at these points

by helping the planner to make the right decision. UCPOP decision points include goal selection,

goal establishment (selecting an existing or new operator), threat selection, and threat resolution.

At these points there are often a number of valid plan re�nements that the planner must choose

from. For instance, there may be several new actions that can be added to achieve a particular

goal. In the absence of control information, the Prolog UCPOP will always select the �rst valid

re�nement it �nds; other re�nements may be tried later through backtracking.

An example of a planning decision point from the logistics transportation domain (Veloso,

1992) is shown in Figure 4.2 and Figure 4.3. Figure 4.2 shows a simple problem from this domain

where the goal is to deliver one package from the Austin airport to the Chicago airport. Figure 4.3

shows the beginning of the search process to �nd a solution to this problem. There are two

possible plan-re�nement candidates in this domain for adding a new action to achieve the goal

at-obj(pkg1,Chicago). As shown in the �gure, the package can be transported by either using the

truck or the plane. In this particular case, only one re�nement option (candidate 2) will ever lead

to a desirable problem solution; since this is a inter-city delivery, the package must be transported

using the plane.

1MGU(A,B) is de�ned as a function that returns the most general uni�er of A and B.
2The Prolog planner also includes a loop detection advice that prevents depth-�rst search from getting stuck in

in�nite loops where the same sequence of action is added repeatedly.

26

at-obj(pkg1,austin-airport)

at-airplane(plane1,austin-airport)

at-truck(truck1,austin-airport)

Austin-Airport Chicago-Airport

Solution:

2) fly-airplane(plane1,austin-airport,chicago-airport)
1) load-airplane(pkg1,plane1,austin-airport)

3) unload-airplane(pkg1,plane1,chicago-airport)

at-obj(pkg1,chicago-airport)

Figure 4.2: A simple problem from the logistics transportation domain. The goal of the problem
is to deliver a package from Austin to Chicago.

Scope has been designed to only learn control rules for decisions that might be backtracked

over (e.g. could lead to a failing search path). Though goal selection and threat selection can a�ect

planner performance, these decisions will never be backtracked upon, thus, no control rules are

learned for these points. Search control rules for the remaining decisions types (goal establishment

and threat resolution) are in the form of re�nement-selection rules. If e�ective rules are acquired

for these backtracking points, then in most domains, control rules for other decision points are not

necessary for improving planner performance.

4.3.1 Control Rule Format

Scope learns control rules in the form of re�nement-selection rules that de�ne when a particular

plan re�nement should be applied. A selection rule consists of a conjunction of conditions that must

all evaluate to true for the re�nement to be used. If at least one condition fails, that re�nement will

be rejected, and the next re�nement candidate evaluated. For example, shown below is a selection

rule for the �rst candidate from Figure 4.3, which contains several control conditions.

Select operator unload-truck(?X,?Y,?Z) to establish goal(at-obj(?X,?Z),A1)

If �nd-existing-action(at-obj(?X,?W),Steps,A2) ^

member(same-city(?Z,?W),InitState) ^ valid-ordering(A2,A1,Orderings).

This rule states that the operator unload-truck(?X,?Y,?Z) should be selected to add at-obj(?X,?Z)

when there is another action A2 that asserts object ?X is at a location that is in the same city as

the goal location ?Z, and A2 can be ordered before the action requiring the goal, A1.

Learned control information is incorporated into the planner so that attempts to select an

inappropriate re�nement will immediately fail. Each plan re�nement may have several control

rules that apply to it. Each time the re�nement is considered, at least one of its control rules must

evaluate to true for the re�nement to be applied. On the planning decision shown in Figure 4.3, the

27

at-airplane(plane1,austin-airport)

at-obj(pkg1,austin-airport)
at-truck(truck1,austin-airport)

Initial State:

GOALSTART unload-truck GOALSTART unload-airplane

at-obj(pkg1,chicago-airport) at-obj(pkg1,chicago-airport)

Goal State:

at-obj(pkg1,chicago-airport)

unload-airplane(pkg1,plane1,chicago-airport)
Step-additionStep-addition

unload-truck(pkg1,truck1,chicago-airport)

(1) (2)

Figure 4.3: The top of the search tree used to �nd a solution to the problem shown in Figure 4.2.
There are two possible plan re�nements which can be used to achieve the goal at-obj(X,Chicago).
.

rule shown above would fail for the �rst re�nement candidate. If this was the only rule attached

to candidate 1, it would correctly prevent the planner from selecting it. The planner would them

move on and immediately select candidate 2. Scope can also make selection rules deterministic or

nondeterministic depending on the accuracy of the learned rule. If a ruled is deemed fully accurate,

then a Prolog cut \!" is added directly after the call to the rule, which means once the rule has

correctly �red, that re�nement selection cannot be backtracked upon.

4.4 Summary

This section outlined the UCPOP planning algorithm and how control knowledge is implemented

within its framekwork. UCPOP is a partial-order planning algorithm, which can be used on domains

containing expressive constructs such as universal quanti�cation and conditional e�ects. UCPOP

operates in a recursive fashion; in each call to the planner, a goal is selected from the agenda and

then an operator is selected to achieve the goal. UCPOP records partial orderings of related actions

and always veri�es that a consistent total-ordering of actions exists. If a situation is detected where

an action in the plan could possibly interfere with another action, UCPOP applies several threat

resolution strategies to ensure the plan can still be correctly executed. This process is continued

until all goals have been solved and all threats have been resolved.

In order to stay in the ILP framework, a version of UCPOP has been implemented in

Prolog. In this planner, planning decision points are represented as clause-selection problems

so that control information can be easily incorporated. Scope learns control rules for planning

decisions that might be backtracked upon. These rules are in the form of re�nement-selection rules

which evaluate whether a certain plan re�nement should be selected to resolve a particular planning

subgoal. The process of learning these rules in explained in detail in the next section.

28

Chapter 5

The Scope Control-Rule Learning

System

The Scope learning system automatically acquires domain-speci�c control rules for planning. The

input to Scope is a planning program and a set of training examples. Scope uses the examples to

induce a set of control heuristics that can direct the planner towards promising search paths. These

heuristics are then incorporated into the original planner and a new planning program is produced.

Figure 5.1 shows the three main phases of Scope's algorithm. First, in the example analysis

phase, Scope solves the training examples using the original planner and extracts useful control

information about what planning decisions where made. This information is then passed to the

control rule induction phase where it is used to generate selection rules for choosing plan re�nements.

Finally, learned rules are incorporated into the original planner in the program specialization phase,

and Scope outputs the new planner. The complete algorithm is explained in detail in the next

three sections.

5.1 Example Analysis

In the example analysis phase, the training examples are solved using the existing planner. A trace

of the planning decision process used to solve each example is stored in a proof tree, where the tree

root represents the top-level call to the planner and the tree nodes correspond to di�erent planning

procedure calls. The top part of a sample proof tree is shown in Figure 5.2, which was generated

for the logistics problem introduced by Figure 4.3. The top-level goal in this proof is a call to the

planner that includes the initial agenda (containing the top-level goals) and the initial lists of plan

actions, ordering constraints, and causal-links as input arguments.1 The last argument corresponds

to the output plan solution. The remaining proof tree nodes correspond to subsequent planning

procedure calls which were used to �nd a solution. Proof trees are created for each training example

provided to Scope.

From these proof trees, two main outputs are produced: a set of re�nement-selection exam-

ples and a set of generalized proof trees. Re�nement-selection examples are used to record successful

and unsuccessful applications of a plan re�nement. Generalized proof trees provide a background

1Binding constraints in our system are maintained through Prolog, therefore, the set of binding constraints, B, is
not explicitly represented in planning procedure calls.

29

Training

Examples

Planning

Program

Program

New Planning

Generalized

Proof Trees

Control

Rule

Induction

Program

Specialization

Selection

Rules

Example

Analysis

w/ EBL

Refinement

Selection Exs

Figure 5.1: Scope's High-Level Architecture

context that explains the success of all correct planning decisions. These two pieces of information

are explained in more detail below and are used in the next phase to build control rules.

A re�nement-selection example for a particular plan re�nement is a planning subgoal to

which that re�nement was applied. A correct re�nement selection is an application of that re�ne-

ment found on a solution path. An incorrect re�nement selection is a re�nement application that

was tried and later backtracked over.

As an example, consider the planning problem that was introduced in Figure 4.3. The plan-

ning subgoal represented by this �gure corresponds to the select-new-op procedure call shown in

Figure 5.2. The select-new-op procedure selects a new action to add to the plan to achieve a par-

ticular goal. This procedure has several inputs including the goal to be achieved and one output, a

new action that will achieve the goal. Figure 5.3 shows a stylized version of the subgoal introduced

by Figure 5.2. This subgoal would be identi�ed as a positive re�nement-selection example for re-

�nement candidate 2 from Figure 4.3 (adding the action unload-plane(pkg1,plane1,chicago-airport)),

and would also be classi�ed as a negative selection example for candidate 1 (adding the action

unload-truck(pkg1,truck1,chicago-airport)). Positive and negative re�nement-selection examples are

collected for all sets of competing planning re�nements. Re�nements are considered \competing" if

they can be applied in identical planning decisions, such as the two re�nement candidates shown in

Figure 4.3. Choosing between competing re�nements is where most backtracking occurs in solving

a planning problem. Any given training example may produce numerous positive and negative ex-

30

ADD-ACTION(...)

SELECT-GOAL([at-obj(pkg1,chicago-airport)], at-obj(pkg1,chicago-airport))

MEMBER(at-obj(pkg1,chicago-airport), [at-obj(pkg1,chicago-airport)])

SELECT-NEW-OP(at-obj(pkg1,chicago-airport),...,unload-airplane(pkg1,...,chicago-airport))

UCPOP([goal(at-obj(pkg1,chicago-airport),G)], [action(0,start),action(G,finish)], [0<G], [], [...])

Figure 5.2: Solution Proof of Planning Problem from Figure 4.32

For S = (0:Start,G:Goal),
O = (0 < G),
L = ;,
agenda = (at-obj(pkg1,chicago-airport),G),

Select a new-operator ?OP to establish goal(at-obj(pkg1,chicago-airport),G)

Figure 5.3: The planning subgoal that represents the decision point shown in Figure 4.3.

amples of re�nement-selections. These selection examples are used later in induction to represent

positive and negative examples of when to apply particular plan re�nements.

The second output of the example analysis phase is a set of generalized proof trees. Informa-

tion from these proof trees is utilized in the induction phase to help build control rules. Generalized

proofs are produced by using the following procedure. Standard explanation-based generalization

(EBG) techniques (Mitchell et al., 1986; DeJong & Mooney, 1986) are used to generalize each

training example proof. This generalization is performed by \retracing" the proof steps that were

used to create the original trace using a goal with uninstantiated input arguments. The goal of

this generalization is to remove proof elements that are dependent on the speci�c example facts

while maintaining the overall proof structure. After EBG has been applied, some tree nodes can

still contain complex lists as arguments. These arguments correspond to items such as the list of

plan actions, the list of plan ordering constraints, etc. In order to promote more general control

knowledge, any list data structures remaining in a generalized proof tree are generalized directly

to variables.

An example of the top part of a generalized proof tree is shown in Figure 5.4. This proof

was extracted from the solution trace shown in Figure 5.2 and then generalized using the technique

just described. The generalized proof of an example, such as this one, provides a context which

2For space purposes, some information is not shown here. For instance, action data structures should also contain
precondition and e�ect lists. Thus, the data structure for action 0 would contain the initial state as a list of e�ects.

31

ADD-ACTION(...)

UCPOP(Agenda, Actions, Orderings, Links, Plan)

SELECT-NEW-OP(at-obj(X,Z),...,unload-airplane(X,Y,Z)))

SELECT-GOAL(Goals, at-obj(X,Z))

MEMBER(at-obj(X,Z), Goals)

Figure 5.4: Generalized Proof Tree of Solution Trace from Figure 5.2

\explains" the success of correct decisions.

At the end of the example analysis phase, the set of generalized proof trees and all sets of

re�nement-selection examples are passed to the control-rule induction phase where they are used

to construct control rules.

5.2 Control Rule Induction

The goal of the control-rule induction phase is to produce an operational de�nition of when it is

useful to apply a plan re�nement. Given a re�nement candidate, C, Scope builds a de�nition of

the concept \planning subgoals for which C is useful". For example, in the logistics transportation

domain, such a de�nition is learned for each of the re�nements shown in Figure 4.3. In this

context, control rule learning can be viewed as relational concept learning. A number of systems

have been designed to tackle this type of learning problem (Quinlan, 1990; Muggleton, 1992; Zelle

& Mooney, 1994a). Scope employs a version of Quinlan's Foil algorithm to learn control rules

through induction.

The choice of a Foil-like framework is motivated by a number of factors. First, the basic

Foil algorithm is relatively easy to implement and has proven e�cient in a number of domains.

Second, Foil has a \most general" bias which tends to produce simple de�nitions. Such a bias is

important for learning rules with a low match cost, which helps avoid the utility problem. Third,

it is relatively easy to bias Foil with prior knowledge (Pazzani & Kibler, 1992). In Scope's case,

it utilizes the information contained in the generalized proof trees of planning solution traces to

bias Foil towards useful control information.

5.2.1 foil in scope

As explained in Section 3.2, Foil attempts to learn a concept de�nition in terms of a given set

of background predicates. This de�nition is composed of a set of Horn clauses that cover all

32

of the positive examples of a concept, and none of the negative examples. In acquiring control

rules for planning, the concept de�nition learned by Scope is when to apply a particular plan

re�nement. The re�nement-selection examples collected in the example analysis phase provide the

sets of positive and negative examples for when each re�nement should be applied.

Scope uses an intensional version of Foil where background predicates can be de�ned as

Prolog programs (Mooney & Cali�, 1995) instead of requiring an extensional representation as in

standard Foil. Instead of matching a literal against a set of tuples to determine whether or not

it covers an example, the Prolog interpreter is used to prove whether or not the literal can be

satis�ed using its intenstional de�nition. Thus expanded tuples are not maintained and positive

and negative examples of the target concept are retested for each alternative specialization of the

developing clause.

One major drawback to Foil (and other similar inductive algorithms) is that the hill-

climbing search for a good antecedent to add to a clause can easily explode, especially when there

are numerous background predicates with large numbers of arguments. When selecting each new

clause antecedent, Foil tries all possible variable combinations for all predicates before making its

choice. This search grows exponentially as the number of predicate arguments increases. Scope

signi�cantly reduces this search by utilizing the generalized proofs of training examples. By ex-

amining the proof trees, Scope identi�es a small set of potential literals that could be added as

antecedents to the current clause de�nition. Literals are added in a way that utilizes variable con-

nections already established in the proof tree. This approach nicely focuses the Foil search by

only considering literals (and variable combinations) that were found useful in solving the training

examples. The process of utilizing generalized proof trees to bias the Foil search is explained in

more detail in the next section.

5.2.2 Building Control Rules from Proof Trees

The generalized proofs of training examples can be seen as giving the context for the appropriate

applications of plan re�nements within a proof. Some nodes of a generalized proof tree contain

calls to \operational" predicates. These are usually low-level predicates that have been classi�ed

as \easy to evaluate" within the problem domain, and thus can be used to build e�cient concept

de�nitions. The operational nodes of a proof represent all of the primitive conditions that had to be

satis�ed for the proof to succeed. Scope employs induction in an attempt to identify a small set of

these simple tests that will provide necessary guidance in determining whether the application of a

plan re�nement is likely to lead to a solution. Since test conditions that verify a planning decision

are sometimes not executed until much later, it is important to consider an entire example proof

instead of just the surrounding context of a particular decision. For instance in the blocksworld

domain, the planner might not verify that choosing the action putdown(a) to establish the goal

clear(a) is correct until much later in the planning process when it checks to see if some other

action has asserted holding(a).

Scope employs the same general covering algorithm as Foil, which was presented in Fig-

ure 3.5, but modi�es the clause construction step. In Scope, clauses are successively specialized by

considering how their target re�nements were used in solving training examples. Several di�erent

types of antecedents can be added to a developing clause. First, antecedents can be pulled directly

from generalized proof trees. Scope can also use other types of antecedents such as negated proof

33

Initialize C to the target predicate.
Initialize T to contain the positive examples in Remaining and all the negative

examples.
While T contains negative tuples or a clause with positive gain cannot be found

Create a set S of all possible specializations of C by adding the following to
the clause:

An operational literal from a generalized proof tree
A negated literal from a generalized proof tree
A non-codesignation constraint over variables appearing in C
A determinate literal
A literal de�ned in background knowledge

Select the clause specialization C 0 from S that scores highest using the
Foil information gain metric
Form a new training set T 0 that contains all positive and negative examples

that sati�y C 0.
Replace T by T 0.

Figure 5.5: The \�nd-a-clause" step in the induction algorithm used by Scope_

tree literals, determinate literals, noncodesignation constraints, relational clich�es, and other back-

ground de�nitions. Di�erent types of antecedents are explained in detail later in this section. The

pseudocode in Figure 5.5 summarizes the procedure Scope uses for adding a literal to a clause C.

For example, suppose we are learning a de�nition for when each of the re�nement candidates

in Figure 4.3 should be applied. The program predicate representing this type of re�nement is

select-new-op, which is shown below.

select-new-op(Goal,Steps,Orderings,Links,Agenda,ReturnOp)

This predicate is de�ned with several arguments including the unachieved goal and an output

argument for the selected operator.3

For each plan-re�nement candidate, Scope begins with the most general de�nition possible.

For instance, the most general de�nition covering candidate 2's re�nement-selection examples is

Clause 1 in Figure 5.6. This overly general de�nition covers all positive examples and all negative

examples of when to apply candidate 2, since it will always evaluate to true. Clause 1 can be

specialized by adding antecedents to its body. Most specializations are created by unifying the

head of Clause 1 with a (generalized) proof subgoal that was solved by applying candidate 1 and

then adding an operational literal from the same proof tree which shares some variables with the

subgoal. (Other possible specializations can be created by adding other types of literals, which are

described in the next section.) One possible specialization of Clause 1 is shown by Clause 2 in

Figure 5.6. Here, a proof tree literal has been added which checks if there is an existing plan step,

S2, that establishes the goal airport(Z).

Variables in a newly added antecedent can be connected with the existing rule head in

several ways. First, by unifying a rule head with a generalized subgoal, variables in the rule

head become uni�ed with variables existing in a proof tree. All operational literals in that proof

3Plan state information (i.e. the list of current plan steps, ordering constraints, causal links, and agenda) is also
automatically included as arguments to any re�nement predicate.

34

select-new-op(Goal,Steps,Ords,Links,Agenda,unload-airplane(X,Y,Z)) :- (1)
TRUE

+

select-new-op((at-obj(X,Z),S1),Steps0,Ords,Links,Agenda,unload-airplane(X,Y,Z)) :- (2)
establishes(airport(Z),Steps1,S2).

+

select-new-op((at-obj(X,Z),S1),Steps,Ords,Links,Agenda,unload-airplane(X,Y,Z)) :- (3)
establishes(airport(Z),Steps,S2).

Figure 5.6: The process of constructing a clause. Scope begins with a general clause de�nition
(1). The clause is then specialized by adding antecedents (2) and by unifying variables of the same
type (3).

that share variables with the generalized subgoal are tested as possible antecedents. This method

initially establishes many relevant variable connections between a rule head and its antecedents.

For instance, in Clause 2, the variable Z appears in both the clause head and the newly added

antecedent.

A second way variable connections may be established is through the standard Foil tech-

nique of unifying variables of the same type. When Scope tests a literal for use in a control rule,

the literal may contain input parameters that are not bound by the rule head or other existing

literals in the rule. Since literals are extracted from di�erent parts of the proof tree, some variable

connections may be lost, causing some parameters in a literal to be unbound. If such parameters

exist, Scope attempts to unify these parameters with terms of the same type that are already

present in the rule. For example, Clause 2 from Figure 5.6 has an antecedent with an unbound

input, Steps1, which does not match any other variables in the rule. Scope can modify the rule, as

shown by Clause 3, so that the Steps1 is uni�ed with a term of the same type from the rule head,

Steps0. For each unbound input parameter, all possible variable uni�cations are tested as possible

specializations of the current rule and the specialization which maximizes Foil's information-gain

heuristic is selected.

5.2.3 Types of Antecedents

Scope considers several di�erent types of control rule antecedents during induction. Besides pulling

literals directly from the generalized proof trees, Scope can also use negated proof literals, deter-

minate literals, literals representing non-codesignation constraints, relational clich�es, and other

background knowledge.

Negated Antecedents

A good reason for not selecting one plan-re�nement candidate is that another re�nement is prefer-

able; therefore, a good antecedent for one re�nement's control rule can often be successfully used

35

as a negated rule antecedent for a competing re�nement. Potential negated antecedents for a par-

ticular re�nement's control rules are determined by combining the sets of possible rule antecedents

for all other competing re�nements. Negated copies of these antecedents can be added to a rule

in several ways. Standard Foil only adds antecedents to a rule until all negative examples are

removed. If there are any positives left to cover, a new rule is created. Alternatively, Scope can

consider adding negated antecedents in order to cover more positives. Instead of only appending

negated antecedents to the end of a rule, the Scope induction algorithm considers conjunctively

grouping them with existing negated antecedents. This procedure can sometimes increase the num-

ber of positive examples covered by a rule without covering any additional negatives. For example,

assume the induction algorithm is considering adding the antecedent not(ant4) to the following

rule.

rulehead :- ant1, not(ant2), ant3.

Scope can form either of the two rules shown below, where in standard Foil, only the �rst rule

would have been considered.

rulehead :- ant, not(ant2), ant3, not(ant4).

rulehead :- ant, not(ant2, ant4), ant3.

The �rst rule is more speci�c than the original rule and could possibly exclude more negative

examples. The second rule, on the other hand, is more general than the original rule and could

cover more positive examples.

Determinate Literals

Determinate literals can be used to introduce new variables into a clause (Quinlan, 1991; Mug-

gleton, 1992). These are literals which produce only one possible binding for each literal output

parameter, and thus their inclusion does not signi�cantly increase the inductive search space. De-

terminate literals are typically not added through standard induction since they produce little or

no gain. However, they can still be useful as rule antecedents by introducing new information

into a rule. In Scope's induction procedure, all possible determinate literals are automatically

added when a new clause is created. If any prove unnecessary they are simply pruned after clause

construction has ended. Scope currently considers adding two types of determinate literals, �nd-

initial-state(Steps,InitState) and �nd-�nal-state(Steps,FinalState); both input a list of plan steps and

output the list of propositions representing the initial or �nal state. These literals are included so

control rules can easily access information about the initial and goal states.

Non-codesignation constraints

Another type of potential literal is a non-codesignation constraint of the form Xi 6= Xj , where Xi

and Xj are variables existing in a clause. This type of antecedent checks if two variables (of the

same type) are nonuni�able. For example, it may be bene�cial to check if two actions are not the

same, as in the following rule from the blocksworld domain.

36

select-new-op((S1,clear(X)),Steps0,Orderings,Links,Agenda,putdown(X)) :-

establishes(holding(X),Steps0,S2),

S1 6= S2.

This rule states that the action putdown(A) should be selected to achieve the goal clear(A) if there

is an existing action, S2, that establishes holding(A) and S2 is not the same action which requires

clear(A).

Relational Clich�es

Another feature that has been added to Scope's algorithm is the use of relational clich�es. Often

during induction, an individual literal may not provide any gain when tested as a possible rule

antecedent. However, when grouped with another related literal, the conjunction of the two literals

may provide signi�cant gain. In standard hill-climbing, this useful combination of literals may never

be discovered if neither literal provides any gain individually. Furthermore, searching through all

possible combinations of literals is not a practical consideration. To address this problem, Silver-

stein and Pazzani (1991) introduced relational clich�es to suggest potentially useful combinations of

predicates during relational learning. These clich�es provides an e�cient means of searching through

a restricted subset of the space of predicate combinations.

Relational clich�es consist of two parts:

1. A pattern, which is an abstract description of a conjunction of predicates.

2. A set of restrictions, which constrain the predicates and variable bindings that can be used

to �ll the associated pattern.

Scope has a number of di�erent relational clich�es that it can utilize. Some clich�es are domain-

dependent while others are domain-independent and have been used successfully in all domains

tested. For example, two domain-independent relational clich�e patterns are listed below.

Pattern1: member(A,C), member(B,C)

Restrictions: C must be a list of initial or goal state predicates.

Pattern2: not(member(A,C)),not(member(B,C))

Restrictions: C must be a list of initial or goal state predicates.

These two patterns allow induction to test for concepts present in the initial and �nal

states that may be de�ned by two conditions. These particular patterns were introduced based

on observations of Scope's behavior on the logistics transportation domain. In this domain, it is

often useful to check whether an object is in one city in the initial state and a di�erent city in

the goal state. For instance, if the current goal is to move object X to a certain location Y, then,

the predicates member(at-obj(X,Z),InitState) and member(same-city(Y,Z),InitState) could be used to

determine whether object X must be transported between two di�erent cities. To represent this

concept, the two general patterns listed above are used. These patterns could be made more speci�c

by adding more specialized restrictions, however, by keeping their description general other useful

concepts contained in the initial and goal states may be discovered. Also, these two patterns are not

37

forced to be domain-speci�c and have been found useful in other domains besides the transportion

domain which originally inspired them.

To use relational clich�es in our induction algorithm, additional rule specializations are gener-

ated by adding all combinations of predicates that �t a de�ned pattern and associated restrictions.

These specializations are then added to the pool of all possible rule specializations from which the

rule with the highest gain is chosen. Once an instantiated relational clich�e has been found useful,

this instantiatation is cached so that it can be easily used in the future with no search required.

Caching relational clich�es is discussed further in Section 5.6.

Background Knowledge

One last type of antecedent are literals de�ned in background knolwedge provided by the user.

These are literals that are not included in the planning program but could be useful in building

control rules.

The ability to add background knowledge allows the user to add literals de�nitions that

might not be discovered through normal hill-climbing. For instance, a literal de�nition may contain

a series of calls to planning program predicates whose combination would not be discovered through

hill-climbing and the number of predicates involves may be too large to specify e�ciently using a

relational clich�e. Or, a background literal could be used to specify a concept related to a quality

metric, but it is not necessary for correct planning. Background de�nitions may also contain more

expressive features such as recursive concepts or disjunctive conditions. For instance, the following

recursive-literal de�nition was found useful in constructing rules for the blocksworld domain:

above(Block1,Block2,InitState) :-

member(on(Block1,Block2),InitState).

above(Block1,Block2,InitState) :-

member(on(Block1,X),InitState),

above(X,Block2,InitState).

The above(Block1,Block2,InitState) literal lets a rule check if one block is located above another

block in the same stack in the problem initial state.

Literals included as background knowledge are made available to Scope by adding a new

Prolog clause de�nition. Rule specializations are generated using these literals by adding all possible

variations of each background literal. Variations of literals are generated by matching each variable

in the literal to another variable of the same type already present in the current rule. All variables

in a background literal must be declared a particular type so they can be matched to other rule

antecedent variables. Rule specializations created in this manner are then added to the pool of

specializations from which the next rule modi�cation will be selected.

5.3 Program Specialization Phase

Once rules have been learned for when to select each plan re�nement, these rules are passed to the

program specialization phase. In this phase, the learned control information is incorporated back

38

select-new-op((at-obj(X,Loc),Aid),Steps,Agenda,unload-airplane(X,P,Loc)) :-
�nd-init-state(Steps,Init),
member(at-obj(X,Loc2), Init),
not(member(same-city(Loc,Loc2),Init)),
member(airport(Loc), Init).

select-exist-op((at-truck(T,Loc),Aid),Steps,Agenda,init-state)) :-
�nd-init-state(Steps,Init),
member-pred(at-truck(T,Loc),Init),
not(member((Aid2,drive-truck(T,Loc,Loc2)),Steps),Aid 6=Aid2).

Figure 5.7: Learned control rules for the logistics domain.

into the original planner. The basic approach is to guard each plan re�nement candidate with the

learned selection information. This forces a re�nement application to fail quickly on plan subgoals

to which the re�nement should not be applied.

A plan re�nement is \guarded" with control information by incorporating the learned control

conditions into the clause that represents the selection of that re�nement. This process is similar

to the one described in Section 3.2.3. A copy of the head of the learned control clause is appended

to the end of the original program clause. The learned rule is then added as a program clause. A

re�nement may have more than one control clause relating to it. Each of these control rules (which

can be considered as one disjunctive rule) is then added to the program as a separate clause. A

cut (\!") is appended to the body of each newly added control clause since there is no reason to

consider multiple proofs of why a particular plan re�nement should be used.

A decision is also made as to whether the control information has made the planner deter-

ministic. If a re�nement rule covers no incorrect selection decisions in the induction phase, then

it is assumed that the rule is fully accurate and no other re�nement candidates will need to be

considered. This type of rule is marked as deterministic by adding a Prolog cut (!) after the call

to the rule clause, which will prevent any backtracking over the re�nement selection if all rule

conditions are true. If a re�nement rule could not exclude all incorrect decisions in the previous

phase, then the planner is still allowed to backtrack over the selection of that re�nement (i.e. no

cut is added). This type of rule can still substantially improve planning e�ciency by preventing

many inappropriate applications of that re�nement.

Figure 5.7 shows two learned rules for the logistics transportation domain. The �rst rule

selects the new action unload-airplane(X,P,Loc) to achieve the goal at-obj(X,Loc) when X is found

to be initially located in a di�erent city than the goal location and when the goal location is an

airport. The second rule uses the initial state to achieve the goal at-truck(T,Loc) if there does not

exist another action in the plan drive-truck(T,Loc,Loc2) that moves the truck to a new location.

5.4 Why Multi-Strategy Learning?

One question brought out by the last few sections, is what happens if a pure induction algorithm

were used to learn control rules without using EBG to bias the search? Or, on the other hand,

39

how would a pure EBL approach perform? This section discusses the bene�ts of a multi-strategy

learning approach to the problem of learning search control for planning.

5.4.1 Using Pure Induction to Learn Control Rules

One possible approach to learning control rules for planning is to employ a pure inductive algorithm.

For instance, a similar inductive algorithm to the one presented here could be used without using

EBG to bias the search. Background information could be provided by using the same pool of

operational planning predicates as used by Scope to construct rules.

Unfortunately, a pure inductive search in this setting would most likely prove computation-

ally infeasible. Since no generalized proof trees would be constructed, the induction engine would

be responsible for binding all variables in each learned clause. The cost of searching through all

the di�erent variabilizations of all the background predicates would be extremely high, and likely

be intractable to perform.

To better explain the cost of a pure inductive search, a brief theory analysis of the Foil

algorithm is presented below. The main element contributing to the size of Foil's search space is

the number of di�erent literals that must be searched through in order to extend the body of a

clause. Pazzani and Kibler (1992) show that this number can be bounded by the following formula:

NumLits � 2 � AllPred � (Old+MaxA� 1)MaxA

where AllPred is the total number of available background predicates, Old is the maximum number

of old variables in the clause, andMaxA is the maximum arity of any predicate. One can infer from

this formula that additional predicates increase the size of the search space a linear amount, while

increasing the arity of the predicates increases the size of the search space exponentially. Also, the

search space increases exponentially with the number of distinct variables in the clause.

Most past approaches that have utilized a pure inductive search for acquiring control knowl-

edge have only searched through a handful of simple predicates. For instance, Grasshoppper

(Leckie & Zuckerman, 1993), was applied to a state-based planner and does an inductive search

on whether certain conditions are present in the current world state. Conversely, the operational

planning predicates used by Scope can be much more complicated and often have a number of ar-

guments (some up to ten). Thus, an inductive search through all possible variablilizations of these

predicates would likely prove infeasible, due to the exponential explosion caused by the number of

predicate arguments that must be variabilized.

Scope circumvents part of this search problem by using information from generalized proof

trees to constrain the search to only certain variable combinations. When looking for a new an-

tecedent to add to a clause, many of the literals examined by Scope have all variables already

bound to other variables in the current clause. Since both the literals and clause heads are ex-

tracted directly from generalized proof trees, many variable connections established in these trees

are preserved when constructing clauses. Some literals do have unbound variables, so Scope may

have to search through some di�erent variabilizations. However, since many literal variables are

already bound, the number of variabilizations searched by Scope will be much less than those

searched through by a pure Foil approach. Scope can also use extra background information,

which contains predicates not found in planning proof trees, where all variable connections must

40

be made by the induction engine. However the use of these extra background predicates is very

limited, so as not to signi�cantly increase the inductive search. Thus, overall, the search space

examined by Scope is usually signi�cantly smaller than the search space examined by a pure

inductive approach.

5.4.2 Using Pure EBL to Learn Control Rules

It is also possible to learn control rules for planning using a purely explanation-based approach.

UCPOP+EBL is a learning system that learns control rules for planning by utilizing EBL to

explain planning failures (Kambhampati et al., 1996), and is discussed in more detail in Chapter 9.

This learning system has been successfully used to acquire rules that improve the performance of

UCPOP. However, as mentioned in Section 3.1, rules learned using EBL alone can often be overly-

speci�c and complex where the cost of applying the rules outweighs their savings. In Section 9.2,

an experimental comparison of Scope and UCPOP+EBL is presented where Scope is shown to

outperform UCPOP+EBL in several di�erent experiments. In particular, EBL is shown to be

e�ective at improving planning performance for a very expressive domain, while Scope, which uses

a combination of EBL and induction, is shown to be much more robust at applying to di�erent

domain representations.

5.5 Improving Upon Di�erent Planning Metrics

By learning rules that avoid search paths that lead to backtracking, Scope can signi�cantly improve

the e�ciency of of a planner (Estlin & Mooney, 1996). Scope can also be used simultaneously to

improve the quality of plans by using a particular method to collect training data.

In order to improve plan quality, as well as e�ciency, Scope is trained on only high-quality

solutions. For instance, when using plan length as a quality evaluation metric, Scope should be

trained on solution plans containing a low number of steps. Or if a minimal plan execution time is

the desired quality metric, Scope should be trained on solution plan with small execution times.

This approach causes Scope to collect positive and negative examples of when to apply a plan

re�nement based on �nding a high-quality plan. Thus, it learns rules that not only avoid dead-end

paths, but also that avoid paths that lead to low-quality solutions.

In order to train Scope on high-quality solutions, several di�erent techniques can be em-

ployed to generate training problem solutions. One is to allow the planner to simply search for

optimal or high-quality solutions. For example, when plan length is the quality metric, the search

method depth-�rst iterative deepening (DFID) (Korf, 1985) can often be used to guarantee optimal

solutions. For other metrics, such as plan execution time or cost, a branch and bound search can

be used that focuses on �nding low-cost plans for that metric. Or, it may be possible to use an A�

star search (Hart, Nilsson, & Raphael, 1968) if there exists an admissible heuristic for that quality

metric.

Another technique is to employ a human domain expert to solve the training problems.

When presented with a problem, a domain expert can often easily provide a high-quality solution.

In many real-world settings, this is a viable option, since a domain expert is often available.

41

5.6 Improving Learning Time

Two additional features have been added to Scope to keep learning time at a tractable level. These

are caching useful relational clich�es and employing a method for incremental training.

5.6.1 Caching Relational Clich�es

Relational clich�es can be very valuable in �nding accurate rules, unfortunately, they can also dra-

matically increase the inductive search space. For each clich�e used, there may be a number of

di�erent literal combinations that �t the speci�ed pattern. In order to decrease this extra search,

relational clich�es are only considered for small numbers of training examples or when an accu-

rate rule cannot be learned through standard hill-climbing. Speci�cally, Scope uses the following

procedure. For small numbers of training examples, Scope searches through all relational clich�e

combinations and caches any useful instantiations of the more general patterns. Then once the

number of training examples exceed a prede�ned limit4, only cached clich�es are immediately con-

sidered for addition to a clause. Scope searches through all relational clich�e patterns only if no

single literal or cached pattern is found to have any gain. Often, Scope can �nd many useful

relational combinations early in training and by caching these, Scope can avoid the need for much

extra search later in the training process.

5.6.2 Incremental Training

Scope has also been designed to run in an incremental training mode, which can often save time

and help the system to be less memory-intensive. Scope was originally designed to run as a batch

system where all training examples were input to the system at the same time. However, in order

to create a more e�cient system, Scope has been modi�ed to run in an incremental mode where

smaller sets of training examples are input to Scope. In this mode, Scope reads in a small set of

examples, learns control rules for these examples, and then reads in a new set of training examples

to examine. Any learned control rules can be saved and then re-used in later trials. This process

works in the following manner. For each set of training examples, Scope caches any learned rules.

In the next trial, before performing induction to build new rules from scratch, any cached rules

are �rst tested. If any of the cached rules are found to be fully accurate on the current set of

re�nement-selection examples, then the rule with the highest gain is selected (i.e. the rule which

covers the largest number of positives). Any positive re�nement-selection examples covered by this

rule are then removed and the process is repeated until no accurate cached rules can be found or

all positive re�nement-selection examples have been covered. If any positive examples remain, then

a new rule (or set of rules) is built from scratch to cover them.

It is often the case that a very good control rule is learned based on a very small number of

train examples. This technique exploits this fact by caching rules built after only a small amount

of learning and then re-using them when training on larger numbers of examples without incurring

large amounts of learning time. Training in an incremental mode can thus greatly cut down on

learning time, especially when many good rules are learned for small numbers of training examples.

4This limit was set at 10 or 20 examples in the experiments discussed in this dissertation.

42

5.7 Summary

This section presented the Scope learning system, which automatically acquires search-control

knowledge for planning systems. This knowledge is acquired in three main phases. In the �rst

phase, Scope solves any input training examples using the original planning program and extracts

two pieces of control information. The �rst is a set of re�nement selection examples that record

when plan re�nement were successfully and unsuccessfully applied in solving the training examples.

The second is a set of generalized proof trees which provide a background context that explains the

success of correct planning decisions. These are constructed by applying explanation-based gener-

alization techniques to proofs of the training examples. In the second phase of the algorithm, these

two pieces of information are used to construct control rules. Here, the Foil induction algorithm is

employed to construct a de�nition for when to apply each planning re�nement. Information in the

generalized proof trees is used to bias the Foil search towards useful control information. Once

a set of rules has been constructed for when to apply each re�nement, the rules are passed to the

third phase of the algorithm which incorporates them into the original planner and outputs a new

planning program.

The next few chapters presents results demonstrating that Scope can e�ectively learn con-

trol knowledge that improves planner performance in several di�erent domains.

43

Chapter 6

Experimental Evaluation - Improving

E�ciency and Plan Length

This section describes a number of experiments that test Scope's ability to improve both the

e�ciency of a plan and also the plan quality metric of solution length. Experiments are presented

in two domains where Scope is shown to signi�cantly improve upon both these factors. Scope is

also shown able to scale gracefully to increasingly hard problems.

6.1 Domain Descriptions

The logistics transportation domain of Veloso (1992) was adopted for one set of experiments. In

this domain, packages must be delivered to di�erent locations in a number of cities. Packages

are transported between di�erent cities by airplane and between locations in the same city by

truck. For the second domain, the standard set of blocksworld operators from Nilsson (1980) were

used. The logistics domain contains six operators and blocksworld domain contains four. Operator

descriptions for both domains can be found in Appendix A.

In both the logistics and blocksworld domain, plan quality is measured by the length of the

plan, i.e. shorter plans are considered more desirable. Thus, the goal in these domains, was to

improve planning e�ciency and to produce solutions of minimal length.

6.2 Focusing Scope on Improving E�ciency and Plan Length

In order to improve plan quality, as well as e�ciency, Scope is trained on only high-quality solu-

tions. For the blocksworld domain, DFID was used to generate optimal training-problem solutions

of minimum length. However, for the logistics domain, DFID could not solve most of the training

problems in a reasonable amount of time. For this domain, a bootstrapping technique was used to

acquire high-quality solutions for the training problems. First, a training set of simpler problems

was generated that could be e�ciently solved by DFID. For this case, problems containing only

three packages were used. Scope was trained on these problems and a set of control rules was

generated. These rules were then used to solve problems in the actual training set (containing 5-7

packages). In the majority of the 5-7 package problems, this technique was able to produce optimal

44

(or near-optimal) solutions1. About 3% of the problems could not be solved by the control rules.

Optimal solutions for these problems were entered by hand. This training approach allows Scope

to be easily trained on optimal (or near-optimal) solutions for harder problems, with very little

help from the user.

6.3 Experimental Design

The goal of these experiments was to improve both planner e�ciency and also the quality of

generated solutions. Training and test problems were generated for each domain by using a random

problem generator which produced random initial and �nal states. In the logistics domain, states

were produced by placing packages in random locations in di�erent cities. Problems in this domain

contained between �ve and seven packages, two trucks and two planes, which were distributed

among locations in two cities. In the blocksworld, problems were generated by using the technique

described in Minton (1988), where each block is placed either on the table, on top of another block,

or is held by the arm. Problems contained between three and six blocks and had between one and

four goals.

In both domains, Scope was trained on separate examples sets of increasing size. Since plan

length was used as the quality metric in these domains, Scope was always trained on solutions of

minimal length. In blocksworld, these were generated by using DFID to solve the training problems,

and in logistics, these were generated by using a bootstrapping technique to solve the training

problems, as explained in the preceding section. In each domain, a test set of 100 independently

generated problems was used to evaluate performance. Five trials were run for each training set

size, after which results were averaged. No time limit was imposed on planning in either domain,

but a uniform depth bound on the plan length was used during testing that allowed for all problems

to be solved. In the blocksworld the depth bound used was set at 8 and in the logistics domain,

the depth bound was set at 100. Tests in the blocksworld were performed on an Ultra Sparc 2 and

in the logistics domain on an Ultra Enterprise 5000.

For each trial, Scope learned control rules from the given training set and produced a

modi�ed planner. Since Scope only specializes decisions in the original planner, the new planning

program is guaranteed to be sound with respect to the original one. Unfortunately, the new planner

is not guaranteed to be complete. Some control rules could be too specialized and thus the new

planner may not solve all problems solvable by the original planner. In order to guarantee the

completeness of the �nal planner, a strategy used by Cohen (1990) is adopted. If the �nal planner

fails to �nd a solution to a test problem, the initial planning program is used to solve the problem.

When this situation occurs in testing, both the failure time for the new planner and the solution

time for the original planner are included in the total solution time for that problem.

For comparison purposes, one other search method was used to solve the test problems.

Best-�rst search was also evaluated at solving the test problems. These tests were done using

the standard Lisp implementation of UCPOP (Barrett & et al., 1995), thus some results could be

partially due to implementation di�erence between Prolog and Lisp.

1These solutions are not guaranteed to be optimal since it is possible the rules are too specialized and could miss
an optimal solution. However, a number of problems were checked by hand, and in all cases optimal solutions had
been produced.

45

6.4 Results

Figure 6.1 and Figure 6.2 show the measured improvements in planning e�ciency for both domains.

The times shown represent the number of seconds required to solve all of the problems in the test

sets after Scope was trained on a given number of examples. The best performance occurred

when the planner utilized the learned control information. In these tests, Scope was able to

produce a new planner that was signi�cantly faster than the original depth-�rst planner. In the

logistics domain, the new planner was an average of 8 times faster than the original planner and

in the blocksworld domain it was an average of 23 times faster. Also, at all points where control

knowledge was added, no backtracking occurred in either new planner.

In both domains, especially the logistics domain, Scope was able to learn some very good

control rules with only a few training examples, and thus could immediately produce signi�cant

speedup. Then, as more and more training examples are seen, Scope picks up more specialized

control rules that help reduce the planning times either further. Overall, in the logistics domain,

an average of 20 rules were learned and in the blocksworld an average of 19 rules were learned.

Best-�rst search performed signi�cantly worse than both depth-�rst search and Scope on

both the logistics and blocksworld domains. In the blocksworld domain, best-�rst could solve all

of the test problems, however the planning time required was greater than that of the depth-�rst

Prolog planner. In general, the best-�rst search seemed able to solve a large number of problems

very quickly, but there were a small number of problems for which it had great di�culty in �nding

a solution. In the logistics domain, best-�rst could solve only three of the test problems using a

search-limit of 200,000 plans. The �nal planning time was over �fteen hours and was thus too large

to display in the graph.

Plan quality improvements in these domains are shown in Figures 6.3 and 6.4. The lengths

shown in the graphs represent average solution lengths returned for the test problems. In the

blocksworld, the average length of all optimal solutions is also shown (which was produced by

using DFID). Optimal solutions for the logistics problems could not be generated in a reasonable

amount of time so this average could not be calculated. In the logistics domain, Scope was able to

return signi�cantly shorter solutions than those produced by using the original depth-�rst planner;

average solution lengths are reduced from 35.2 steps to 25.1 steps. As already mentioned, best-

�rst search could only solve a few problems in this domain and thus the average plan lengths for

this search method are not shown. In the blocksworld domain, Scope was able to produce a new

planner that returned near-optimal solutions, and again, returned signi�cantly shorter solutions

than those returned by depth-�rst alone. In this domain, Scope reduced average solution lengths

from 5.07 to 3.91 where the average solution lengths of optimal solutions was 3.70. Best-�rst search

generated average solutions lengths of 3.78 and thus did not achieve optimal solutions, but did

produce slightly better solutions than those produced by Scope.

As mentioned earlier, the new planner produced by Scope is guaranteed to be correct but

it is not guaranteed to be complete. It is possible that the control rules produced by Scope could

be too specialized and might prevent the planner from solving all problems. However, for most

experiments presented in this dissertation, this problem occurred very infrequently; after training,

the new planner could usually solve between 97%-100% of the test problems that could be solved

before learning. And as shown in the next chapter, the new planner can sometimes solve a much

higher percentage of test problems than the original planner.

46

0

200

400

600

800

1000

0 20 40 60 80 100

R
un

 T
im

e
(S

ec
)

Training Examples

Depth-First
SCOPE (Depth-First + control rules)

Figure 6.1: E�ciency performance in the logistics transportation domain.

0

200

400

600

800

1000

0 20 40 60 80 100 120 140

R
un

 T
im

e
(S

ec
)

Training Examples

Depth-First
Best-First (Lisp)

SCOPE (Depth-First + control rules)

Figure 6.2: E�ciency performance in the blocksworld domain.

47

0

5

10

15

20

25

30

35

0 20 40 60 80 100

A
ve

ra
ge

 P
la

n
Le

ng
th

s

Training Examples

Depth-First
SCOPE (Depth-First + control rules)

Figure 6.3: Quality performance in the logistics transportation domain.

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140

A
ve

ra
ge

 P
la

n
Le

ng
th

s

Training Examples

Depth-First
Optimal (DFID)

Best-First (Lisp)
SCOPE (Depth-First + control rules)

Figure 6.4: Quality performance in the blocksworld domain.

48

Figures 6.5 and 6.6 show the percentage of test problems that could be solved by the new

planner for the experiments just presented. Each graph shows the percentage of test problems

solved after training on a certain number of problems. In the logistics domain, the new planner was

able to cover around 80% of the test problems after begin trained on just a few examples. Once

the learner saw up to 100 training examples, the new planner was covering close to 100% of the

test problems. In the blocksworld domain, the new planner was also able to quickly cover a large

percentage of the test examples and was again able to cover close to 100% after all training had

completed.

6.5 Scalability

Another set of experiments were performed to evaluate how Scope performed on harder problems.

These tests were done using increasingly complex problems in the logistics transportation domain.

Two di�erent experiments were performed, one where Scope was was trained on simple problems,

and one where Scope was retrained on slightly harder problems. In both experiments, results were

evaluated using several di�erent test sets of increasing complexity. The goal of these experiments

was two-fold; one, to see how well rules learned on simpler problems scaled to harder problems and

two, to see what di�erences arose when Scope was trained on harder problems.

6.6 Training on Simple Problems

In the �rst experiment, Scope was training on 100 training problems in the logistics domain that

contained three packages, two planes, and two trucks, which were distributed among locations in

two cities. Solutions were generated using DFID, since as mentioned previously, problems at this

level of complexity could be solved by DFID in a reasonable amount of time. Scope's performance

after training on these relatively simple problems was then evaluated, to see how well the control

rules learned by Scope could scale to problems of di�erent complexity. Six di�erent test sets of

increasing complexity were used to perform this evaluation where the number of packages (and

goals) ranged from 1 up to 50. During testing, a time limit of 500 seconds per problem was used.

No limits on solutions length were imposed on test problems in these experiments, however, a depth

bound was used that ensured all test problems could be solved. The depth bound ranged from 12

steps for 1 package problems up to 350 for 50 package problems.

The results from this �rst experiment are shown in Table 6.1 and Table 6.2. The �rst set of

columns in each table shows the complexity level of each test set. In Table 6.1, the second set of

columns shows the percentage of test problems that could be solved within the time limit (using

depth-�rst search) before and after learning. The last set of columns reports the planning time

required to solve the test problems. In Table 6.2, the second set of columns shows the average

solution lengths for all problems solved. These numbers show how long the average solutions were

for all test problems that could be solved by the new planner. The last set of columns shows

the average solution lengths only for problems that could be solved by the original planner (without

control information). These last numbers were included to show how Scope improved upon solution

quality. Thus these numbers were only gathered for problems that could be solved both by the

original planner and by the new planner so that changes in solution length could be observed. Also

49

0

20

40

60

80

100

0 20 40 60 80 100

N
um

be
r

of
 T

es
t E

xa
m

pl
es

 C
ov

er
ed

Training Examples

Figure 6.5: Number of test problems covered by the new planner in the logistics transportation
domain
.

0

20

40

60

80

100

0 20 40 60 80 100 120 140

N
um

be
r

of
 T

es
t E

xa
m

pl
es

 C
ov

er
ed

Training Examples

Figure 6.6: Number of test problems covered by the new planner in the blocksworld domain.

50

Test Sets Problems Solved Solution Time

(%) (Secs)

Num. of Num. of W/o With W/o With
Goals Problems Rules Rules Rules Rules

1 100 100 100 3.9 1.8
2 100 100 100 18.6 4.8
5 100 100 100 374 62.8
10 100 100 100 4112 906
20 100 30 85 45870 10005
50 100 0 24 50000 46201

Table 6.1: E�ciency results on increasingly complex test problems in the logistics domain.

Test Sets Plan Lengths Plan Lengths

(All problems solved) (Only problems solvable
by original planner)

Num. of Num. of W/o With W/o With Optimal
Goals Problems Rules Rules Rules Rules Lengths

1 100 6.4 5.7 6.4 5.7 5.7
2 100 11.2 9.8 11.2 9.8 9.8
5 100 25.8 22.5 25.8 22.5 -
10 100 45.0 39.0 45.0 39.0 -
20 100 76.0 69.9 76.0 66.6 -
50 100 - 162.7 - - -

Table 6.2: Quality results on increasingly complex test problems in the logistics domain. Results
are shown both for all problems that could be solved by the new planner and for problems that
could only be solved by the original planner.

included in Table 6.2 are the average optimal solution lengths for some of the simpler test sets.

Dashes indicate a number was not available due to the fact that many problems could not be solved

by the original planner using depth-�rst or DFID.

For all six test sets, Scope was able to improve planning e�ciency, and when possible,

increase the percentage of problems solved. For instance, on problems containing 5 packages,

Scope was able to create a new planner that was 5.9 times faster than the original planner and

on the problems containing 20 packages, Scope was able to create a new planner that was 4.5

times faster and it also improved the percentage of problems solved from 30% to 85%. In 50

package problems, relatively little speedup was realized, however, the number of test problems

solved increased form 0% to 24%.

Unfortunately, it was di�cult to gather data on whether plan quality was always improved

in all test sets. For many examples in the hardest two test sets, the original planner could not

�nd a solution under the time limit, and thus solutions lengths before and after learning could

not be compared. For the �rst two test sets (containing 1 and 2 package problems), Scope was

able to signi�cantly improve �nal solution quality and always generated optimal solutions. For the

third, fourth and �fth test sets (containing 5, 10 and 20 package problems), Scope was also able

to improve �nal solution quality. For instance, for the 20 package problems that could be solved

by the original planner, Scope improved the average solution length from 76.0 to 69.9. In the last

test set (containing 50 package problems) no problems could be solved by the original planner, so

plan quality improvement could not be measured.

51

Test Sets Problems Solved Solution Time

(%) (Secs)

Num. of Num. of W/o With W/o With
Goals Problems Rules Rules Rules Rules

1 100 100 100 3.9 1.8
2 100 100 100 18.6 4.8
5 100 100 100 374 44.0
10 100 100 100 4112 624
20 100 30 94 45870 6128
50 100 0 22 50000 46917

Table 6.3: E�ciency results on increasingly complex test problems in the logistics domain.

6.7 Training on Harder Problems

In the second experiment, the bootstrapping method presented in Section 6.3 was used to train

Scope on harder problems. This experiment was intended to test whether training Scope on

harder problems could improve results even further. For this experiment the following procedure

was used to generate training examples. First, the rules from the experiment just presented were

used to solve harder training problems. These new training problems contained 5-7 packages,

as opposed to the problems in the previous experiment which contained only 3 packages. As in

Section 6.3, the learned rules were able to solve around 97% of the new training problems. Optimal

solutions for any unsolved problems were then entered by hand.

Scope's performance was then tested again on the same six sets of test problems. The results

from this second experiment are shown in Tables 6.3 and 6.4. Again, for all six test sets, Scope

was able to improve planning e�ciency, and when possible, increase the percentage of problems

solved. Also, improvements were greater than those seen in the previous experiment. For instance,

after training on 3 package problems, Scope increased the coverage of 20 package problems from

30% to 85%. However, after training on the 5-7 package problems, this coverage increased to 94%.

Similarly, greater speedup was also realized. Speedup on the 10 package problems increased from

4.5x to 6.6x, and on the 20 packages problems from 4.5x to 7.5x.

On the 50 package problems, solution coverage actually slightly decreased from 24% to 22%.

This decrease is most likely caused by the use of a time limit. As discussed in (Etzioni & Etzioni,

1994), using a time limit can decrease speedup, especially when solution times are close to the

limit. In these problems, solution times were often very close to the time limit (of 500 seconds).

After training on harder problems it's possible that solution times in several of these problems got

slightly longer causing the time limit to be reached, while solution times in other (harder) problems

might have improved. However, since these harder problems could not be solved under the time

limit, this speedup is not reected in the reported results.

Quality improvements in general remained similar. Scope was still able to produce optimal

solutions for the 1 and 2 package problems. After training on 3 package problems, Scope improved

the average solution lengths of 5 package problems from 25.8 to 22.5 and after training on 5-7

package problems, they were improved to 22.4. For 10 package problems, lengths were originally

improved from 45.0 to 39.0 in the �rst experiment; and after training on the 5-7 package problems,

they were improved to 38.8. For 20 package problems, solution lengths remained the same.

Thus, training on harder problems did help to further improve planning e�ciency, however,

it had very little e�ect on quality. One possible reason for is that the solutions produced in the �rst

52

Test Sets Plan Lengths Plan Lengths

(All problems solved) (Only problems solvable
by original planner)

Num. of Num. of W/o With W/o With Optimal
Goals Problems Rules Rules Rules Rules Lengths

1 100 6.4 5.7 6.4 5.7 5.7
2 100 11.2 9.8 11.2 9.8 9.8
5 100 25.8 22.4 25.8 22.4 -
10 100 45.0 38.8 45.0 38.8 -
20 100 76.0 70.6 76.0 66.6 -
50 100 - 163.3 - - -

Table 6.4: Quality results on increasingly complex test problems in the logistics domain. Results
are shown both for all problems that could be solved by the new planner and for problems that
could only be solved by the original planner.

experiment (where Scope was trained on 3 package problems) might have already been optimal or

close to optimal and thus there was little room for further improvement. In the harder test sets,

where further quality improvements could be possible, very few problems could be solved by the

original planner, and thus quality improvements were di�cult to measure.

6.8 Ablation Results

One other set of tests was run to evaluate the di�erent features of Scope's induction algorithm.

These experiments test what e�ect the di�erent antecedent types listed in Section 5.2.3 have on

Scope's performance. These tests were done using the problem sets for the logistics transportation

domain that were utilized for the �rst set of experiments from this section. Thus training and test

problems contained between 5-7 packages distributed among locations in two cities, and the same

high-quality solutions to the training problems, which were generated previously by a bootstrapping

method, were also utilized.

Two experiments were run to test the importance of di�erent antecedent types. In the

�rst experiment, Scope's induction algorithm could use literals taken straight from generalized

proof tree, but could not use any other types of these literals, such as negated versions of proof

tree literals, relational clich�es, etc. In the second experiment, the induction algorithm could use

a few other types of literals, including negated literals, determinate literals and non-codesignation

constraints. However, it could not use relational clich�es or extra background predicates, which can

incur the most extra search. For both these experiments, both e�ciency and quality improvements

were measured. Also, Scope's performance using all types of literals is compared against the results

for these tests.

Figure 6.7 shows the measured improvements in planning e�ciency. Similar to previous

results, the times shown represent the number of seconds required to solve all of the problems

in the test set after Scope was trained on a given number of examples. The best performance

occurred when Scope could utilize all di�erent types of antecedents. When using only regular

proof tree literals, Scope is able to get some improvement in e�ciency but it is much smaller than

when using di�erent types of literals. The speedup incurred when using only regular proof tree

literals was 1.5x, while a speedup of 8.8x was produced when using all of the di�erent types of

literals. Also, it took longer to converge to a good set of rules in this experiment, and after training

53

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

R
un

 T
im

e
(S

ec
)

Training Examples

Depth-First
SCOPE (no extra ant types)

SCOPE (no rel cliches or background preds)
SCOPE (all features)

Figure 6.7: Ablation results for e�ciency in the logistics transportation domain.

on a small number of examples Scope actually decreased planning e�ciency.

In this experiment, Scope was often not able to construct accurate control rules, which

don't cover any negative examples, and thus it sometimes could not add a cut after a re�nement

selection. This causes slower planning times since more backtracking occurs. Also when the new

planner was too specialized to solve the test problems, it took much longer to revert back to the

old planner to produce a solution, which accounts for the much longer planning times early in the

training process.

In the second experiment, where Scope could use negated literals, determinate literals

and noncodesignation constraints, Scope was able to further improve planning e�ciency, but still

performed worse than when it could access relational clich�es and other background predicates. In

this experiment, Scope was able to achieve a speedup of 2.4x. For this experiment, a better set of

control rules were learned than for the �rst experiment, however there were still some points where

Scope had problems learning fully accurate rules.

Figure 6.8 shows the measured improvements in plan quality, where the lengths shown in

the graph represent average solution lengths returned for the test problems. Again, in the �rst

two experiments, where Scope did not use all of the di�erent antecedent types, it performed worse

than when using standard Scopewhere all literal types were utilized. In the �rst experiment, where

Scope could only use regular proof tree literals, it was able to reduce average solution lengths from

29.2 steps to 28.6 steps. Thus control rules were able to direct Scope to only slightly higher quality

solutions. Since some rules covered negative examples, the planner was not always directed towards

the best solution paths. In the second experiment, where Scope could use some extra features, it

was able to further reduce average solutions lengths from 29.2 steps to 27.7 steps. Finally, when

using standard Scope, where all extra features were used, control rules were better able to direct

54

0

5

10

15

20

25

30

35

0 20 40 60 80 100

A
ve

ra
ge

 P
la

n
Le

ng
th

s

Training Examples

Depth-First
SCOPE (no extra features)

SCOPE (no rel cliches or background preds)
SCOPE (all features)

Figure 6.8: Ablation results for quality in the logistics transportation domain.

the planner towards high-quality solutions; in this test, the average solution lengths of the test

problems was reduced to 25.1 steps.

Thus, these ablation tests show that for both e�ciency and quality improvements, the use

of di�erent antecedent types is an important factor in achieving good performance improvements.

6.9 Learning Time

The e�ciency results presented in this chapter only considered initial and �nal planning time and

did not include learning time. This section discusses learning time for these experiments and and

how it incorporates into previous results.

Learning times from the logistics and blocksworld experiments presented in Section 6.3 are

shown in Figure 6.9 and Figure 6.10. In the blocksworld domain, the �nal learning time after

training on 150 examples was around 1500 seconds. In the logistics domain, �nal learning time

was 9576 seconds. (Also, this only includes the time used to learn control rules for the 5-7 package

problems. This does not include time required to learn control rules for the 3 package problems,

which were used to help solve harder training examples. If this time is included the �nal learning

time for logistics is 122,770 seconds.)

Thus, learning time can be signi�cant for the Scope learning system. However, its draw-

backs do not outweigh the overall bene�ts provided by Scope. First, learning only has to be

performed once, and the new planner generated can then be used to solve countless new problems.

Thus the extra time spent in the learning process can easily be justi�ed. To further this argument,

an amortization analysis was performed that evaluated how quickly a gain would be realized for

each domain. In other words, this analysis estimates how many problems the system must solve to

55

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

Le
ar

ni
ng

 T
im

e
(S

ec
)

Training Examples

Figure 6.9: Learning time in the logistics domain.

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120 140

Le
ar

ni
ng

 T
im

e
(S

ec
)

Training Examples

Figure 6.10: Learning time in the blocksworld domain.

56

make up for the cost of learning time. The following results were produced. For the blocksworld, a

gain in planning time is realized after running on at least 250 test examples. In the logistics domain,

a gain is realized after running the new planner on at least 1300 examples. (If including time to

learn rules for the 3 package problems, a gain is realized after running the new planner on at last

1500 examples.) Thus, in the blocksworld, a relatively small number of problems must be solved

before a gain in e�ciency is �rst seen. In logistics, a larger number of problems must be solved to

achieve a gain, however, for most real-world applications, this number could be quickly reached. In

addition, when tested on increasingly complex problems in this domain, the new planner produced

by Scope was able to signi�cantly increase the number of test problems that could be solved.

Second, Scope is learning to produce near-optimal or optimal solutions for most novel

problems. When using just the base planner (without control information), solutions were often of

much lower quality. For instance, in the blocksworld, solutions were 25% longer when using the

original planner as opposed to the new planner, which includes control information, and solutions

were 14% longer in the logistics domain. Plus, the time required to generate optimal solutions

with the base planner is usually much greater than the time to generate just valid solutions. For

instance, in the logistics domain, when using a DFID search, the planner using a could still not

generate optimal solutions for many 5 package problems even when run for several days.

6.10 Summary

This section presented experimental results for using Scope to improve both planning e�ciency

and the quality metric of solution lengths. Results are presented in two domains, the logistics

transportation domain and the blocksworld domain. In these experiments, Scope is shown to

produce signi�cant improvements. For both domains, the new planner produced by Scope was

signi�cantly faster than the original planner. Also, Scope was able to produce shorter solution

plans.

Another set of experiments is also presented that shows Scope's ability to scale to increas-

ingly complex problems. These experiments were performed in the logistics domain where Scope

was shown to produce a new planner that could e�ciently solve many problems containing 10, 20

or 50 packages. For all levels of problem complexity tested, Scope was able to produce a faster

planner, and when possible Scope signi�cantly increased the number of test examples that could

be solved by the planner under a time limit. Scope also produced improvements in plan quality

when applied to harder problems. For all test sets, Scope was able to improve solution quality

for problems that could be solved by the original planner. Additionally, it was shown that at least

for simple problems (where optimal solutions were known) that Scope was generating optimal

solutions.

57

Chapter 7

Experimental Evaluation - Improving

E�ciency and Plan Cost

This section describes two experiments that test Scope's ability to improve the e�ciency of a plan

and the plan quality metric of solution cost, and also that test Scope's ability to improve these

metrics in a complex, realistic domain. Experiments are done in a large-scale domain where solution

cost is not always dependent on solution length; i.e. sometimes a longer solution is a higher quality

one. Two di�erent quality metrics for this domain are de�ned and Scope is shown able to improve

on either one, as well as still improving planner e�ciency.

7.1 Domain Description

The domain used for these experiments is the process planning domain created by Gil (1991). This is

a large-scale complex domain that describes a number of manufacturing processes (e.g. machining,

joining, and �nishing). Process planning can be described as one of the intermediate steps of

production manufacturing (Gil, 1991; P�erez, 1995). The �rst stage of production manufacturing is

product design, which involves producing a speci�c model of a product that satis�es a desired set

of speci�cations. When the design is completed, the next step is to plan the sequences of processes

that will be performed on di�erent product components, or parts. The parts are then manufactured

according to the production plans and �nally, the parts are assembled to produce the �nal product.

The focus of the process planning domain is to automate the production step of production

manufacturing. Problems in this domain involve �nding a sequence of operations that will produce

a particular part design. For instance, one possible design goal is to produce a part that has a hole

drilled on one side. This hole usually must be of a certain depth and width, and must be drilled

in a particular location on the part. An example of such a goal and a sample solution plan that

achieves the goal is shown in Figure 7.1. This goal requires a hole to be drilled in side 2 of part 1.

(Each side of a part is numbered, thus a rectangular part has 6 sides). Also, this hole must be of

depth 3, be of width 1/8, and be in location (2,2) on side 2 of the part. The sample solution plan

shows a valid plan for achieving this goal. In this plan, the part is �rst cleaned and placed in the

drill. A spot-drill bit is then used to mark the location of the hole and �nally, a twist-drill bit is

used to drill the hole. Other possible goal speci�cations in this domain include producing a part of

a particular shape, giving a part a speci�c metal coating or polish, and smoothing the surface of a

58

drill1 part1

Initial State Goal

has-hole(part1,side2,3,1/8,2,2)

twist-drill-bit1

Solution Plan

put-on-machine-table(drill1,part1)
clean(part1)
hold-with-vise(drill1,vise1,part1)
put-in-drill-spindle(drill1,spot-drill1)
drill-with-spot-drill(drill1,spot-drill1,part6,hole1,side1)
remove-tool(drill1,spot-drill1)
put-in-drill-spindle(drill1,twist-drill1)
drill-with-twist-drill(drill1,twist-drill1,part6,hole1,side1,3,1/8,2,2)

Figure 7.1: Example of a problem and sample solution plan in the process planning domain. The
goal of this problem is to have a hole of a certain size drilled in a part at a certain location.

part to an adequate level.

For each type of design goal, there are often a variety of alternative processes that can be

used. For instance, there are usually a number of di�erent type drill bits that can be used to drill

a hole, and a drilling operation can be performed by di�erent machines. In the implementation of

this domain used in Gil (1991), machining operations (e.g. drilling, polishing, cutting) are given

in the form of planning operators. An example of an operator for drilling is shown in Figure 7.2.

This particular operator is for drilling with a twist-drill bit in the drill machine. The operator

has a number of preconditions that must be satis�ed before it is applied, including that the drill

machine being used must be holding the part and that the diameter of the drill-bit used to drill

the hole matches the width speci�ed in the has-hole goal. Also represented in the process planning

domain de�nition are operators for setting up parts and tools, securing parts in holding devices,

cleaning parts, and removing metal burrs from the surface of a part. In total, this implementation

of process planning contains 81 operators. Processes represented in this domain are quite complex

and can have many interactions, which can cause quite long planning times.

59

drill-with-twist-drill (?Machine,?Drill-bit,?Holding-device,?Part,?Hole,?Side,
?Hole-depth,?Hole-diameter)

Preconditions:

is-a(?Part,part),
is-a(?Machine,drill),
same(?Drill-bit-diameter,?Hole-diameter)
diameter-of-drill-bit(?Drill-bit,?Drill-bit-diameter)
is-a(?Drill-bit,twist-drill)
has-spot(?Part,?Hole,?Side,?Loc-x,?Loc-y)
holding-tool(?Machine,?Drill-bit),
holding(?Machine,?Holding-device,?Part,?Side)

Add List:

has-burrs(?Part),
has-hole(?Part,?Hole,?Side,?Hole-depth,?Hole-diameter,?Loc-x,?Loc-y)

Delete List:

is-clean(?Part),
has-spot(?Part,?Hole,?Side,?Loc-x,?Loc-y)

Figure 7.2: Drilling operator from the process planning domain.

7.2 Plan Quality in the Process Planning Domain

Plan quality in the process planning domain can be extremely important. Goals such as minimizing

execution time or reducing the number of resources used can be a crucial part of production

manufacturing. There are a number of di�erent quality metrics that can be measured for this

domain (P�erez, 1995), including:

� The number of plan steps

� The total execution time of the plan

� The dollar cost of the plan

� The number of resources used by the plan

� The feasibility of executing the plan

� The reliability of the plan

Plan length is usually not an accurate measure of plan quality in the process planning

domain, since di�erent operators have di�erent execution costs. In fact, it is sometimes the case

that a high-quality plan will have more steps than a low-quality one. A more accurate quality

measure is the total cost of the plan, which can be measured by execution time or by the dollar

cost of each plan step.

One rough measure of the plan execution time can be made by counting the number of

set-up steps that exist in the plan (P�erez, 1995). Set-up steps usually prepare a machine or part

for an operation. For instance, placing a part in a machine or rotating a part already held in a

machine are operations that �t in to this category. Set-up steps are very important in the process

60

planning domain and usually take the longest to execute. Table 7.1 describes a quality metric from

P�erez (1995) that reects this type of quality measure; for the purposes of this dissertation, call this

Quality Metric 1. This metric assigns each operator a �xed cost where lower values are higher

quality. The cost of a plan is determined by adding up the costs of all plan steps. This particular

metric assigns a higher cost to set-up steps and reects the fact that it is often cheaper to switch

tools in a machine than it is to manipulate parts.

Other quality measures can also be de�ned for this domain. For this dissertation, a second

metric was created that reected another possible type of plan cost. Some machines in production

manufacturing may be signi�cantly more expensive to operate than others. Thus, a bene�cial

quality measure could directly reect machine operation cost. Table 7.2 describes a second quality

measure; call this Quality Metric 2. This metric states that operators that use a milling machine

are more costly than those that use a drill. In the process planning domain, a milling machine can

be used to both change the dimension of a part and to drill a hole in a part; a drill machine can

only be used to drill holes. Thus, according to this quality metric, if a plan's only goal is to drill a

hole, a plan that used a drill machine to create the hole would be better than a plan that used a

milling machine, even though both plans would be correct.

The two quality metrics de�ned in Tables 7.1 and 7.2 can prefer very di�erent high-quality

plans for the same problem. For instance, consider the problem shown in Figure 7.3. This problem

has two goals, one to change the size of the part and one to drill a hole in one side. Two solutions

plans for this problem are also shown in Figure 7.3. These solution plans score very di�erently with

the two quality metrics de�ned previously in this chapter. The �rst plan scores much better (i.e.

lower) with Quality Metric 2 since the milling machine is only used for one operation, while in the

second plan the milling-machine is used for both operations. Conversely, the second plan scores

better with Quality Metric 1, since it requires fewer setup steps than the �rst plan.

7.3 Focusing Scope on Improving E�ciency and Plan Cost

In the previous chapter, Scope was shown to improve both planning e�ciency and the quality

metric of plan length. This section focuses on improving e�ciency and quality metrics that relate

to di�erent types of plan cost.

Again, in order to improve plan quality as well as e�ciency, Scope is trained on only high-

quality solutions (and when possible, on optimal solutions). When using plan cost as an evaluation

metric, Scope should be trained on very low cost plans for all training problems. Unfortunately, the

process planning is a very complex domain and the base planner has di�culty producing solutions

in a reasonable amount of time. (In the tests shown in the next section, the base planner could

only solve 33% of the test problems under a time limit of 500 seconds). Additionally, providing

solutions to the training problems that are high quality is even more di�cult.

The approach used to generate high-quality solutions for training problems was the following.

First, in order to solve all of the training problems, the Prodigy4.0 planner (Carbonell & et

al., 1992) was utilized, which contains a large set of hand-coded control rules for the process

planning domain. These rules enable the Prodigy planner to solve problems in this domain much

quicker than with the base planner used in this dissertation. Second, once solutions for all training

problems were generated by Prodigy, two di�erent sets of solutions were created by modifying

61

Operator Type Cost Operators

Machining 1 drill-with-spot-drill, drill-with-twist-drill,
operators drill-with-high-helix-drill,

drill-with-spot-drill-in-milling-machine,
drill-with-twist-drill-in-milling-machine,

face-mill, side-mill

Machine and 8 put-holding-device-in-drill,
holding device put-holding-device-in-milling-machine,
set-up operators put-on-machine-table, remove-from-machine-table,

hold-with-vise, release-from-holding-device

Tool operators 1 put-tool-on-milling-machine, put-in-drill-spindle,
remove-tool-from-machine

Cleaning operators 6 clean, remove-burrs

Table 7.1: Quality Metric 1 - This quality metric reects execution time in the process planning
domain. Higher costs are assigned to steps which involve holding or moving parts.

Operator Type Cost Operators

Milling machine 15 drill-with-spot-drill-in-milling-machine,
operators drill-with-twist-drill-in-milling-machine,

face-mill, side-mill

Drill operators 1 drill-with-spot-drill, drill-with-twist-drill,
drill-with-high-helix-drill

Machine and 2 put-holding-device-in-drill,
holding device put-holding-device-in-milling-machine,
set-up operators put-on-machine-table, remove-from-machine-table,

hold-with-vise, release-from-holding-device

Tool operators 1 put-tool-on-milling-machine, put-in-drill-spindle,
remove-tool-from-machine

Cleaning operators 3 clean, remove-burrs

Table 7.2: Quality Metric 2 - This quality metric reects a di�erent type of execution cost in
the process planning domain. Higher costs are assigned to steps that utilize expensive machines.

62

drill1

milling-machine2

Initial State

millling-cutter3

twist-drill-bit2

part1

size-of(part1,length,3)

Goal

has-hole(part1,side3,1,1/8,1,1)

(a)

Solution Plan 1 Solution Plan 2

put-on-machine-table mill-mach put-on-machine-table mill-mach
clean-part clean-part
hold-with-vise hold-with-vise
put-tool-on-mill-mach mill-cutter put-tool-on-mill-mach mill-cutter
face-mill face-mill
release-from-holding-device remove-tool milling-cutter
put-on-machine-table drill put-tool-on-mill-mach twist-drill2
remove-burrs drill-with-twist-drill
clean-part
hold-with-vise
put-in-drill-spindle twist-drill2
drill-with-twist-drill

(b)

Plan Quality Metric 1 Quality Metric 2

Plan 1 62 37
Plan 2 26 40

(c)

Figure 7.3: Example of a problem in the process planning domain. The goal of this problem is to
change the part's length to 3 and to have a hole drilled in one side.

63

the Prodigy solutions, where each set corresponded to a particular quality metric. The set of

solutions corresponding to Quality Metric 1 was produced by �rst examining each solution that

was produced by Prodigy, and if that solution could be improved with respect to Quality Metric

1, it was modi�ed by hand so that the new solution was optimal. The same procedure was used

to produce a solution set for Quality Metric 2. Most solutions generated by Prodigy had to be

modi�ed in some way in order to produce an optimal solution for either quality metric. Two di�erent

training sets were then produced, which contained the same problems but di�erent solutions.

7.4 Experimental Design

The goal of these experiments was to improve both planning e�ciency and also the quality of

generated solutions. Speci�cally, these experiments were intended to evaluate how well Scope

could improve upon di�erent quality metrics. The two quality metrics de�ned in Section 7.2 were

used to measure solution quality for this domain. Scope's goal in these tests is to minimize the

solution cost, since lower cost solutions are considered more higher quality.

A random problem generator was built to generate problems for the process planning do-

main. It operates by creating a random initial state that contains di�erent machines, parts and

tools, where parts and tools can be placed in di�erent locations (e.g. the drill machine may be

already holding a certain size drill bit). It also creates a random set of goals for any available parts

in a problem. These experiments concentrated on goals of cutting parts to a desired size along their

three dimensions, and on spotting and drilling holes of di�erent sizes which are located in random

locations on a part. Each problem contained from one to three di�erent goals. Using the problem

generator, 100 training problems were created and then optimal solutions for Quality Metric 1 and

2 were produced using the technique described in the preceding section.

Two experiments were run, one for each quality metric; call these Experiment 1 and

Experiment 2, where Experiment 1 used the training problems optimized for Quality Metric 1

and Experiment 2 used the training problems optimized for Quality Metric 2. For each experiment,

Scope was trained on separate example sets of increasing size. Only one trial was run in these

experiments due to the time involved in generating training solutions and in learning control rules.

A test set of 100 independently generated problems was used to evaluate performance. During

testing, a time limit of 500 seconds was imposed per test problem and a depth bound on plan

length of 30 steps was used that allowed for all problems to be solved. All tests were performed on

a Ultra Enterprise 5000.

Similar to the procedure used in previous experiments, Scope learned control rules from

the given training set and produced a modi�ed planner. If the new planning program was ever

found to be too specialized (i.e. it failed on one of the training problems) then the initial planning

program is used to solve the problem. When this situation occurs in testing, both the failure time

for the new planner and the solution time for the original planner are included in the total solution

time for that problem.

For comparison purposes, best-�rst search was also evaluated at solving the test problems.

Again, these tests were done using the standard Lisp implementation of UCPOP (Barrett & et al.,

1995), thus some results could be partially due to implementation di�erence between Prolog and

Lisp.

64

7.5 E�ciency Results

Figure 7.4 shows the measured improvements in planning e�ciency for both experiments. In both

tests Scope was able to greatly improve planner e�ciency. In Experiment 1 (where training

problems were optimized for Quality Metric 1), Scope was able to speedup the original planner

by a factor of 4.8. In Experiment 2 (where training problems were optimized for Quality Metric

2), Scope was able to speedup the original planner by a factor of 5.7. And, for all points where

control knowledge was added, no backtracking occurred in the new planner in both experiments.

Scope was able to achieve a slightly higher speedup factor in Experiment 2, where quality

relates to machine operation cost. This could be partly due to the fact that fewer control rules were

learned for Experiment 2. In Experiment 1, 57 rules were learned and in Experiment 2, 51 rules

were learned. In addition, Scope outperformed best-�rst search in this domain, however best-�rst

search was somewhat faster than the base planner using depth-�rst search.

In both experiments, Scope was also able to signi�cantly improve the number of test exam-

ples that could be solved under the time limit, as shown in Figure 7.5. The original base planner

could solve 33% of the test problems under the time limit and best-�rst search was able to solve

45% of the test problems under the time limit. In both Experiment 1 and Experiment 2, the new

planner produced by Scope could solve 86% of the test problems, and thus Scope was able to

greatly improve the number of test problems that could be solved in a reasonable amount of time.

Since signi�cant speedup and coverage improvements were realized for both experiments,

these tests show that the e�ciency improvements generated by Scope are not dependent to a

certain type of quality metric.

7.6 Quality Results

Plan quality improvements were collected in two di�erent ways. The goal for both these evaluations

was to test whether training Scope on optimal solutions for a particular quality metric helped it to

produce a planner that generated solutions that score well with that metric. Thus, ideally, control

rules from Experiment 1 should minimize Quality Metric 1 and control rules from Experiment 2

should minimize Quality Metric 2.

First, plan quality was evaluated for all test problems that could be solved by both �nal

planners. In the test set, 79 of the problems could be solved by both new planners. The set of

solutions for these problems produced in Experiment 1 were evaluated once using Quality Metric

1 and then again using Quality Metric 2. The same was done for the set of solutions produced in

Experiment 2. The results from this evaluation are shown in Table 7.3. The total costs for the

problem solutions generated in both experiments are given for both quality metrics.

As shown by the table, the training set optimized for Quality Metric 1 produced control

rules which in turn generated solutions that minimized this metric but did not score well with the

second quality metric. Similarly, the training set optimized for Quality Metric 2 produced control

rules which generated solutions that minimized this metric but did not score well with the �rst

quality metric. The solutions generated by Experiment 1 were 18% lower in cost for Quality Metric

1, than solutions generated be Experiment 2. The solutions generated by Experiment 2 were 35%

lower in cost for Quality Metric 2, than solutions generated by Experiment 1. Thus, this evaluation

65

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100

R
un

 T
im

e
(S

ec
)

Training Examples

Depth-First
Best-First (Lisp)

SCOPE - Experiment 1
SCOPE - Experiment 2

Figure 7.4: E�ciency performance for process planning domain. Two experiments were run opti-
mizing two di�erent quality metrics.

0

20

40

60

80

100

0 20 40 60 80 100

N
um

be
r

of
 T

es
t E

xa
m

pl
es

 S
ol

ve
d

Training Examples

Depth-First
Best-First (Lisp)

SCOPE - Experiment 1
SCOPE - Experiment 2

Figure 7.5: Number of test problems solved under a time limit.

66

Solution Set Quality Metric 1 Quality Metric 2

Experiment 1 3881 3606
Experiment 2 4750 2346

Table 7.3: The total cost of solutions produced in two di�erent experiments, as evaluated by two
di�erent quality metrics. Only solutions for problems which both new planners could solve are
included. In experiment 1, the training problems were optimized for Quality Metric 1. And in
experiment 2, the training problems were optimized for Quality Metric 2.

Solution Set Quality Metric 1 Quality Metric 2

SCOPE - Exp 1 886 789
SCOPE - Exp 2 1102 527
UCPOP - DF 994 491
UCPOP - BF 1006 788

Table 7.4: The total cost of solutions produced in two di�erent experiments, as evaluated by two
di�erent quality metrics. Only solutions for problems that could be solved by both new planners
produced by Scope, by the base planner (using depth-�rst) and by standard UCPOP (using best-
�rst) were included.

shows that Scope can successfully improve on very di�erent quality metrics.

A second comparison was done that only used solutions for problems that could be solved

by both �nal planners produced by Scope, by the base planner (using depth-�rst), and by the

standard Lisp version of UCPOP (using best-�rst search). In the test set, 31 of the problems could

be solved by all four planners. Similar to the last evaluation, the set of solutions for each planner

was then evaluated once using Quality Metric 1 and again using Quality Metric 2. The results of

this evaluation are shown in Table 7.4.

Again, the training set optimized for Quality Metric 1 produced control rules which in turn

generated solutions that minimized this metric but did not score as well with the second quality

metric. Similarly, the training set optimized for Quality Metric 2 produced control rules which

generated solutions that minimized this metric but did not score well with the �rst quality metric.

For the �rst quality metric, the lowest cost solutions were produced by the planner generated

in Experiment 1. These solutions were 20% lower in cost than solutions generated by the new

planner in Experiment 2, 11% lower in cost than solutions produced by the depth-�rst version of

UCPOP, and 12% lower in cost than solutions generated by best-�rst UCPOP.

For the second quality metric, the lowest cost solutions were actually produced by the depth-

�rst version of UCPOP. These solutions were 38% lower in cost than solutions produced by the

new planner from Experiment 1, 7% lower in cost than solutions produced by the new planner

from Experiment 2, and 38% lower in cost than solutions produced by best-�rst UCPOP. Thus,

in Experiment 2 (which was optimized for Quality Metric 2), Scope did not produce solutions

that were lower in cost than those produced by the base planner. For this quality metric, the

base planner output optimal solutions for all test problems solved so there is no room for quality

improvements on these test problems. For most of the problems, the new planner from Experiment

2 produced equivalent solutions to those produced by the base planner, however for just a few

problems it produced slightly worse solutions, which account for the di�erence in total plan cost

67

shown in Figure 7.4. The solutions produced in Experiment 2 were signi�cantly lower in cost than

solutions produced in either Experiment 1 or by the best-�rst search version of UCPOP.

Thus, when optimized for a particular quality metric, the new planner produced by Scope

was always able to outperform the standard Lisp implementation of UCPOP (using best-�rst)

and was able to outperform the depth-version of UCPOP for one quality metric and only slightly

underperformed the depth-version of UCPOP for another quality metric. Plus, the new planner

produced by Scope was always able to produce signi�cantly more solutions under the time limit

than could be produced by either implementation of UCPOP.

7.7 Learning Time

Again, the e�ciency results presented in this chapter only considered initial and �nal planning time

and did not include learning time. This section discusses learning time in the process planning

domain.

Learning times from the both experiments are shown in Figure 7.6. In Experiment 1, the

�nal learning time after training on 100 examples was approximately 115 hours. In Experiment 2,

the �nal learning time after 100 training examples was approximately 147 hours. Thus learning

times are very high for this domain, as compared to the logistics and blocksworld domains. This

is mainly due to the fact that there are a much higher number of decision points in the process

planning domain than in the other two domains tested. The process planning domain contains 81

operators, compared to 4 in the blocksworld and 6 in the logistics domains, and there are many

more points where control rules could be learned in this domain. Also, Scope must always examine

all decision points to see if control knowledge could be useful. So even if a decision point cannot

bene�t from learned control knowledge (i.e. it's possible that that decision point is rarely used or

that backtracking just never occurs at that point), Scope still spends time examining it.

Even with the high learning time, Scope can still be seen as very bene�cial in this domain.

First of all, it is unclear how much speedup Scope really achieves in this domain since many of the

test problems cannot be solved by the base planner under the time limit. Though employing a time

limit is often necessary when running experiments such as the one presented in this dissertation, it

can often underplay the true speedup achieved by a learning system (Etzioni & Etzioni, 1994). For

these experiments, it is unclear how long it would take the base planner (without control knowledge)

to solve all of the test problems. The planner was run for several days without a time limit and

could only solve a few problems.

Second, Scope is producing high quality solutions. The time required to automatically �nd

high quality solutions is often much more than the time required to �nd just a valid solution, since

the planner might have to perform an extensive search through a number of di�erent solutions.

Thus, even though learning time is large in this domain, it can easily be argued that the bene�ts

provided by Scope outweigh any drawbacks introduced by a large learning time.

7.8 Summary

This section presented experimental results for using Scope to improve both planning e�ciency and

the quality metric of execution cost. These experiments were performed using the process planning

68

0

100000

200000

300000

400000

500000

0 20 40 60 80 100

Le
ar

ni
ng

 T
im

e
(S

ec
)

Training Examples

Experiment 1
Experiment 2

Figure 7.6: Learning time in the process planning domain.

domain, which is a very large and complex domain that describes a number of manufacturing

processes.

Two di�erent quality metrics were de�ned for the process planning domain where each metric

emphasized a di�erent type of execution cost. Two di�erent experiments were run, where the goal

of each experiment was for Scope to produce control rules that emphasized one of the quality

metrics and also improve planning e�ciency. In both experiments, Scope was able to signi�cantly

improve planner e�ciency and increase the number of test problems that could be solved under a

time limit. Also, Scope was able to produce solutions that emphasized the chosen quality metric.

These results show that Scope can successfully be applied to improve both planning e�ciency and

plan quality, and that these results are not dependent on the particular quality metric being used.

They also show that Scope can be used e�ectively to improve planner performance on a realistic,

large-scale domain.

69

Chapter 8

Experimental Evaluation - Improving

only E�ciency

One question brought out by the last two chapters, is \what happens if we don't train Scope on

high-quality solutions?" What e�ciency gains will Scope achieve after looking at solutions that

have not been optimized for quality? In order to investigate these questions, Scope was run on

a similar set of experiments as those presented in Chapter 6. The main change was that Scope

was trained on the �rst solution found using depth-�rst search, instead of being trained on very

high-quality solutions. The goal of these experiments was to test whether Scope could produce

e�ciency improvements even when trained on sub-optimal solutions, and also to see what e�ect

these improvements would have on plan quality.

8.1 Experimental Design

These experiments used the logistics transportation and the blocksworld domains to evaluate

Scope's performance. The same example sets from Chapter 6 were used for training and testing.

However, instead of solving the training examples using depth-�rst iterative deepening, depth-�rst

search was utilized. During training, the �rst solution found was always used by the learning al-

gorithm. In both domains, depth-�rst search could solve all problems in a reasonable amount of

time, so a bootstrapping training method was not necessary for these tests.

The same two sets of 100 test problems used in Chapter 6 were used to evaluate performance.

Five trials were run for each training set size, after which results were averaged. No time limit was

imposed on planning but a uniform depth bounds on plan length was used during training and

testing that allowed for all problems to bel solved. Depth bounds were set identical to those in

Section 6.3; in the blocksworld, the depth bound was set at 8 and in logistics, the depth bound was

set at 100. Again, tests in the blocksworld were performed on an Ultra Sparc 2 and in the logistics

domain on an Ultra Enterprise 5000.

70

0

200

400

600

800

1000

0 20 40 60 80 100

R
un

 T
im

e
(S

ec
)

Training Examples

Depth-First
SCOPE (trained w/ DFID)

SCOPE (trained w/ DF)

Figure 8.1: E�ciency performance in the logistics transportation domain.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160

R
un

 T
im

e
(S

ec
)

Training Examples

Depth-First
SCOPE (trained w/ DFID)

SCOPE (trained w/ DF)

Figure 8.2: E�ciency performance in the blocksworld domain.

71

8.2 E�ciency Results

Figure 8.2 and Figure 8.1 show the measured improvements in planning e�ciency for both domains.

The results from the previous set of experiments are also shown for comparison. Again, Scope

produced a more e�cient planner than the original after incorporating learned control information.

In these tests, Scope was able to produce a new planner that was 6 times faster in the logistics

domain, and 3 times faster in the blocksworld domain. In the logistics domain, Scope was still

able to achieve very signi�cant speedup when trained on non-optimal solutions, although it was not

quite as high as the previous experiments, which achieved a speedup factor of 8x. In the blocksworld

domain, Scope was also able to produce a more e�cient planner, however, the speedup was much

less than in earlier tests where Scope was trained on optimal solutions and a speedup factor of

23x was achieved.

There are several possible reasons why speedup factors are less when Scope is trained

on solutions that have not been optimized for quality. For one, swaying Scope towards shorter

solutions means less work for the �nal planner. Since solutions are shorter, fewer planning iterations

must take place. Second, Scope was not always able to learn accurate rules in these experiments.

In the logistics domain, accurate rules were learned for all decision points. However, in blocksworld,

Scope is able to learn some good rules, but there are a few decision points where it is unable to

learn a fully accurate set of rules. As explained in Section 5.3, when a rule is learned that is not

fully accurate (i.e. it covers negative examples), the rule is still used, but no cut is added after

the rule. This allows the corresponding re�nement application to be still backtracked upon. Thus,

the new planner can still solve the test problems, however, the solution times are larger since more

backtracking occurs.

The re�nement-selection examples that Scope cannot learn to accurately cover in these

situations usually correspond to similar planning subgoals that were solved in di�erent ways during

training. These di�erences stem from how close the plan is to the depth limit. For instance,

consider the two problems shown in Figure 8.3. To solve the �rst goal for each problem, clear(b),

suppose the �rst action the planner will try to add is unstack(X,b), where X is another block in the

problem. This could return a valid plan for each problem, as shown in Figure 8.4. However, if the

depth limit given the planner is 7, then a di�erent Plan B will be created that has only 5 steps. In

this plan (which is the same as Plan B minus the last three steps) clear(d) is asserted by the step

putdown(d), instead of by the step unstack(b,d). Thus, clear(d) will be achieved in di�erent ways

for these two problems, even though they are very similar. Scope has a hard time learning a rule

to cover scenarios such as these, where planner behavior is di�erent due to the depth limit.

This type of problem did not occur in the experiment for the logistics domain. One reason

for this could be that logistics problems were solved using a relatively high depth limit (i.e. most

problem solutions were well under the depth bound). Where as, in the blocksworld, solutions were

often found very close to the depth bound. Unfortunately, it was di�cult to raise the depth limit

in the blocksworld and still solve the training problems in a reasonable amount of time.

One way to avoid this problem, might be to use a very high depth limit which would not

a�ect most solutions. Unfortunately, as just mentioned, this makes it hard in many domains to

solve the training problems in a reasonable amount of time. Another solution, would be to give

the learning system a method for reasoning about the depth limit where it can build rules that

can evaluate whether the current search path will hit the depth limit before �nding a solution. For

72

a cb

d

on-table(c) holding(d)

on-table(a) on-table(b)

b

d

c

a cb

d

on-table(c) holding(d)

on-table(a) on-table(b)

c

d

clear(d) on(d c)
clear(d) on(d c)

on(c b)

Problem A Problem B

Figure 8.3: Two similar problems from the blocksworld.

Plan A Plan B

stack(d,c) putdown(d)
pickup(b) pickup(c)
stack(b,d) stack(c,b)
unstack(b,d) * pickup(d)

stack(d,c)
pickup(b)
stack(b,d)
unstack(b,d) *

Figure 8.4: Solution plans for the two problems shown above.

instance, the UCPOP+EBL system (Kambhampati et al., 1996), which is discussed in Chapter 9,

utilizes extra domain axioms to help it reason about depth-limit failures.

8.3 Quality Results

Changes in plan quality for these experiments are shown in Figure 8.5 and Figure 8.6. Results

from these experiments and from the previous set of experiments where Scope was trained on

high-quality solutions are shown for comparison. When trained on non-optimal solutions, Scope

produces a new planner that does not signi�cantly change plan quality. In the logistics domain,

the new planner has no e�ect on plan quality and the new planner behaves identical to the original

planner. In the blocksworld domain, the new planner does produce a few slightly shorter solutions,

however in general solutions remain the same length as with the original planner. Thus, for this

training methodology, solution lengths after learning remained very similar to those found before

learning. These results demonstrate again how the methodology used in training Scope can greatly

a�ect �nal performance.

8.4 Summary

This section presented experimental results for using Scope to improve planning e�ciency when

trained on solutions not optimized for quality. Results are presented in the two domains used in

Chapter 6, the blocksworld and logistics domain. In these experiments, Scope is shown able to still

improve planning e�ciency in both domains. In the logistics domains, e�ciency gains were pro-

73

0

5

10

15

20

25

30

35

0 20 40 60 80 100

A
ve

ra
ge

 P
la

n
Le

ng
th

s

Training Examples

Depth-First
SCOPE (trained w/ DFID)

SCOPE (trained w/ DF)

Figure 8.5: Quality performance in the logistics transportation domain. Here, depth-�rst (without
control information) and SCOPE trained with depth-�rst have the same results.

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 P
la

n
Le

ng
th

s

Training Examples

Depth-First
DFID (optimal)

SCOPE (trained w/ DFID)
SCOPE (trained w/ DF)

Figure 8.6: Quality performance in the blocksworld domain.

74

duced that were comparable to those produced in Chapter 6. In the blocksworld domain, e�ciency

gains were also produced, however, they were much less than those seen in the Chapter 6 experi-

ments. Scope had di�culty always building accurate rules in this experiment, due to di�erences

in blocksworld solutions that were caused by the depth limit.

Plan quality changes were also presented for these experiments. In both domains, Scope

produced a new planner that does not signi�cantly change the quality of solutions.

75

Chapter 9

Related Work

The work discussed in this dissertation touches on numerous areas of arti�cial intelligence, including

machine learning, planning and inductive logic programming. Some related work in these areas

has already been mentioned in other chapters. This chapter presents a broader discussion of work

related to Scope. Although it would be impossible to mention in detail all related research, a

comprehensive summary is attempted of the closest work.

9.1 Learning Control for Problem Solving

Early research in learning control rules has been focused on a variety of problem solving applications,

such as symbolic integration, eight-puzzle, and the N-Queens problem. Much early work centered

around learning macro-operators which record successful operator sequences so they can be reused

on future problems. (Fikes & Nilsson, 1971; Korf, 1985; Minton, 1985; Porter & Kibler, 1986).

Other systems concentrated on learning heuristics that characterized successful problem solving

behavior. To acquire control information, most systems employed a similar method to Scope's of

analyzing the search space. Positive and negative examples of problem solver behavior are identi�ed

(Mitchell et al., 1983; Langley, 1985), and then control heuristics are learned to cover the positive

examples and rule out the negatives. Several early approaches also used a combination of induction

and EBL to learn control information. The LEX-2 (Mitchell et al., 1983) and MetaLEX (Keller,

1987) systems constructed rules by inducing over complete explanation-based generalizations of

problem-solving traces. Scope, on the other hand, uses induction to select the most useful pieces

of EBG generalizations.

Some work has also been done on learning approximations to EBL rules. The ULS system

(Chase et al., 1989) acquired conservative approximations to EBL rules by simply dropping one or

two conditions. ULS was very limited in the rules it could generate, unlike Scope, which uses an

inductive learning mechanism to build rules from scratch. A more closely related system is AxA-

EBL (Cohen, 1990), which integrates an induction mechanism to learn approximate EBL rules.

AxA-EBL �rst learns a control rule by applying EBG to the proof of a correct control decision.

A pool of candidate control rules is then formed by considering all k-bound approximations of this

rules, where a k-bounded approximation is formed by dropping k or less rule conditions. AxA-EBL

then searches this pool for a small set of rules that maximizes coverage of the positive examples

and minimizes coverage of the negative examples. Although quite successful, this system does has

76

several weaknesses. First, the number of k-bounded approximations grows exponentially in k, thus

k is limited to very small values. A second problem is that explanations for subgoals only consider

the context of that particular subgoal. Often the conditions which cause a particular operator to

fail, lie outside the proof of the speci�c subgoal to which that operator was applied.

The Dolphin system (Zelle & Mooney, 1993) improves on AxA-EBL by using a more pow-

erful induction algorithm and analyzing proof trees of entire problems instead of only explaining

individual subgoal successes. The overall goal of Dolphin is Prolog program optimization. Specif-

ically, Dolphin learns learns control rules that determine which clauses in a Prolog program to

use to solve particular subgoals. These rules are learned through a combination of explanation-

based generalization (EBG) and inductive-logic programming. Dolphin has been shown successful

at improving problem-solver performance in several di�erent domains, such as N-queens and two

planning domains which utilized a simple linear, state-based planner. Much of the original inspira-

tion for Scope came from ideas introduced in Dolphin, however there are a number of di�erences

between the two systems.

Scope and Dolphin both use a combination of EBG and ILP techniques to learn control

rules and both have been used to improve the performance of Prolog programs. However, Dolphin

has only been applied to simple logic programs whose search spaces were fairly easy to analyze.

Scope, on the other hand, has been applied to a very complex problem solver, which required

a much more e�cient EBG algorithm and also a more powerful induction engine to learn control

information. Dolphin has di�culty e�ciently generating explanation structures for a partial-order

planner, and for many problems cannot generated this explanation in a reasonable amount of time.

This di�culty probably stems from the large search space that must be examined. On the induction

side, Dolphin's algorithm approach is very limited and cannot construct rules that are expressive

enough to analyze complex situations, such as those found in a partial-order planner. Dolphin's

algorithm can only add rule antecedents straight from generalized proof trees and has no mechanism

for modifying an antecedent once it is added to a rule. Dolphin also has none of the additional

inductive features that have been added to Scope (e.g. negated antecedents, relational clich�es)

and thus can only build very simple control rules. Finally, Scope can learn rules that improve

upon �nal plan quality, unlike Dolphin which is only focused on improving program performance

and can not change the quality of produced solutions.

9.2 Learning Control for Planner Performance

9.2.1 Systems Applied to State-Based planners

A signi�cant amount of research in learning control knowledge has been explicitly directed towards

improving the performance of planning systems. Most of this research has concentrated on linear,

state-based planners. For instance, the Prodigy planning and learning system (Minton, 1989)

employs a version of EBL, called explanation-based specialization, to learn domain-speci�c control

rules for a linear, state-based planner. Rules are learned in response to both planning failures and

successes and also from unforeseen goal interactions. Learned control rules can select, reject, or

prefer plan-re�nement candidates for several di�erent decision types. A number of other systems

have also applied EBL to learn search-control for planning. Static (Etzioni, 1993) acquires control

rules by analyzing the problem domain theory. This system uses EBL to analyze a graph struc-

77

ture that captures the precondition/e�ect dependencies between the actions in the domain. This

analysis is then used to derive goal-ordering rules for the Prodigy state-based planner. Failsafe

(Bhatnagar & Mostow, 1994) was designed to learn control rules in domains where the underlying

domain theory was recursive. This system uses a forward-searching state-based planner and learns

by building incomplete explanations of its execution time failures.

Not all learning approaches have relied on EBL. Grasshopper (Leckie & Zuckerman, 1993)

uses an inductive approach to learn planning control knowledge. This system learns control rules

for goal, operator, and variable binding decisions. Given a set of training examples, Grasshopper

looks for sets of similar decisions that could form the basis for control rules. Rule preconditions are

generated by �nding a generalized set of current state conditions that hold true at the beginning of

each decision. This inductive search for rule conditions is a relatively small since it only searches

through world-state conditions. Unfortunately, as mentioned in Chapter 5, applying an inductive

search in a partial-order setting would require a much more complicated set of predicates that

would most likely render the search infeasible to perform.

All of these learning systems have been shown successful at improving planner performance

in several domains, such as the blocksworld and stripsworld. However, unlike Scope, each system's

architecture is limited to apply only to a linear, state-based planner. Most of the rules generated

by these early systems heavily rely on the assumptions of a state-based search and goal linearity,

neither which are valid in a UCPOP-style planner. For instance, rules often check for conditions

present in the current state and they also often assume that all current actions in the plan are

ordered. These systems would also have di�culty analyzing the search space of a partial-order

planner. Since partial-order planners operate in a plan-space instead of a state-space, the process

of creating and generalizing explanations is more complex. Removing the linearity assumption

adds further complications for learning search-control not addressed by these early systems, since

many more search paths must be considered in generating an explanation. Unfortunately, very few

learning systems have been built to acquire control knowledge for other styles of planning.

Hamlet (Borrajo & Veloso, 1997) is one more recent system, which learns control knowledge

for the nonlinear planner Prodigy4.0 (Carbonell & et al., 1992). Similar to Scope, Hamlet

uses a combination of EBL with induction to acquire control rules. First, optimal solutions are

gathered for each training example by performing an exhaustive search of the problem search space.

Hamlet �rst generates a bounded explanation of each planning decision and then incrementally

re�nes any incomplete or inaccurate explanations. Control rules can either be specialized if they

are found to cover negative examples or generalized if they are found to exclude positive examples.

Unlike Scope, Hamlet uses EBL to build rules, and induction is primarily used to re�ne learned

knowledge. Also, though the Prodigy4.0 planner does remove the linearity restriction for examining

goals, it is still a state-based planner and many rule conditions used by Hamlet are directly

dependent on current state information. It is thus unclear, how Hamlet would perform on a

partial-order planner. Also, Hamlet has only been tested on small domains for the quality metric

of plan length. It is thus also unclear, how Hamlet would perform on more complex domains and

whether it could improve upon other types of quality metrics.

Hamlet has successfully improved the e�ciency performance of the Prodigy4.0 planner

in the blocksworld and logistics planning domains, however, since Hamlet and Scope have been

tested on completely di�erent planning algorithms, only a very rough comparison can be drawn.

78

When examining the results reported for Hamlet in Borrajo and Veloso (1997) and the results

reported for Scope reported in Chapter 6 of this dissertation, the following was noted.

In blocksworld, Scope achieved a speedup factor of 23x on problems containing 4-6 goals,

while Hamlet achieved a speedup of 2x on problems containing 5 goals and a speedup of 35x on

more complicated problems containing 10 goals.1 In the experiments for Hamlet, the number of

blocks in each problem was greatly varied (between 5 to 50), while for Scope it only slightly varied

(between 3 and 8). Scope was able to produce signi�cant quality improvements in this domain,

lowering solution lengths an average of 22.9%, however, Hamlet produced very little improvement

and only lowered solutions lengths by 2.2%. However, this result could be due to the fact that the

Prodigy planner produces relatively high-quality solutions even before learning.

Both systems were run on increasing complex problems in the logistics transportation do-

main. In these tests, Scope was trained on problems containing 3 packages (and 3 goals) distributed

over 2 cities and Hamlet was trained on problems containing 1-2 goals for 5 packages distributed

over 1-3 cities. In these tests, Scope achieved speedup factors ranging from 2.2 on simple 1 goal

problems and up to 6.0 on 5 goal problems and 4.5 on 20 goal problems. Conversely, Hamlet

produces relatively small speedup gains, ranging from 1.3 on simple 1 goal problems to 1.5 on 5

goals problems and 1.2 on 20 goals problems. Neither system achieves signi�cant e�ciency gains

on 50 goals problems, however Scope was able to improve test problems coverage from 0% to 24%

while, Hamlet only improved coverage from 2% to 4%. Scope was also able to more signi�cantly

improve test problem coverage at other levels of complexity. For quality results, both systems were

able to improve their base planners. The greatest improvement realized by Scope was decreasing

solution lengths for 10 goals problems by 13.3%. The greatest improvement realized by Hamlet

was decreasing solution lengths by 13.2% which was also for 10 goals problems.

In conclusion, both systems were able to signi�cantly improve planning e�ciency in the

blocksworld domain, however Hamlet was more extensively tested than Scope. Scope achieved

much higher speedup factors in the logistics domain and was able to further improve test problems

coverage in this domain. In quality improvements, Scope was able to more signi�cantly decrease

solution lengths in blocksworld and both systems achieved equivalent improvements in the logistics

domain.

9.2.2 Systems Applied to Partial-Order Planners

The only system besides Scope to learn control information for partial-order planning is UCPOP+EBL

(Kambhampati et al., 1996). This system also learns search control rules to improve the perfor-

mance of UCPOP, but uses a purely explanation-based approach. Speci�cally, UCPOP+EBL em-

ploys the standard EBL techniques of regression, explanation propagation and rule generation to

acquire search-control rules, which are learned in response to past planning failures. UCPOP+EBL

learns from both analytical failures (dead-end search paths) and depth limit failures (the search

path crosses a depth limit). In order to explain the failures of search paths that cross over a depth

limit, this system can utilize extra domain axioms, de�ned as \readily available physical laws of the

domain", that help detect and explain inconsistencies at some depth limit failures. UCPOP+EBL

1Note that performance improvements in Hamlet were reported using the number of planning nodes examined
as opposed to using cpu time. Though this is a valid method of recording planning performance, it fails to report the
time spent in matching rules, and thus could possibly overstate the achieved speedup.

79

is limited in the rules it can learn, however, since only explainable failures can be utilized for learn-

ing. Even with additional domain axioms, it may be di�cult or impossible to explain some failures

caused by the depth limit. Scope, on the other hand, can learn rules to avoid all unpromising

paths, as long as a solution path has been identi�ed. Scope also utilizes a combination of EBL

and induction to learn very general control rules, whereas UCPOP+EBL uses only EBL to build

rules.

UCPOP+EBL has been shown to improve planning performance in two domains, the

blocksworld domain and the briefcase domain (Penberthy & Weld, 1992). To compare Scope

to UCPOP+EBL, an experiment was replicated from Kambhampati et al. (1996). This experiment

uses three di�erent versions of the blocksworld domain in order to test whether the expressiveness

of the domain representation inuences the e�ectiveness of the learner. The �rst version (called

BW-prop) contains only simple propositional preconditions and e�ects, and contains no conditional

e�ects or universal quanti�cation. The second (called BW-cond) contains conditional e�ects, and

the third (called BW-univ) contains universal quanti�cation. These di�erent domain versions are

presented in Appendix A.

The experiment consisted of three phases, each corresponding to one of the domain versions.

A set of 100 training problems and a set of 100 test problems was randomly generated and then

used for each of the three phases, where each problem contained between three and six blocks and

three and four goals. During testing, a time limit of 120 seconds per test problem was used. In

addition, experiments in each phase were run with two di�erent goal-selection strategies, one that

uses a last-in �rst-out (LIFO) strategy and one that uses a most-instantiated goals �rst strategy.

(All other experiments up to this point have employed a LIFO goal-selection strategy.)

Both learning systems run UCPOP in a depth-�rst search mode, however, it should be noted

that Scope was run used a Prolog version of UCPOP as a base planner, while UCPOP+EBL uses

the standard LISP implementation (Barrett & et al., 1995). Also, these experiments were run on

di�erent machines. Thus some di�erences in results could be due to these factors. For instance, the

Prolog version of UCPOP was able to solve more of the test problems under the time limit than

the Lisp UCPOP, thus speedup factors incurred by the two systems can only be roughly compared.

Table 9.1 shows the results of these experiments. UCPOP+EBL's performance is shown

on the left and Scope's performance is shown on the right. UCPOP+EBL's performance varies

widely across the di�erent domain versions and the di�erent goal-selection strategies. In several of

the experiments, very little speedup is realized. However, in one particular experiment, which uses

BW-univ and a most-instantiated goals �rst selection strategy, UCPOP+EBL achieves a very high

speedup factor (34x). Scope on the other hand is able to achieve signi�cant speedup in all experi-

ments. Surprisingly, the one experiment where the speedup factor achieved by Scope is somewhat

low (2.7x) is the same experiment in which UCPOP+EBL achieves its greatest performance. This

lower speedup is due in part to the fact that the base planner in this experiment was already very

e�cient (solving 96% of the test problems under the time limit). Plus, Scope is able to increase

speedup further when trained on more problems. When trained on 200 training problems in the

�rst experiment on BW-univ, the speedup factor reaches 11.3x and test problem coverage increased

to 100%. Overall, Scope outperforms UCPOP+EBL in these experiments, and seems to be more

robust at applying to di�erent domain representations. These results indicate that combining in-

duction with EBL can be more e�ective than EBL alone at improving the performance of planning

80

Domain UCPOP+EBL SCOPE

Scratch w/ Control Scratch w/ Control
%Sol Time %Sol Time %Sol Time %Sol Time

Achieving most instantiated goals �rst

BW-prop 51% 7872 68% 5410(1.5x) 92% 1277 97% 402(3.2x)
BW-cond 89% 2821 91% 2567(1.1x) 91% 1268 98% 300(4.2x)
BW-univ 53% 7205 100% 210(34.3x) 96% 982 98% 351(2.7x)

Achieving goals in a LIFO order

BW-prop 10% 13509 10% 13509(1x) 29% 8936 98% 241(37.1x)
BW-cond 42% 9439 75% 4544(2.1x) 94% 954 99% 124(7.7x)
BW-univ 81% 3126 94% 1699(1.8x) 90% 1359 100% 5(271.8x)

Table 9.1: Comparison between Scope and UCPOP+EBL for improving the e�ciency of UCPOP.

systems.

9.2.3 Systems Applied to Decomposition Planners

One other type of learning system that has been developed to increase planning e�ciency is X-Learn

(Reddy & Tadepalli, 1997), which uses a very di�erent approach to control-knowledge acquisition.

Instead of learning separate control rules that are incorporated into an existing planning system,

X-Learn builds a new decomposition-based problem solver based on a set of training examples.

Similar to Scope, X-Learn also utilizes inductive logic programming techniques, and is constructed

using a combination of explanation-based and empirical learning. For each training problem, X-

Learn constructs a decomposition rule that covers just that example. Then a \generate-and-test"

algorithm is used to combine the rule with any previously learned rules by �nding the least general

generalization (LGG) of the new rule with the previously formed rules. X-Learn has been shown

to produce signi�cant speedup in several planning domains, including a variant of the STRIPS

world domain (Fikes, Hart, & Nilsson, 1972) and an air-tra�c control domain. Unfortunately,

even though X-Learn can produce signi�cant speedup on these domains, it is not guaranteed to

produce a complete planner and thus sometimes the �nal planner cannot produce a solution for

all test problems. Also, X-Learn's approach is based around learning a new decomposition based

planner and thus, cannot be used to directly improve existing planning techniques, such as partial-

order planning; and, unlike Scope, X-Learn only improves problem solver e�ciency, and does not

attempt to improve solution quality.

9.3 Learning Control for Plan Quality

Most research in learning control rules for planning has been directed at improving planning e�-

ciency. However, some research has concentrated on improving the quality of plans produced by a

planner. The most prominent of these systems is the Quality learning system (P�erez, 1996) which

is built on top of the Prodigy4.0 nonlinear planner. Quality inputs a set of planning domain

operators, a domain-dependent metric that evaluates the quality of plans and a set of problems for

that domain. It then analyzes the di�erences between a plan initially produced by the planner and

a better plan (according to the given quality metric), which can be either input by hand or produced

81

by having the planner search until a better solution is found. Two di�erent learning approaches

can be used to construct control information that will lead to higher quality plans. Control rules

apply to local planning decisions and are generated using explanation-based learning to explain

why one plan is better than the other. Control knowledge trees helps to make globally optimal

decisions by provide estimates of the quality of di�erent planning alternatives. These trees consist

of goal, operator and binding nodes for a planning problem and are generated from the problem

search trace. Quality has been evaluated on the process planning domain and has been shown to

signi�cantly improve plan quality for this domain. Unfortunately, Quality does not necessarily

improve planner e�ciency and can sometimes produce much longer planning times. Additionally,

Quality is built around a state-based planner and thus, it is unclear whether it could be success-

fully applied to a partial-order planner, especially since many rule conditions refer to current state

information.

There are two other learning systems for improving quality which also run on the PRODIGY

nonlinear planner. One technique was developed by (Iwamoto, 1994) and uses EBL to acquire

control rules for near-optimal solutions in LSI design. This method is similar to Quality's control-

rule learning algorithm, however it does not make use of the quality evaluation function to build

the rule and is more limited in the type of control rules it can build. Iwamoto's system has also

concentrated only on building control rules, unlike the Quality system which can also construct

control knowledge trees to represent plan-quality control information. Iwamoto's system was able

to moderately improve upon planner e�ciency, however, it has only been tested on problems in a

very limited domain.

Another learning system which has addressed improving plan quality is Hamlet. It is also

built on the PRODIGY nonlinear planner and was discussed in Section 9.2. Similar to Scope

Hamlet has been shown to improve upon both plan quality, as well as planner e�ciency in the

logistics transportation domain. However, the only quality metric examined by this system is the

length of the plan, and thus, it is unclear whetherHamlet could improve upon other quality metrics

as well. Also, as mentioned before, it is unclear how Hamlet would perform on a partial-order

planner.

Most other work in plan quality has not utilized machine learning techniques. Some work

has concentrated on examining goal interactions and how they related to solution quality. One

technique is to analyze the di�erent types of goal interactions and then develop strategies to deal

them (Wilensky, 1983; Pollack, 1992). The LCOS (Least Commitment to Operator Selection)

planning strategy (Hayes, 1990) takes a global view of the plan and only makes operator selections

that can maximize a given plan quality criteria. Foulser, Li, and Yang (1992) promotes plan merging

as a technique for minimizing plan cost, where certain operators in a plan are grouped together.

Other work has utilized decision theory to improve plan quality. The Pyrrhus planning system

(Williamson & Hanks, 1994) is an extension to UCPOP that �nds optimal plans by using utility

models to measure the quality of a partial plan. There have also been some domain-dependent

approaches to generate high quality plans. TheMachinist program (Hayes, 1990) generates plans

for a machine process domain and has embedded knowledge about feature interaction which helps it

to generate minimal length plans. The GARI (Descotte & Latombe, 1985) planner generates plans

for metal cutting by using a constraint satisfaction algorithm, where domain control knowledge is

encoded with more general domain information in the form of preference rules.

82

Chapter 10

Future Work

There are a number of issues that would be interesting to pursue in future research. First, there are

several enhancements that could be bene�cial for Scope's algorithm. These include incorporating

a method for constructive induction that could invent new concepts when needed and learning

rules for other types of decision points not currently considered by Scope. Second, further experi-

ment evaluation should be performed on di�erent types of domains and quality metrics, and more

thoroughly comparing Scope to other learning methods. Third, it would be interesting to apply

Scope to other types of planning algorithms to see if similar gains could be produced. This section

discusses each of these topics and presents di�erent ideas for implementation.

10.1 Enhancements to Scope's Algorithm

10.1.1 Constructive Induction and Shared Concepts

One possible enhancement to Scope is the incorporation of constructive induction to invent new

predicates when needed. Currently, the pool of possible control rule antecedents is drawn mainly

from program predicates which were used in the main planning algorithm. However, for complete

optimization of a planner or other problem solver, it is often necessary to introduce new concepts

for use in the control language. For instance, it may be helpful in the logistics domain, to have a

predicate which tests whether two objects are initially in the same city. Currently, it is possible for

the user to provide Scope with extra concepts de�nitions in the form of relational cliches or extra

background knowledge. However, a better method would be for the system to learn these concepts

automatically. Constructive induction techniques have been implemented in several ILP systems

(Kijsirikul et al., 1992; Zelle & Mooney, 1994b) and could help Scope learn more accurate and

e�cient control rules.

Furthermore, it is often the case that concepts that are useful in making a control decision

about a certain plan re�nement are also useful for making decisions about other related re�nements.

However, even with constructive induction, these \shared" concepts must be relearned from scratch

for each new control rule. In a Foil-like inductive learner, it is relatively easy to make a newly

constructed concept available for reuse to simple adding it to the list of predicates that can be used

as control rule antecedents. Unfortunately, the de�nition of this concept may be incomplete or

incorrect, depending on the particular set of training examples that was used to construct it. This

83

problem can be remedied by the following approach. If a previously de�ned concept is found to be

the best choice for the next control-rule antecedent, yet it does not cover all the positive control

examples, this concept can be rede�ned by merging the original set of control examples with the

new set and then recursively inducing rules to cover all positive examples. This type of concept

sharing procedure could help further reduce the inductive search space, and make Scope's learning

algorithm more e�cient.

10.1.2 Learning at Other Decision Points

Scope was designed to learn control rule for decision points that could be backtracked upon.

These points are portrayed as clause selection problems, which enables control information to be

easily incorporated. If learning is successful at all backtracking points, then control information is

unnecessary at all other points. For instance, another planning decision point for which a number

of past systems have learned control rules is goal selection. However, when using a UCPOP-style

planner, goal selection is never backtracked upon (i.e. a correct plan can be found for any ordering

of goals). Therefore, if accurate rules are learned for all other decision points (where backtracking

does occur) then there is no need for control rules in goal selection. However, it is often the case

that accurate control rules are not learned for all other points; Scope is sometimes unable to �nd

a rule that can rule out all negative re�nement-selection examples. In these cases, incorporating

control information for goal selection could be bene�cial.

Another decision point for which Scope does not learn control information is selecting

variable bindings when establishing a goal using the initial state. For instance, if a goal has unbound

variables (e.g. on-table(?X)) and there are several possible bindings in the initial state that could

be used to establish the goal (e.g. the initial state contains both on-table(a) and on-table(b), then

it is possible the decision of what bindings to select will be backtracked upon. In the experiments

used to test Scope, this has not been an issue, but it could become important when testing on

di�erent types of domains or on when testing on more complicated problems. For instance, in the

process planning domain, a relatively small number of machines were made available in problem

initial states. Increasing the number of available tools and machines of a certain type could cause

control information at this point to be necessary.

Both decision points of goal selection and binding selection are di�cult to cast as clause-

selection problems since it is not known prior to planning what the di�erent options are. Both

these decision correspond to selecting an appropriate item from a list. Thus, one possible way to

write these decisions in the clause-selection format, is to use two clauses. The �rst clause would

examine the �rst appropriate item o� the list of options as a possible choice. The second clause

would search the rest of the list for the desired item. Control rules could then be learned that

instruct the planner when to select the �rst clause over the second clause, i.e. rules would evaluate

when the �rst acceptable item should be chosen as opposed to searching farther in the list.

10.1.3 Evaluating Control Rule Utility

Currently, Scope automatically includes any learned rule in its �nal set of control rules, however,

some rules are probably much more useful than others. The utility of individual rules can often

dramatically vary and too many rules of low utility can even lead to lower performance (Minton,

84

1988). This occurrence, commonly known as the utility problem, can be lessened or prevented by

only including the most useful control rules in the �nal planner. Though rule utility has thus far

not been problematic, Scope may still be creating a few rules that are overly complex and apply

to very few examples. Thus, it might be useful to incorporate a method into Scope that directly

evaluates control-rule utility. Researchers have introduced a variety of techniques for determining

the best rules to save (Greiner & Likuski, 1989; Markovitch & Scott, 1989; Subramanian & Feldman,

1990; Gratch & DeJong, 1992). As yet, no one has applied such techniques to evaluate rules for a

partial-order planner, however, such a method should be easy to integrate into Scope's learning

system.

10.1.4 Induction Bias

Another possible improvement is to replace or modify the standard Foil information-gain heuristic

currently used to bias Scope's induction algorithm towards good rules. Though the results with

this heuristic have been encouraging, experimenting with di�erent heuristics may be bene�cial. One

possibility is to replace this heuristic with a metric that more directly measures rule utility. This

modi�cation could improve performance by encouraging the system to only select highly-useful

control rule antecedents. Another problem with the current heuristic is that a good rule is often

discarded because it covers one or two negative control examples. Even if such a rule is retained,

it will be considered \nondeterministic" (no cut will be added) and could be backtracked upon,

causing a potential loss in speedup. Scope could bene�t from methods for handling noisy data that

have been in employed in Foil and other related systems (Quinlan, 1990; Muggleton, 1992; Lavra�c

& D�zeroski, 1994). In Scope's framework, a small percentage of incorrectly covered examples could

be treated as noise, thereby allowing some good rules to be retained and more rules to be marked

as deterministic. This procedure could cause even more backtracking to be eliminating, resulting

in lower solution times for many examples. Problems that are not correctly covered by rules are

already handled by retaining a backup of the original planner. Since most backtracking would be

eliminated, the new planner should fail quickly on these examples, thus incurring very little extra

time to solve them. Speedup gain on all other examples could make this approach bene�cial overall.

10.1.5 Employing Failure Information

One last possible research direction is to utilize information about planning failures to learn more

e�ective control rules. Currently, Scope only uses the generalized solution proofs of the training

examples to bias the inductive search. Another approach is to also utilize explanations of why

particular search paths failed. For instance, the generalized failure explanations created by the

UCPOP+EBL learning system could also be used to bias the inductive search. This approach

would allow control rules to directly utilize relevant failure information. In particular, rules would

have access to the sets of conditions which caused many search paths to fail when solving the the

training examples. This information could help Scope to build more e�ective rules which more

accurately avoid unpromising search paths.

85

10.2 Further Experimental Evaluation

It would be interesting to conduct further experiments using Scope on other realistic domains

and quality metrics. In the process planning domain, more extensive experiments could be run

that tested a wider variety of part and problems types. For instance, in addition to the types of

problems already tested, problems can require parts to have a particular surface �nish or coating.

Also, holes in a part can be further re�ned such as tapping a hole to produce a thread inside or

countersinking a hole to cut an angular opening into the top.

A number of other domains could also to test Scope. For instance, the UM Translog

domain (Andrews et al., 1995) is an extended version of logistics transportation domain, which it

is an order of magnitude larger in size (41 actions vs. 6) and which provides more complex features

and goal interactions. In this domain, packages must still be delivered between cities, however

there are more modes of transportation, vehicles and packages have special loading methods, and

some routes of transportation can be temporarily unavailable. The detailed set of operators in this

domain provide for long plans with many possible solutions to the same problem. Scope could also

be evaluated on di�erent quality metrics. For instance in both the UM Translog domain and the

Truckworld domain utilized by (Williamson & Hanks, 1994) resource consumption is an important

quality measure.

Also, further experiments should be done comparing the multi-strategy learning approach

used by Scope to a pure explanation-based approach, such as that used by UCPOP+EBL. In the

tests comparing these two systems, it was unclear why the EBL approach was so greatly a�ected

by both the type of domain de�nition used and the type of goal-selection strategy used by the

planner. Further tests should also be done on whether the expressiveness of a domain has any

e�ect on Scope's ability to learn control rules. It would be useful to compare these two systems

on other types of domains to better evaluate their strengths and weaknesses.

10.3 Applying Scope to Other Planning Systems

In future work, it would be nice to demonstrate that Scope's learning is not limited to improving

the performance of only one type of planner. There are several other types of planners besides

partial-order that are prominent in the planning community today. One is an hierarchical-task

network (HTN) planner (Erol et al., 1994a). As opposed to most operator-based planners, HTN

planners specify plan modi�cations in terms of task reduction rules. These reduction rules are then

used to decompose abstract goals into lower level tasks. A set of similar constraints as found in an

operator-based planner (e.g. orderings, causal-links) is maintained in an HTN planner and many

of the same methods can be used to resolve possible conicts. HTN planners have several decision

points where control knowledge could be useful, including what task reduction rule to apply, and

what constraint resolution method to use. HTN planners are argued by some researchers to be more

useful for real-world applications since they o�er more exibility in expressing domain knowledge.

There are several well-developed HTN algorithms that would be good testbeds for Scope. These

include UMCP (Erol et al., 1994b), developed at the University of Maryland, and COLLAGE

(Lansky & Getoor, 1995), developed at the NASA Ames Research Center.

Another breed of planners that could be considered are those that use a combination of

86

plan-space and state-space techniques. Kambhampati and Srivastava (1996) introduced the UCP

planning algorithm which casts plan-space and state-space planning methods into a single frame-

work. UCP has the freedom to interleave these two re�nement strategies on a singular plan repre-

sentation. Veloso and Stone (1995) have also developed a new approach to planning that combines

these two re�nement strategies by using a exible approach to ordering commitments. FLECS can

use both least-commitment and eager-commitment strategies and can vary its use across di�erent

problems and domains. This strategy also integrates techniques from both partial-order and total-

order planners. Both UCP and FLECS could highly bene�t from learned control knowledge since

they have been especially designed to take advantage of heuristic knowledge at the choice points

just described.

More recently, a new breed of planners has appeared that utilize propositional reasoning

and theorem proving techniques to e�ciently solve planning problems (Blum & Furst, 1997; Kautz

& Selman, 1996). These types of planners operator very di�erently from more traditional planning

styles, where planning is viewed as a state-based or plan-based search. For instance, Graphplan

converts a planning problem into a structure called a planning graph, and then systematically

searches the graph for a solution (Blum & Furst, 1997). Kautz and Selman (1996) describe a method

for reducing planning problems into SAT encodings, and then employing either a satis�ability

algorithm or a stochastic algorithm to produce solutions. Since, these approaches are quite di�erent

in nature to other types of planning systems, it is unclear if a learning system such as Scope could

be e�ectively applied to improve performance. Graphplan seems the most likely candidate to bene�t

from Scope since it performs a backtracking search through the planning graph. During this search,

it continuously attempts to �nd a set of actions which maps one set of goals to another until a

solution is found. The decision of what action to select to achieve a goal can be backtracked upon,

and thus would likely bene�t from learned control knowledge. The other approach of reducing

planning into SAT would be more di�cult to use as a base planner for Scope, since it directly

employs satis�ability algorithms, and thus search is performed in a much di�erent space. However,

using learning to improve performance in such algorithms could be bene�cial and is worth further

investigation.

87

Chapter 11

Conclusions

This dissertation has presented a novel approach for learning control knowledge for planning sys-

tems. This approach is set apart from other control-rule learners, by several key features. First, it

learns control rules that can approve upon both planning e�ciency and quality, as opposed to most

other approaches which concentrate on one of these metrics. Second, it employs an inductive-logic

programming framework and casts the problem of control-rule learning as a clause-selection prob-

lem where control information can be easily incorporated. Third, it uses a multi-strategy learning

technique, that successfully combines both EBL and induction to acquire control rules.

Scope, the control-rule learning system developed in this dissertation, automatically ac-

quires domain-speci�c control rules for a planner by examining past planning scenarios. Search-

control is cast as a clause-selection problem for a Prolog program, where learned control knowledge

is incorporated to help the planner immediately select promising plan re�nements. Control rules are

acquired by using a combination of machine learning techniques. In particular, explanation-based

generalization is used to bias an inductive search for control rules towards useful control informa-

tion. Scope's approach is shown successful at learning control rules for a partial-order planner,

which is a style of planning to which few other learning systems can be successfully applied.

Experiments in several domains showed that Scope could signi�cantly speedup a planner

and at the same time, improve the quality of the generated solutions. In the logistics transportation

and blocksworld domains, Scope was able to produce a much faster planner, and also was able

to signi�cantly reduce solution lengths, often to optimal solutions. Additionally, the scalability of

Scope was demonstrated in the logistics domain, where it was able to generate a new planner that

could solve problems at a much higher complexity level than could be solved before learning.

Experiments in the process planning domain demonstrated two main goals. First, Scope

could successfully apply to a complex, realistic domain, which was over an order of magnitude larger

than the other domains tested. Second, Scope was able to improve on di�erent types of quality

metrics, while still improving e�ciency. In particular, Scope produced two sets of control rules

that generated solutions emphasizing two separate quality metrics and that signi�cantly improved

both planning e�ciency and the number of test problems that could be solved under a time limit.

Scope was also demonstrated to outperform a competing approach that used a purely

explanation-based approach to acquire control knowledge. In these tests, an EBL approach was

shown to improve planning performance on only one type of domain de�nition, while Scope was

shown to produce signi�cant improvements on a variety of domain types and thus appeared to be

88

more robust than a system that used only EBL to learn rules. These experiments indicated that

combining induction with EBL can be more e�ective than using EBL alone to acquire useful control

knowledge.

In conclusion, this dissertation presents a novel learning approach for acquiring planning

control knowledge, which can learn control information for improving both planning e�ciency and

quality, and which is one of the few methods proven successful for learning control rules to improve

partial-order planners.

89

Appendix A

Domain De�nitions

All domain de�nitions listed below are given in the following format. Domain operators are speci�ed

using the operator/3 predicate which is de�ned as:

operator(Op, Preconditions, Postconditions)

where Op corresponds to the operator name and arguments, Preconditions corresponds to a list of

preconditions and Effects corresponds to a list of e�ects.

A.1 Blocksworld Domain

The main blocksworld domain de�nition (Nilsson, 1980) that was used in this dissertation is listed

below.

operator(putdown(X),

[holding(X)],

[on_table(X),clear(X),arm_empty,not(holding(X))]).

operator(pickup(X),

[on_table(X),clear(X),arm_empty],

[holding(X),not(on_table(X)),not(clear(X)),not(arm_empty)]).

operator(unstack(X,Y),

[on(X,Y),clear(X),arm_empty],

[clear(Y),holding(X),not(on(X,Y)),not(clear(X)),not(arm_empty)]).

operator(stack(X,Y),

[holding(X),clear(Y)],

[on(X,Y),clear(X),arm_empty,not(holding(X)),not(clear(Y))]).

A.2 Three Versions of the Blocksworld Domain

Three di�erent versions of blocksworld were used in comparing Scope to UCPOP+EBL in Chap-

ter 9. There three version are listed below.

A.2.1 BW-Prop

This version contains only simple propositional preconditions and e�ects.

90

operator(newtower(X,Table,Z),

[on(X,Z),clear(X),neq(X,Z),bloc(X),bloc(Z),tab(Table)],

[on(X,Table),clear(Z),not(on(X,Z))]).

operator(puton(X,Y,Z),

[on(X,Z),clear(X),clear(Y),neq(X,Y),neq(X,Z),neq(Y,Z),bloc(X),

bloc(Y)],

[on(X,Y),not(on(X,Z)),clear(Z),not(clear(Y))]).

A.2.2 BW-Cond

This version contains conditional e�ects.

operator(puton(X,Y,Z),

[on(X,Z),clear(X),clear(Y),neq(X,Z),neq(Y,Z),neq(X,Y),bloc(X)],

[on(X,Y),not(on(X,Z)),when(bloc(Z),clear(Z)),

when(bloc(Y),not(clear(Y)))]).

A.2.3 BW-Univ

This version contains universal quanti�cation in its preconditions.

operator(puton(X,Y,Z),

[on(X,Z),neq(X,Y),neq(X,Z),neq(Y,Z),

or([tab(Y),and([bloc(Y),forall(bloc(B),not(on(B,Y)))])]),

forall(bloc(C),not(on(C,X)))],

[on(X,Y),not(on(X,Z))]).

A.3 Logistics Transportation Domain

The logistics transportation de�nition (Veloso, 1992) that was used in this dissertation is listed

below.

operator(load_truck(Obj,Truck,Loc),

[at_obj(Obj,Loc),at_truck(Truck,Loc)],

[inside_truck(Obj,Truck),not(at_obj(Obj,Loc))]).

operator(load_airplane(Obj,Airplane,Loc),

[at_obj(Obj,Loc),at_airplane(Airplane,Loc)],

[inside_airplane(Obj,Airplane),not(at_obj(Obj,Loc))]).

operator(unload_truck(Obj,Truck,Loc),

[inside_truck(Obj,Truck),at_truck(Truck,Loc)],

[at_obj(Obj,Loc),not(inside_truck(Obj,Truck))]).

operator(unload_airplane(Obj,Airplane,Loc),

[inside_airplane(Obj,Airplane),at_airplane(Airplane,Loc)],

[at_obj(Obj,Loc),not(inside_airplane(Obj,Airplane))]).

operator(drive_truck(Truck,Loc_from,Loc_to),

[same_city(Loc_from,Loc_to),at_truck(Truck,Loc_from)],

[at_truck(Truck,Loc_to),not(at_truck(Truck,Loc_from))]).

operator(fly_airplane(Airplane,Loc_from,Loc_to),

[airport(Loc_to),neq(Loc_from,Loc_to),

91

at_airplane(Airplane,Loc_from)],

[at_airplane(Airplane,Loc_to),

not(at_airplane(Airplane,Loc_from))]).

A.4 Process Planning Domain

The process planning de�nition (Gil, 1991) that was used in this dissertation is listed below. This

domain contains de�nitions for operators, axioms and functions. Axioms can be used to easily de�ne

extra operator e�ects so that domain operators can be structured in a concise format. Functions

are used to de�ne operator preconditions that can be satisifed by calling a Prolog function. For

more information on how axioms and functions are used in UCPOP, see Barrett and et al. (1995).

A.4.1 Process Planning Operators

operator(drill_with_spot_drill(Machine,Drill_Bit,Holding_Device,Part,Hole,Side),

[is_a(Part,part),is_a(Machine,drill),is_a(Drill_Bit,spot_drill),

holding_tool(Machine,Drill_Bit),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),has_spot(Part,Hole,Side,Loc_X,Loc_Y)]).

operator(drill_with_twist_drill(Machine,Drill_Bit,Holding_Device,Part,Hole,Side,

Hole_Depth,Hole_Diameter),

[is_a(Part,part),is_a(Machine,drill),eq(Drill_Bit_Diameter,Hole_Diameter),

diameter_of_drill_bit(Drill_Bit,Drill_Bit_Diameter),

is_a(Drill_Bit,twist_drill),has_spot(Part,Hole,Side,Loc_X,Loc_Y),

holding_tool(Machine,Drill_Bit),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),not(has_spot(Part,Hole,Side,Loc_X,Loc_Y)),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y)]).

operator(drill_with_high_helix_drill(Machine,Drill_Bit,Holding_Device,Part,Hole,

Side,Hole_Depth,Hole_Diameter),

[is_a(Part,part),is_a(Machine,drill),eq(Drill_Bit_Diameter,Hole_Diameter),

diameter_of_drill_bit(Drill_Bit,Drill_Bit_Diameter),

is_a(Drill_Bit,high_helix_drill),has_fluid(Machine,Fluid,Part),

has_spot(Part,Hole,Side,Loc_X,Loc_Y),holding_tool(Machine,Drill_Bit),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(has_spot(Part,Hole,Side,Loc_X,Loc_Y)),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y)]).

operator(drill_with_straight_fluted_drill(Machine,Drill_Bit,Holding_Device,Part,Hole,

Side,Hole_Depth,Hole_Diameter),

[is_a(Part,part),is_a(Machine,drill),eq(Drill_Bit_Diameter,Hole_Diameter),

diameter_of_drill_bit(Drill_Bit,Drill_Bit_Diameter),

is_a(Drill_Bit,straight_fluted_drill),smaller(Hole_Depth,2),

material_of(Part,brass),has_spot(Part,Hole,Side,Loc_X,Loc_Y),

holding_tool(Machine,Drill_Bit),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(has_spot(Part,Hole,Side,Loc_X,Loc_Y)),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y)]).

operator(drill_with_oil_hole_drill(Machine,Drill_Bit,Holding_Device,Part,Hole,Side,

Hole_Depth,Hole_Diameter),

[is_a(Part,part),is_a(Machine,drill),eq(Drill_Bit_Diameter,Hole_Diameter),

diameter_of_drill_bit(Drill_Bit,Drill_Bit_Diameter),

92

is_a(Drill_Bit,oil_hole_drill),smaller(Hole_Depth,20),

has_fluid(Machine,Fluid,Part),has_spot(Part,Hole,Side,Loc_X,Loc_Y),

holding_tool(Machine,Drill_Bit),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(has_spot(Part,Hole,Side,Loc_X,Loc_Y)),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y)]).

operator(drill_with_gun_drill(Machine,Drill_Bit,Holding_Device,Part,Hole,Side,

Hole_Depth,Hole_Diameter),

[is_a(Part,part),is_a(Machine,drill),eq(Drill_Bit_Diameter,Hole_Diameter),

diameter_of_drill_bit(Drill_Bit,Drill_Bit_Diameter),is_a(Drill_Bit,gun_drill),

has_fluid(Machine,Fluid,Part),has_spot(Part,Hole,Side,Loc_X,Loc_Y),

holding_tool(Machine,Drill_Bit),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),not(has_spot(Part,Hole,Side,Loc_X,Loc_Y)),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y)]).

operator(drill_with_center_drill(Machine,Drill_Bit,Holding_Device,Part,Hole,Side,

Drill_Bit_Diameter,Loc_X,Loc_Y),

[is_a(Part,part),is_a(Machine,drill),

diameter_of_drill_bit(Drill_Bit,Drill_Bit_Diameter),

eq(Drill_Bit_Diameter,Hole_Diameter),is_a(Drill_Bit,center_drill),

has_spot(Part,Hole,Side,Loc_X,Loc_Y),holding_tool(Machine,Drill_Bit),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),not(has_spot(Part,Hole,Side,Loc_X,Loc_Y)),

has_hole(Part,Hole,Side,1/8,Hole_Diameter,Loc_X,Loc_Y),

has_center_hole(Part,Hole,Side,Loc_X,Loc_Y)]).

operator(tap(Machine,Drill_Bit,Holding_Device,Part,Hole),

[is_a(Part,part),is_a(Machine,drill),eq(Drill_Bit_Diameter,Hole_Diameter),

diameter_of_drill_bit(Drill_Bit,Drill_Bit_Diameter),is_a(Drill_Bit,tap),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y),

holding_tool(Machine,Drill_Bit),not(has_burrs(Part)),is_clean(Part),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

when(is_reamed(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y),

not(is_reamed(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y))),

is_tapped(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y)]).

operator(countersink(Machine,Drill_Bit,Holding_Device,Part,Hole),

[is_a(Part,part),is_a(Machine,drill),angle_of_drill_bit(Drill_Bit,Angle),

is_a(Drill_Bit,countersink),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y),

holding_tool(Machine,Drill_Bit),not(has_burrs(Part)),

is_clean(Part),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

is_countersinked(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y,Angle)]).

operator(counterbore(Machine,Drill_Bit,Holding_Device,Part,Hole),

[is_a(Part,part),is_a(Machine,drill),

size_of_drill_bit(Drill_Bit,Counterbore_Size),is_a(Drill_Bit,counterbore),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y),

holding_tool(Machine,Drill_Bit),not(has_burrs(Part)),is_clean(Part),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

is_counterbored(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y,

Counterbore_Size)]).

operator(ream(Machine,Drill_Bit,Holding_Device,Part,Hole,Side,Hole_Depth,Hole_Diameter),

[is_a(Part,part),is_a(Machine,drill),eq(Drill_Bit_Diameter,Hole_Diameter),

diameter_of_drill_bit(Drill_Bit,Drill_Bit_Diameter),is_a(Drill_Bit,reamer),

smaller(Hole_Depth,2),has_fluid(Machine,Fluid,Part),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y),

93

holding_tool(Machine,Drill_Bit),not(has_burrs(Part)),is_clean(Part),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

when(is_tapped(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y),

not(is_tapped(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y))),

is_reamed(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y)]).

operator(side_mill(Machine,Part,Milling_Cutter,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,milling_machine),

is_of_type(Milling_Cutter,milling_cutter),or([eq(Dim,width),eq(Dim,length)]),

size_of(Part,Dim,Value_Old),smaller(Value,Value_Old),

smaller_than_2in(Value_Old,Value),side_up_for_machining(Dim,Side),

holding_tool(Machine,Milling_Cutter),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),surface_finish_side(Part,Side,rough_mill),

size_of(Part,Dim,Value),not(size_of(Part,Dim,Value_Old))]).

operator(face_mill(Machine,Part,Milling_Cutter,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,milling_machine),

is_of_type(Milling_Cutter,milling_cutter),eq(Dim,height),

size_of(Part,Dim,Value_Old),smaller(Value,Value_Old),

side_up_for_machining(Dim,Side),holding_tool(Machine,Milling_Cutter),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),surface_finish_side(Part,Side,rough_mill),

size_of(Part,Dim,Value),not(size_of(Part,Dim,Value_Old))]).

operator(drill_with_spot_drill_in_milling_machine(Machine,Drill_Bit,Holding_Device,Part,

Hole,Side),

[is_a(Part,part),is_a(Machine,milling_machine),is_a(Drill_Bit,spot_drill),

holding_tool(Machine,Drill_Bit),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),has_spot(Part,Hole,Side,Loc_X,Loc_Y)]).

operator(drill_with_twist_drill_in_milling_machine(Machine,Drill_Bit,Holding_Device,Part,

Hole,Side,Hole_Depth,Hole_Diameter),

[is_a(Part,part),is_a(Machine,milling_machine),

eq(Drill_Bit_Diameter,Hole_Diameter),

diameter_of_drill_bit(Drill_Bit,Drill_Bit_Diameter),is_a(Drill_Bit,twist_drill),

has_spot(Part,Hole,Side,Loc_X,Loc_Y),holding_tool(Machine,Drill_Bit),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),not(has_spot(Part,Hole,Side,Loc_X,Loc_Y)),

has_hole(Part,Hole,Side,Hole_Depth,Hole_Diameter,Loc_X,Loc_Y)]).

operator(rough_turn_rectangular_part(Machine,Part,Toolbit,Holding_Device,Diameter_New),

[is_a(Machine,lathe),is_a(Toolbit,rough_toolbit),shape_of(Part,rectangular),

size_of(Part,height,H),size_of(Part,width,W),smaller(Diameter_New,H),

smaller(Diameter_New,W),holding_tool(Machine,Toolbit),

side_up_for_machining(diameter,Side),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),not(size_of(Part,height,H)),

not(size_of(Part,width,W)),size_of(Part,diameter,Diameter_New),

not(surface_coating_side(Part,side1,Surface_Coating)),

not(surface_coating_side(Part,side2,Surface_Coating)),

not(surface_coating_side(Part,side4,Surface_Coating)),

not(surface_coating_side(Part,side5,Surface_Coating)),

not(surface_coating_side(Part,side0,Surface_Coating)),

not(surface_finish_side(Part,side1,Sf1)),not(surface_finish_side(Part,side2,Sf2)),

not(surface_finish_side(Part,side4,Sf4)),not(surface_finish_side(Part,side5,Sf5)),

surface_finish_side(Part,side0,rough_turn)]).

operator(rough_turn_cylindrical_part(Machine,Part,Toolbit,Holding_Device,Diameter_New),

94

[is_a(Machine,lathe),is_a(Toolbit,rough_toolbit),shape_of(Part,cylindrical),

size_of(Part,diameter,Diameter),smaller(Diameter_New,Diameter),

holding_tool(Machine,Toolbit),side_up_for_machining(diameter,Side),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),not(size_of(Part,diameter,Diameter)),

size_of(Part,diameter,Diameter_New),

not(surface_coating_side(Part,side0,Surface_Coating)),

not(surface_finish_side(Part,side0,Sf)),

surface_finish_side(Part,side0,rough_turn)]).

operator(finish_turn(Machine,Part,Toolbit,Holding_Device,Diameter_New),

[is_a(Machine,lathe),is_a(Toolbit,finish_toolbit),shape_of(Part,cylindrical),

size_of(Part,diameter,Diameter),finishing_size(Diameter,Diameter_New),

holding_tool(Machine,Toolbit),not(has_burrs(Part)),is_clean(Part),

holding(Machine,Holding_Device,Part,side0)],

[not(is_clean(Part)),has_burrs(Part),not(size_of(Part,diameter,Diameter)),

size_of(Part,diameter,Diameter_New),

not(surface_coating_side(Part,side0,Surface_Coating)),

not(surface_finish_side(Part,side0,Sf)),

surface_finish_side(Part,side0,finish_turn)]).

operator(make_thread_with_lathe(Machine,Part,Holding_Device,Side),

[is_a(Part,part),is_a(Machine,lathe),is_a(Toolbit,v_thread),

shape_of(Part,cylindrical),holding_tool(Machine,Toolbit),not(has_burrs(Part)),

is_clean(Part),holding(Machine,Holding_Device,Part,side0)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,side0,Surface_Coating)),

not(surface_finish_side(Part,side0,Sf)),surface_finish_side(Part,side0,tapped)]).

operator(make_knurl_with_lathe(Machine,Part,Holding_Device,Side),

[is_a(Part,part),is_a(Machine,lathe),is_a(Toolbit,knurl),

shape_of(Part,cylindrical),holding_tool(Machine,Toolbit),not(has_burrs(Part)),

is_clean(Part),holding(Machine,Holding_Device,Part,side0)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,side0,Surface_Coating)),

not(surface_finish_side(Part,side0,Sf)),surface_finish_side(Part,side0,knurled)]).

operator(file_with_lathe(Machine,Part,Holding_Device,Lathe_File,Diameter_New),

[is_a(Part,part),is_a(Machine,lathe),is_a(Lathe_File,lathe_file),

shape_of(Part,cylindrical),size_of(Part,diameter,Diameter),

finishing_size(Diameter,Diameter_New),not(has_burrs(Part)),is_clean(Part),

holding(Machine,Holding_Device,Part,side0)],

[not(is_clean(Part)),has_burrs(Part),not(size_of(Part,diameter,Diameter)),

size_of(Part,diameter,Diameter_New),

not(surface_coating_side(Part,side0,Surface_Coating)),

not(surface_finish_side(Part,side0,Sf)),

surface_finish_side(Part,side0,rough_grind)]).

operator(polish_with_lathe(Machine,Part,Holding_Device,Cloth),

[is_a(Part,part),is_a(Machine,lathe),is_a(Cloth,abrasive_cloth),

material_of_abrasive_cloth(Cloth,emery),shape_of(Part,cylindrical),

not(has_burrs(Part)),is_clean(Part),holding(Machine,Holding_Device,Part,side0)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,side0,Surface_Coating)),

not(surface_finish_side(Part,side0,S_Q)),

surface_finish_side(Part,side0,polished)]).

operator(rough_shape(Machine,Part,Cutting_Tool,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,shaper),is_a(Cutting_Tool,roughing_cutting_tool),

size_of(Part,Dim,Value_Old),smaller(Value,Value_Old),not(eq(Dim,diameter)),

side_up_for_machining(Dim,Side),holding_tool(Machine,Cutting_Tool),

holding(Machine,Holding_Device,Part,Side)],

95

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,rough_shaped),size_of(Part,Dim,Value),

not(size_of(Part,Dim,Value_Old))]).

operator(finish_shape(Machine,Part,Cutting_Tool,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,shaper),is_a(Cutting_Tool,finishing_cutting_tool),

size_of(Part,Dim,Value_Old),finishing_size(Value_Old,Value),not(eq(Dim,diameter)),

side_up_for_machining(Dim,Side),holding_tool(Machine,Cutting_Tool),

not(has_burrs(Part)),

is_clean(Part),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,finish_shaped),size_of(Part,Dim,Value),

not(size_of(Part,Dim,Value_Old))]).

operator(rough_shape_with_planer(Machine,Part,Cutting_Tool,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,planer),is_a(Cutting_Tool,roughing_cutting_tool),

size_of(Part,Dim,Value_Old),smaller(Value,Value_Old),not(eq(Dim,diameter)),

side_up_for_machining(Dim,Side),holding_tool(Machine,Cutting_Tool),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,rough_planed),size_of(Part,Dim,Value),

not(size_of(Part,Dim,Value_Old))]).

operator(finish_shape_with_planer(Machine,Part,Cutting_Tool,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,planer),is_a(Cutting_Tool,finishing_cutting_tool),

size_of(Part,Dim,Value_Old),finishing_size(Value_Old,Value),not(eq(Dim,diameter)),

side_up_for_machining(Dim,Side),holding_tool(Machine,Cutting_Tool),

not(has_burrs(Part)),is_clean(Part),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,finish_planed),size_of(Part,Dim,Value),

not(size_of(Part,Dim,Value_Old))]).

operator(rough_grind_with_hard_wheel(Machine,Part,Wheel,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,grinder),is_a(Wheel,grinding_wheel),

has_fluid(Machine,Fluid,Part),hardness_of_wheel(Wheel,hard),hardness_of(Part,soft),

not(material_of(Part,bronze)),not(material_of(Part,copper)),

grit_of_wheel(Wheel,coarse_grit),size_of(Part,Dim,Value_Old),

smaller(Value,Value_Old),not(eq(Dim,diameter)),side_up_for_machining(Dim,Side),

holding_tool(Machine,Wheel),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,rough_grind),

size_of(Part,Dim,Value),not(size_of(Part,Dim,Value_Old))]).

operator(rough_grind_with_soft_wheel(Machine,Part,Wheel,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,grinder),is_a(Wheel,grinding_wheel),

has_fluid(Machine,Fluid,Part),hardness_of_wheel(Wheel,soft),

hardness_of(Part,hard),grit_of_wheel(Wheel,coarse_grit),

size_of(Part,Dim,Value_Old),smaller(Value,Value_Old),not(eq(Dim,diameter)),

side_up_for_machining(Dim,Side),holding_tool(Machine,Wheel),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

96

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,rough_grind),size_of(Part,Dim,Value),

not(size_of(Part,Dim,Value_Old))]).

operator(finish_grind_with_hard_wheel(Machine,Part,Wheel,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,grinder),is_a(Wheel,grinding_wheel),

has_fluid(Machine,Fluid,Part),hardness_of_wheel(Wheel,hard),hardness_of(Part,soft),

not(material_of(Part,bronze)),not(material_of(Part,copper)),

grit_of_wheel(Wheel,fine_grit),size_of(Part,Dim,Value_Old),

finishing_size(Value_Old,Value),not(eq(Dim,diameter)),

side_up_for_machining(Dim,Side),holding_tool(Machine,Wheel),not(has_burrs(Part)),

is_clean(Part),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,finish_grind),size_of(Part,Dim,Value),

not(size_of(Part,Dim,Value_Old))]).

operator(finish_grind_with_soft_wheel(Machine,Part,Wheel,Holding_Device,Side,Dim,Value),

[is_a(Part,part),is_a(Machine,grinder),is_a(Wheel,grinding_wheel),

has_fluid(Machine,Fluid,Part),hardness_of_wheel(Wheel,soft),

hardness_of(Part,hard),grit_of_wheel(Wheel,fine_grit),

size_of(Part,Dim,Value_Old),finishing_size(Value_Old,Value),

not(eq(Dim,diameter)),side_up_for_machining(Dim,Side),

holding_tool(Machine,Wheel),not(has_burrs(Part)),is_clean(Part),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,finish_grind),size_of(Part,Dim,Value),

not(size_of(Part,Dim,Value_Old))]).

operator(cut_with_circular_cold_saw(Machine,Part,Attachment,Holding_Device,Dim,Value),

[is_a(Part,part),is_a(Machine,circular_saw),is_a(Attachment,cold_saw),

size_of(Part,Dim,Value_Old),smaller(Value,Value_Old),not(eq(Dim,diameter)),

side_up_for_machining(Dim,Side),holding_tool(Machine,Attachment),

holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,finish_mill),not(size_of(Part,Dim,Value_Old)),

size_of(Part,Dim,Value)]).

operator(cut_with_circular_friction_saw(Machine,Part,Attachment,Holding_Device,Dim,Value),

[is_a(Part,part),is_a(Machine,circular_saw),is_a(Attachment,friction_saw),

has_fluid(Machine,Fluid,Part),size_of(Part,Dim,Value_Old),

smaller(Value,Value_Old),not(eq(Dim,diameter)),side_up_for_machining(Dim,Side),

holding_tool(Machine,Attachment),holding(Machine,Holding_Device,Part,Side)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),

surface_finish_side(Part,Side,rough_mill),not(size_of(Part,Dim,Value_Old)),

size_of(Part,Dim,Value)]).

operator(cut_with_band_saw(Machine,Part,Attachment,Dim,Value),

[is_a(Part,part),is_a(Machine,band_saw),is_a(Attachment,band_file),

size_of(Part,Dim,Value_Old),smaller(Value,Value_Old),not(eq(Dim,diameter)),

side_up_for_machining(Dim,Side),holding_tool(Machine,Attachment),

not(has_burrs(Part)),is_clean(Part),on_table(Machine,Part)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,S_Q)),surface_finish_side(Part,Side,sawcut),

97

not(size_of(Part,Dim,Value_Old)),size_of(Part,Dim,Value)]).

operator(polish_with_band_saw(Machine,Part,Attachment,Side),

[is_a(Part,part),is_a(Machine,band_saw),is_a(Attachment,saw_band),

side_up_for_machining(Dim,Side),holding_tool(Machine,Attachment),

not(has_burrs(Part)),is_clean(Part),on_table(Machine,Part)],

[not(is_clean(Part)),has_burrs(Part),

not(surface_coating_side(Part,Side,Surface_Coating)),

not(surface_finish_side(Part,Side,Old_Sf_Cond)),

surface_finish_side(Part,Side,polished)]).

operator(weld_cylinders_metal_arc(Machine,Part1,Part2,Part,Electrode,Holding_Device,Length),

[is_a(Part1,part),is_a(Part2,part),not(eq(Part1,Part2)),

is_a(Machine,metal_arc_welder),is_a(Electrode,electrode),

material_of(Part1,Material1),material_of(Part2,Material2),

shape_of(Part1,cylindrical),shape_of(Part2,cylindrical),

not(exists(has_hole(Part1,Hole,Side,Depth,Diameter,Loc_X,Loc_Y))),

not(exists(has_hole(Part2,Hole,Side,Depth,Diameter,Loc_X,Loc_Y))),

size_of(Part1,diameter,Diameter1),size_of(Part2,diameter,Diameter2),

eq(Diameter1,Diameter2),size_of(Part1,length,Length1),

size_of(Part2,length,Length2),new_size(Length1,Length2,Length),

new_part(Part,Part1,Part2),new_material(Material,Material1,Material2),

holding_tool(Machine,Electrode),holding(Machine,Holding_Device,Part2,side3)],

[not(is_a(Part1,part)),not(is_a(Part2,part)),is_a(Part,part),

material_of(Part,Material),size_of(Part,diameter,Diameter1),

size_of(Part,length,Length),surface_finish_side(Part,side0,sawcut),

forall([Sf31],when(surface_finish_side(Part1,side3,Sf31),

surface_finish_side(Part,side3,Sf31))),

forall([Sf62],when(surface_finish_side(Part2,side6,Sf62),

surface_finish_side(Part,side6,Sf62))),

not(holding(Machine,Holding_Device,Part2,side3)),

holding(Machine,Holding_Device,Part,side3),not(size_of(Part1,diameter,Diameter)),

not(size_of(Part1,length,Length1)),not(size_of(Part2,diameter,Diameter)),

not(size_of(Part2,length,Length2)),not(material_of(Part1,Material1)),

not(material_of(Part2,Material2)),not(is_clean(Part1)),not(is_clean(Part2)),

forall([Sidea,Surf_Coatinga],not(surface_coating_side(Part1,Sidea,Surf_Coatinga))),

forall([Sideb,Surf_Coatingb],not(surface_coating_side(Part2,Sideb,Surf_Coatingb))),

forall([Sidec,Sfc],not(surface_finish_side(Part1,Sidec,Sfc))),

forall([Sided,Sfd],not(surface_finish_side(Part2,Sided,Sfd)))]).

operator(weld_cylinders_gas(Machine,Part1,Part2,Part,Rod,Holding_Device,Length),

[is_a(Part1,part),is_a(Part2,part),not(eq(Part1,Part2)),is_a(Machine,gas_welder),

is_a(Rod,welding_rod),is_a(Torch,torch),material_of(Part1,Material1),

material_of(Part2,Material2),eq(Material1,Material2),shape_of(Part1,cylindrical),

shape_of(Part2,cylindrical),

not(exists(has_hole(Part1,Hole,Side,Depth,Diameter,Loc_X,Loc_Y))),

not(exists(has_hole(Part2,Hole,Side,Depth,Diameter,Loc_X,Loc_Y))),

size_of(Part1,diameter,Diameter1),size_of(Part2,diameter,Diameter2),

eq(Diameter1,Diameter2),size_of(Part1,length,Length1),

size_of(Part2,length,Length2),new_size(Length1,Length2,Length),

new_part(Part,Part1,Part2),holding(Machine,Holding_Device,Part2,side3)],

[not(is_a(Part1,part)),not(is_a(Part2,part)),is_a(Part,part),

material_of(Part,Material1),size_of(Part,diameter,Diameter1),

size_of(Part,length,Length),surface_finish_side(Part,side0,sawcut),

forall([Sf31],when(surface_finish_side(Part1,side3,Sf31),

surface_finish_side(Part,side3,Sf31))),

forall([Sf62],when(surface_finish_side(Part2,side6,Sf62),

surface_finish_side(Part,side6,Sf62))),

not(holding(Machine,Holding_Device,Part2,side3)),

holding(Machine,Holding_Device,Part,side3),

not(size_of(Part1,diameter,Diameter)),not(size_of(Part1,length,Length1)),

not(size_of(Part2,diameter,Diameter)),not(size_of(Part2,length,Length2)),

98

not(material_of(Part1,Material1)),not(material_of(Part2,Material2)),

not(is_clean(Part1)),not(is_clean(Part2)),forall([Sidea,Surf_Coatinga],

not(surface_coating_side(Part1,Sidea,Surf_Coatinga))),forall([Sideb,Surf_Coatingb],

not(surface_coating_side(Part2,Sideb,Surf_Coatingb))),forall([Sidec,Sfc],

not(surface_finish_side(Part1,Sidec,Sfc))),

forall([Sided,Sfd],not(surface_finish_side(Part2,Sided,Sfd)))]).

operator(metal_spray_coating(Machine,Wire,Part,Side,Another_Machine,Holding_Device),

[is_a(Part,part),is_a(Machine,electric_arc_spray_gun),

is_a(Wire,spraying_metal_wire),not(material_of(Wire,tungsten)),

not(material_of(Wire,molybdenum)),is_clean(Part),not(has_burrs(Part)),

surface_coating_side(Part,Side,fused_metal),is_of_type(Another_Machine,machine),

holding(Another_Machine,Holding_Device,Part,Side)],

[when(material_of(Wire,stainless_steel),

surface_coating_side(Part,Side,corrosion_resistant)),

when(material_of(Wire,zirconium_oxide),

surface_coating_side(Part,Side,heat_resistant)),

when(material_of(Wire,aluminum_oxide),

surface_coating_side(Part,Side,wear_resistant)),

not(surface_coating_side(Part,Side,fused_metal))]).

operator(metal_spray_prepare(Machine,Wire,Part,Side,Another_Machine,Holding_Device),

[is_a(Part,part),is_a(Machine,electric_arc_spray_gun),

is_a(Wire,spraying_metal_wire),has_high_melting_point(Wire),is_clean(Part),

not(has_burrs(Part)),is_of_type(Another_Machine,machine),

holding(Another_Machine,Holding_Device,Part,Side)],

[surface_coating_side(Part,Side,fused_metal)]).

operator(clean(Part),

[is_a(Part,part),is_available_part(Part)],

[is_clean(Part)]).

operator(remove_burrs(Part,Brush),

[is_a(Part,part),is_a(Brush,brush),is_available_part(Part)],

[not(is_clean(Part)),not(has_burrs(Part))]).

operator(put_tool_on_milling_machine(Machine,Attachment),

[is_a(Machine,milling_machine),

or([is_of_type(Attachment,milling_cutter),is_of_type(Attachment,drill_bit)]),

is_available_tool_holder(Machine),is_available_tool(Attachment)],

[holding_tool(Machine,Attachment)]).

operator(put_in_drill_spindle(Machine,Drill_Bit),

[is_a(Machine,drill),is_of_type(Drill_Bit,drill_bit),

is_available_tool_holder(Machine),is_available_tool(Drill_Bit)],

[holding_tool(Machine,Drill_Bit)]).

operator(put_toolbit_in_lathe(Machine,Toolbit),

[is_a(Machine,lathe),is_of_type(Toolbit,lathe_toolbit),

is_available_tool_holder(Machine),is_available_tool(Toolbit)],

[holding_tool(Machine,Toolbit)]).

operator(put_cutting_tool_in_shaper_or_planer(Machine,Cutting_Tool),

[or([is_a(Machine,shaper),is_a(Machine,planer)]),

is_of_type(Cutting_Tool,cutting_tool),is_available_tool_holder(Machine),

is_available_tool(Cutting_Tool)],

[holding_tool(Machine,Cutting_Tool)]).

operator(put_wheel_in_grinder(Machine,Wheel),

[is_a(Machine,grinder),is_a(Wheel,grinding_wheel),

is_available_tool_holder(Machine),is_available_tool(Wheel)],

[holding_tool(Machine,Wheel)]).

99

operator(put_circular_saw_attachment_in_circular_saw(Machine,Attachment),

[is_a(Machine,circular_saw),is_of_type(Attachment,circular_saw_attachment),

is_available_tool_holder(Machine),is_available_tool(Attachment)],

[holding_tool(Machine,Attachment)]).

operator(put_band_saw_attachment_in_band_saw(Machine,Attachment),

[is_a(Machine,band_saw),is_of_type(Attachment,band_saw_attachment),

is_available_tool_holder(Machine),is_available_tool(Attachment)],

[holding_tool(Machine,Attachment)]).

operator(put_electrode_in_welder(Machine,Electrode),

[is_a(Machine,metal_arc_welder),is_a(Electrode,electrode),

is_available_tool_holder(Machine),is_available_tool(Electrode)],

[holding_tool(Machine,Electrode)]).

operator(remove_tool_from_machine(Machine,Tool),

[is_of_type(Machine,machine),is_of_type(Tool,machine_tool),

holding_tool(Machine,Tool)],

[not(holding_tool(Machine,Tool))]).

operator(put_holding_device_in_milling_machine(Machine,Holding_Device),

[is_a(Machine,milling_machine),or([is_a(Holding_Device,four_jaw_chuck),

is_a(Holding_Device,v_block),is_a(Holding_Device,vise),

is_a(Holding_Device,collet_chuck),is_a(Holding_Device,toe_clamp)]),

is_available_table(Machine,Holding_Device),

is_available_holding_device(Holding_Device)],

[has_device(Machine,Holding_Device)]).

operator(put_holding_device_in_drill(Machine,Holding_Device),

[is_a(Machine,drill),or([is_a(Holding_Device,four_jaw_chuck),

is_a(Holding_Device,v_block),is_a(Holding_Device,vise),

is_a(Holding_Device,toe_clamp)]),is_available_table(Machine,Holding_Device),

is_available_holding_device(Holding_Device)],

[has_device(Machine,Holding_Device)]).

operator(put_holding_device_in_lathe(Machine,Holding_Device),

[is_a(Machine,lathe),or([is_a(Holding_Device,centers),

is_a(Holding_Device,four_jaw_chuck),is_a(Holding_Device,collet_chuck)]),

is_available_table(Machine,Holding_Device),

is_available_holding_device(Holding_Device)],

[has_device(Machine,Holding_Device)]).

operator(put_holding_device_in_shaper(Machine,Holding_Device),

[is_a(Machine,shaper),is_a(Holding_Device,vise),

is_available_table(Machine,Holding_Device),

is_available_holding_device(Holding_Device)],

[has_device(Machine,Holding_Device)]).

operator(put_holding_device_in_planer(Machine,Holding_Device),

[is_a(Machine,planer),is_a(Holding_Device,toe_clamp),

is_available_table(Machine,Holding_Device),

is_available_holding_device(Holding_Device)],

[has_device(Machine,Holding_Device)]).

operator(put_holding_device_in_grinder(Machine,Holding_Device),

[is_a(Machine,grinder),or([is_a(Holding_Device,magnetic_chuck),

is_a(Holding_Device,v_block),is_a(Holding_Device,vise)]),

is_available_table(Machine,Holding_Device),

is_available_holding_device(Holding_Device)],

[has_device(Machine,Holding_Device)]).

100

operator(put_holding_device_in_circular_saw(Machine,Holding_Device),

[is_a(Machine,circular_saw),

or([is_a(Holding_Device,vise),is_a(Holding_Device,v_block)]),

is_available_table(Machine,Holding_Device),

is_available_holding_device(Holding_Device)],

[has_device(Machine,Holding_Device)]).

operator(put_holding_device_in_welder(Machine,Holding_Device),

[is_of_type(Machine,welder),or([is_a(Holding_Device,vise),

is_a(Holding_Device,toe_clamp)]),is_available_table(Machine,Holding_Device),

is_available_holding_device(Holding_Device)],

[has_device(Machine,Holding_Device)]).

operator(remove_holding_device_from_machine(Machine,Holding_Device),

[is_of_type(Machine,machine),is_of_type(Holding_Device,holding_device),

has_device(Machine,Holding_Device),

is_empty_holding_device(Holding_Device,Machine)],

[not(has_device(Machine,Holding_Device))]).

operator(add_soluble_oil(Machine,Fluid),

[is_of_type(Machine,machine),is_a(Part,part),

or([material_of(Part,steel),material_of(Part,aluminum)]),is_a(Fluid,soluble_oil)],

[has_fluid(Machine,Fluid,Part)]).

operator(add_mineral_oil(Machine,Fluid),

[is_of_type(Machine,machine),is_a(Part,part),is_a(Fluid,mineral_oil),

material_of(Part,iron)],

[has_fluid(Machine,Fluid,Part)]).

operator(add_any_cutting_fluid(Machine,Fluid),

[is_of_type(Machine,machine),is_a(Part,part),

or([material_of(Part,brass),material_of(Part,bronze),material_of(Part,copper)]),

is_of_type(Fluid,cutting_fluid)],

[has_fluid(Machine,Fluid,Part)]).

operator(put_on_machine_table(Machine,Part),

[is_a(Part,part),is_of_type(Machine,machine),not(is_a(Machine,shaper)),

is_available_part(Part),is_available_machine(Machine)],

[not(on_table(Another_Machine,Part)),on_table(Machine,Part)]).

operator(put_on_shaper_table(Machine,Part),

[is_a(Part,part),is_a(Machine,shaper),size_of_machine(Machine,Shaper_Size),

size_of(Part,length,Part_Size),smaller(Part_Size,Shaper_Size),

is_available_part(Part),is_available_machine(Machine)],

[not(on_table(Another_Machine,Part)),on_table(Machine,Part)]).

operator(hold_with_v_block(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),is_a(Holding_Device,v_block),

has_device(Machine,Holding_Device),not(has_burrs(Part)),

is_clean(Part),on_table(Machine,Part),shape_of(Part,cylindrical),eq(Side,side0),

is_empty_holding_device(Holding_Device,Machine),is_available_part(Part)],

[not(on_table(Machine,Part)),holding_weakly(Machine,Holding_Device,Part,Side)]).

operator(hold_with_vise(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),is_a(Holding_Device,vise),

has_device(Machine,Holding_Device),not(has_burrs(Part)),is_clean(Part),

on_table(Machine,Part),is_empty_holding_device(Holding_Device,Machine),

is_available_part(Part)],

[not(on_table(Machine,Part)),

when(shape_of(Part,cylindrical),holding_weakly(Machine,Holding_Device,Part,Side)),

when(shape_of(Part,rectangular),holding(Machine,Holding_Device,Part,Side))]).

101

operator(hold_with_toe_clamp(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),is_a(Holding_Device,toe_clamp),

has_device(Machine,Holding_Device),not(has_burrs(Part)),is_clean(Part),

or([shape_of(Part,rectangular),eq(Side,side3),eq(Side,side6)]),

on_table(Machine,Part),is_empty_holding_device(Holding_Device,Machine),

is_available_part(Part)],

[not(on_table(Machine,Part)),holding(Machine,Holding_Device,Part,Side)]).

operator(secure_with_toe_clamp(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),is_a(Holding_Device,toe_clamp),

has_device(Machine,Holding_Device),not(has_burrs(Part)),is_clean(Part),

shape_of(Part,cylindrical),

holding_weakly(Machine,Another_Holding_Device,Part,Side),

is_empty_holding_device(Holding_Device,Machine)],

[not(on_table(Machine,Part)),holding(Machine,Holding_Device,Part,Side)]).

operator(hold_with_centers(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),is_a(Holding_Device,centers),

has_device(Machine,Holding_Device),has_center_holes(Part),not(has_burrs(Part)),

is_clean(Part),on_table(Machine,Part),shape_of(Part,cylindrical),

is_empty_holding_device(Holding_Device,Machine),is_available_part(Part)],

[not(on_table(Machine,Part)),holding(Machine,Holding_Device,Part,Side)]).

operator(hold_with_four_jaw_chuck(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),is_a(Holding_Device,four_jaw_chuck),

has_device(Machine,Holding_Device),not(has_burrs(Part)),is_clean(Part),

on_table(Machine,Part),is_empty_holding_device(Holding_Device,Machine),

is_available_part(Part)],

[not(on_table(Machine,Part)),holding(Machine,Holding_Device,Part,Side)]).

operator(hold_with_collet_chuck(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),is_a(Holding_Device,collet_chuck),

has_device(Machine,Holding_Device),not(has_burrs(Part)),is_clean(Part),

on_table(Machine,Part),shape_of(Part,cylindrical),

is_empty_holding_device(Holding_Device,Machine),is_available_part(Part)],

[not(on_table(Machine,Part)),holding(Machine,Holding_Device,Part,Side)]).

operator(hold_with_magnetic_chuck(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),is_a(Holding_Device,magnetic_chuck),

has_device(Machine,Holding_Device),not(has_burrs(Part)),is_clean(Part),

on_table(Machine,Part),is_empty_holding_device(Holding_Device,Machine),

is_available_part(Part)],

[not(on_table(Machine,Part)),holding(Machine,Holding_Device,Part,Side)]).

operator(remove_from_machine_table(Macine,Part),

[is_of_type(Machine,machine),is_a(Part,part),on_table(Machine,Part),

is_available_part(Part)],

[not(on_table(Machine,Part))]).

operator(release_from_holding_device(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),

is_of_type(Holding_Device,holding_device),

holding(Machine,Holding_Device,Part,Side)],

[not(holding(Machine,Holding_Device,Part,Side)),on_table(Machine,Part)]).

operator(release_from_holding_device_weak(Machine,Holding_Device,Part,Side),

[is_of_type(Machine,machine),is_a(Part,part),

is_of_type(Holding_Device,holding_device),

holding_weakly(Machine,Holding_Device,Part,Side)],

[not(holding_weakly(Machine,Holding_Device,Part,Side)),on_table(Machine,Part)]).

102

A.4.2 Process Planning Axioms

axiom(side_up_for_machining_length,

[eq(Dim,length),or([eq(Side,side3),eq(Side,side6)])],

side_up_for_machining(Dim,Side)).

axiom(side_up_for_machining_width,

[eq(Dim,width),or([eq(Side,side2),eq(Side,side5)])],

side_up_for_machining(Dim,Side)).

axiom(side_up_for_machining_height,

[eq(Dim,height),or([eq(Side,side1),eq(Side,side4)])],

side_up_for_machining(Dim,Side)).

axiom(side_up_for_machining_diameter,

[eq(Dim,diameter),or([eq(Side,side1),eq(Side,side0)])],

side_up_for_machining(Dim,Side)).

axiom(machine_available,

[is_of_type(Machine,machine),not(exists(on_table(Machine,Other_Part)))],

is_available_machine(Machine)).

axiom(tool_holder_available,

[is_of_type(Machine,machine),not(exists(holding_tool(Machine,Tool)))],

is_available_tool_holder(Machine)).

axiom(tool_available,

[is_of_type(Tool,machine_tool),not(exists(holding_tool(Machine,Tool)))],

is_available_tool(Tool)).

axiom(table_available,

[is_of_type(Machine,machine),is_of_type(Holding_Device,holding_device),

or([not(exists(has_device(Machine,Another_Holding_Device))),

is_a(Holding_Device,toe_clamp)])],

is_available_table(Machine,Holding_Device)).

axiom(holding_device_available,

[is_of_type(Holding_Device,holding_device),

not(exists(has_device(Machine,Holding_Device)))],

is_available_holding_device(Holding_Device)).

axiom(part_available,

[is_a(Part,part),not(exists(holding_weakly(Machine,Holding_Device,Part,Side))),

not(exists(holding(Machine,Another_Holding_Device,Part,Side)))],

is_available_part(Part)).

axiom(holding_device_empty,

[is_of_type(Machine,machine),is_of_type(Holding_Device,holding_device),

not(exists(holding_weakly(Machine,Holding_Device,Part,Side))),

not(exists(holding(Machine,Holding_Device,Another_Part,Side)))],

is_empty_holding_device(Holding_Device,Machine)).

axiom(is_rectangular,

[is_a(Part,part),exists(size_of(Part,length,L)),exists(size_of(Part,width,W)),

exists(size_of(Part,height,H))],

shape_of(Part,rectangular)).

axiom(is_cylindrical,

[is_a(Part,part),exists(size_of(Part,length,L)),exists(size_of(Part,diameter,D))],

shape_of(Part,cylindrical)).

axiom(are_sides_of_rectangular_part,

103

[is_a(Part,part),shape_of(Part,rectangular)],

side_of(Part,side1)).

axiom(are_sides_of_rectangular_part,

[is_a(Part,part),shape_of(Part,rectangular)],

side_of(Part,side2)).

axiom(are_sides_of_rectangular_part,

[is_a(Part,part),shape_of(Part,rectangular)],

side_of(Part,side3)).

axiom(are_sides_of_rectangular_part,

[is_a(Part,part),shape_of(Part,rectangular)],

side_of(Part,side4)).

axiom(are_sides_of_rectangular_part,

[is_a(Part,part),shape_of(Part,rectangular)],

side_of(Part,side5)).

axiom(are_sides_of_rectangular_part,

[is_a(Part,part),shape_of(Part,rectangular)],

side_of(Part,side6)).

axiom(are_sides_of_cylindrical_part,

[is_a(Part,part),shape_of(Part,cylindrical)],

side_of(Part,side0)).

axiom(are_sides_of_cylindrical_part,

[is_a(Part,part),shape_of(Part,cylindrical)],

side_of(Part,side3)).

axiom(are_sides_of_cylindrical_part,

[is_a(Part,part),shape_of(Part,cylindrical)],

side_of(Part,side6)).

axiom(is_machined_surface_quality,

[is_a(Part,part),or([surface_finish_side(Part,Side,rough_mill),

surface_finish_side(Part,Side,rough_turn),

surface_finish_side(Part,Side,rough_shaped),

surface_finish_side(Part,Side,rough_planed),

surface_finish_side(Part,Side,finish_planed),

surface_finish_side(Part,Side,cold_rolled),

surface_finish_side(Part,Side,finish_mill),

surface_finish_side(Part,Side,finish_turn),

surface_finish_quality_side(Part,Side,ground)])],

surface_finish_quality_side(Part,Side,machined)).

axiom(is_ground_surface_quality,

[is_a(Part,part),or([surface_finish_side(Part,Side,rough_grind),

surface_finish_side(Part,Side,finish_grind)])],

surface_finish_quality_side(Part,Side,ground)).

axiom(has_surface_finish_rectangular_part,

[is_a(Part,part),shape_of(Part,rectangular),

surface_finish_side(Part,side1,Surface_Finish),

surface_finish_side(Part,side2,Surface_Finish),

surface_finish_side(Part,side3,Surface_Finish),

surface_finish_side(Part,side4,Surface_Finish),

surface_finish_side(Part,side5,Surface_Finish),

surface_finish_side(Part,side6,Surface_Finish)],

surface_finish(Part,Surface_Finish)).

104

axiom(has_surface_finish_cylindrical_part,

[is_a(Part,part),shape_of(Part,cylindrical),

surface_finish_side(Part,side0,Surface_Finish),

surface_finish_side(Part,side3,Surface_Finish),

surface_finish_side(Part,side6,Surface_Finish)],

surface_finish(Part,Surface_Finish)).

axiom(has_surface_coating_rectangular_part,

[is_a(Part,part),shape_of(Part,rectangular),

surface_coating_side(Part,side1,Surface_Coating),

surface_coating_side(Part,side2,Surface_Coating),

surface_coating_side(Part,side3,Surface_Coating),

surface_coating_side(Part,side4,Surface_Coating),

surface_coating_side(Part,side5,Surface_Coating),

surface_coating_side(Part,side6,Surface_Coating)],

surface_coating(Part,Surface_Coating)).

axiom(has_surface_coating_cylindrical_part,

[is_a(Part,part),shape_of(Part,cylindrical),

surface_coating_side(Part,side0,Surface_Coating),

surface_coating_side(Part,side3,Surface_Coating),

surface_coating_side(Part,side6,Surface_Coating)],

surface_coating(Part,Surface_Coating)).

axiom(material_ferrous,

[is_a(Part,part),or([material_of(Part,steel),material_of(Part,iron)])],

alloy_of(Part,ferrous)).

axiom(material_non_ferrous,

[is_a(Part,part),or([material_of(Part,brass),material_of(Part,copper),

material_of(Part,bronze)])],

alloy_of(Part,non_ferrous)).

axiom(hardness_of_material_soft,

[is_a(Part,part),or([material_of(Part,aluminum),alloy_of(Part,non_ferrous)])],

hardness_of(Part,soft)).

axiom(hardness_of_material_hard,

[is_a(Part,part),alloy_of(Part,ferrous)],

hardness_of(Part,hard)).

axiom(high_melting_point,

[is_a(Wire,spraying_metal_wire),

or([material_of(Wire,tungsten),material_of(Wire,molybdenum)])],

has_high_melting_point(Wire)).

axiom(is_machine,

[or([is_a(Machine,drill),is_a(Machine,lathe),is_a(Machine,shaper),

is_a(Machine,planer),is_a(Machine,grinder),is_a(Machine,band_saw),

is_a(Machine,circular_saw),is_a(Machine,milling_machine),

is_of_type(Machine,welder)])],

is_of_type(Machine,machine)).

axiom(is_welder,

[or([is_a(Machine,metal_arc_welder),is_a(Machine,gas_welder)])],

is_of_type(Machine,welder)).

axiom(is_tool,

[or([is_of_type(Tool,machine_tool),is_of_type(Tool,operator_tool)])],

is_of_type(Tool,tool)).

axiom(is_machine_tool,

105

[or([is_of_type(Attachment,drill_bit),is_of_type(Attachment,lathe_toolbit),

is_of_type(Attachment,cutting_tool),is_a(Attachment,grinding_wheel),

is_of_type(Attachment,band_saw_attachment),

is_of_type(Attachment,circular_saw_attachment),

is_of_type(Attachment,milling_cutter),is_a(Attachment,electrode)])],

is_of_type(Attachment,machine_tool)).

axiom(is_drill_bit,

[or([is_a(Drill_Bit,spot_drill),is_a(Drill_Bit,center_drill),

is_a(Drill_Bit,twist_drill),is_a(Drill_Bit,straight_fluted_drill),

is_a(Drill_Bit,high_helix_drill),is_a(Drill_Bit,oil_hole_drill),

is_a(Drill_Bit,gun_drill),is_a(Drill_Bit,core_drill),is_a(Drill_Bit,tap),

is_a(Drill_Bit,countersink),is_a(Drill_Bit,counterbore),

is_a(Drill_Bit,reamer)])],

is_of_type(Drill_Bit,drill_bit)).

axiom(is_lathe_toolbit,

[or([is_a(Toolbit,rough_toolbit),is_a(Toolbit,finish_toolbit),

is_a(Toolbit,v_thread),is_a(Toolbit,knurl)])],

is_of_type(Toolbit,lathe_toolbit)).

axiom(is_cutting_tool,

[or([is_a(Cutting_Tool,roughing_cutting_tool),

is_a(Cutting_Tool,finishing_cutting_tool)])],

is_of_type(Cutting_Tool,cutting_tool)).

axiom(is_circular_saw_attachment,

[or([is_a(Attachment,cold_saw),is_a(Attachment,friction_saw)])],

is_of_type(Attachment,circular_saw_attachment)).

axiom(is_band_saw_attachment,

[or([is_a(Attachment,saw_band),is_a(Attachment,band_file)])],

is_of_type(Attachment,band_saw_attachment)).

axiom(is_milling_cutter,

[or([is_a(Milling_Cutter,plain_mill),is_a(Milling_Cutter,end_mill)])],

is_of_type(Milling_Cutter,milling_cutter)).

axiom(is_operator_tool,

[or([is_a(Tool,lathe_file),is_a(Tool,abrasive_cloth),is_a(Tool,torch),

is_a(Tool,welding_rod),is_a(Tool,spraying_metal_wire),is_a(Tool,brush)])],

is_of_type(Tool,operator_tool)).

axiom(is_cutting_fluid,

[or([is_a(Cutting_Fluid,soluble_oil),is_a(Cutting_Fluid,mineral_oil)])],

is_of_type(Cutting_Fluid,cutting_fluid)).

axiom(is_holding_device,

[or([is_a(Holding_Device,v_block),is_a(Holding_Device,vise),

is_a(Holding_Device,toe_clamp),is_a(Holding_Device,centers),

is_a(Holding_Device,four_jaw_chuck),is_a(Holding_Device,collet_chuck),

is_a(Holding_Device,magnetic_chuck)])],

is_of_type(Holding_Device,holding_device)).

A.4.3 Process Planning Functions

half_of(X,Y) :-

(var(X) ->

X = Y*2

; var(Y) ->

Y = X/2

; TempX is Y*2,

106

X =:= TempX

).

smaller(X,Y) :-

(var(X) ->

X = Y-0.5

; var(Y) ->

Y = X+0.5

; X<Y

).

smaller_than_2in(X,Y) :-

Temp is X-Y,

Temp =< 2.

finishing_size(X,Y) :-

(var(X) ->

X is Y+0.002

; var(Y) ->

Temp is X-0.002,

(Temp > 0 ->

Y is X - 0.002

; true

)

; Temp is X-Y,

Temp =< 0.003

).

new_size(D1,D2,D) :-

(var(D) ->

D is D1+D2

; Temp is D1+D2,

Temp=D

).

new_part(Part,Part1,Part2) :-

(var(Part) ->

new_name(Part1,Part2,Part)

; true

).

new_material(Material,Material1,Material2) :-

(var(Material) ->

(Material1=Material2 ->

Material = Material1

; new_name(Material1,Material2,Material)

)

; true

).

107

Appendix B

Learned Control Rules

This appendix contains a set of learned control rules for the logistics transportation domain. These

rules were learned in the experiments reported in Section 6.3 after Scope was trained on 100

training examples.

In the Prolog version of UCPOP used in this dissertation the following predicates are back-

tracking points and thus can have control rules learned for them. The find new action predicate

selects a new action to achieve a goal. The find existing action selects an existing action to

achieve a goal. The select action predicate decides whether a new or existing action should be

used to achieve a goal. The apply constraint predicate decides what threat resolution strategy to

use to resolve a threat. In the logistics domain, control rules were learned for all of these points,

except for the apply constraint predicate, which was never backtracked upon in these experiments.

find_new_action(at_obj(B,C),D,_,_,_,E,no_cond,action(_,unload_truck(B,A,C),

[inside_truck(B,A),at_truck(A,C)],

[at_obj(B,C),not(inside_truck(B,A))])) :-

\+member_goal(goal(at_truck(_,C),D),E).

find_existing_action(at_truck(B,C),D,E,F,_,_,no_cond,[],0,

action(0,start,[],A)) :-

nonvar(C),

member_action(action(0,start,[],A),E),

member_pred(at_truck(B,C),A),

\+nonfixable_threats_to_new_link(0,at_truck(B,C),D,E,F).

find_existing_action(at_airplane(B,C),D,E,F,_,_,no_cond,[],0,

action(0,start,[],A)) :-

member_action(action(0,start,[],A),E),

member_pred(at_airplane(B,C),A),

\+threats_to_new_link(0,at_airplane(B,C),D,E,F).

find_existing_action(at_airplane(B,C),D,E,F,_,_,no_cond,[],0,

action(0,start,[],A)) :-

nonvar(C),

member_action(action(0,start,[],A),E),

member_pred(at_airplane(B,C),A),

108

\+nonfixable_threats_to_new_link(0,at_airplane(B,C),D,E,F).

select_action(goal(at_obj(D,E),F),G,H,I,O,J,K,L,M,N,O,P,old) :-

find_existing_action(at_obj(D,E),F,G,H,I,O,P,[],C,J),

can_add_ordering(C,F,H),

add_clink(C,at_obj(D,E),F,I,K,N),

add_ordering(C,F,H,M),

L=G,

find_init_state(G,B),

find_goal_state(G,A),

intercity_delivery(D,B,A).

select_action(goal(at_obj(C,D),E),F,G,H,N,I,J,K,L,M,N,O,old) :-

find_existing_action(at_obj(C,D),E,F,G,H,N,O,[],B,I),

can_add_ordering(B,E,G),

add_clink(B,at_obj(C,D),E,H,J,M),

add_ordering(B,E,G,L),

K=F,

find_init_state(F,A),

member_goal(goal(at_airplane(_,D),_),N),

member_pred(airport(D),A).

select_action(goal(at_obj(B,C),D),E,F,G,M,H,I,J,K,L,M,N,old) :-

find_existing_action(at_obj(B,C),D,E,F,G,M,N,[],A,H),

can_add_ordering(A,D,F),

add_clink(A,at_obj(B,C),D,G,I,L),

add_ordering(A,D,F,K),

J=E,

member_goal(goal(at_airplane(_,C),_),M),

member_goal(goal(at_truck(_,C),D),M).

select_action(goal(at_truck(C,D),E),F,G,H,N,I,J,K,L,M,N,O,old) :-

find_existing_action(at_truck(C,D),E,F,G,H,N,O,[],B,I),

can_add_ordering(B,E,G),

add_clink(B,at_truck(C,D),E,H,J,M),

add_ordering(B,E,G,L),

K=F,

find_init_state(F,A),

member_pred(airport(D),A),

\+ (member_pred(at_truck(C,D),A),

nonfixable_threats_to_new_link(B,at_truck(C,D),E,F,G)).

select_action(goal(at_truck(B,C),D),E,F,G,M,H,I,J,K,L,M,N,old) :-

find_existing_action(at_truck(B,C),D,E,F,G,M,N,[],A,H),

can_add_ordering(A,D,F),

add_clink(A,at_truck(B,C),D,G,I,L),

add_ordering(A,D,F,K),

J=E,

109

can_add_ordering(D,A,F).

select_action(goal(at_truck(B,C),D),E,F,G,M,H,I,J,K,L,M,N,old) :-

find_existing_action(at_truck(B,C),D,E,F,G,M,N,[],A,H),

can_add_ordering(A,D,F),

add_clink(A,at_truck(B,C),D,G,I,L),

add_ordering(A,D,F,K),

J=E,

member_action(action(D,drive_truck(B,C,_),_,_),E).

select_action(goal(at_truck(B,C),D),E,F,G,M,H,I,J,K,L,M,N,old) :-

var(B),

find_existing_action(at_truck(B,C),D,E,F,G,M,N,[],A,H),

can_add_ordering(A,D,F),

add_clink(A,at_truck(B,C),D,G,I,L),

add_ordering(A,D,F,K),

J=E.

select_action(goal(at_airplane(B,C),D),E,F,G,M,H,I,J,K,L,M,N,old) :-

find_existing_action(at_airplane(B,C),D,E,F,G,M,N,[],A,H),

can_add_ordering(A,D,F),

add_clink(A,at_airplane(B,C),D,G,I,L),

add_ordering(A,D,F,K),

J=E,

can_add_ordering(D,A,F).

select_action(goal(at_airplane(B,C),D),E,F,G,M,H,I,J,K,L,M,N,old) :-

find_existing_action(at_airplane(B,C),D,E,F,G,M,N,[],A,H),

can_add_ordering(A,D,F),

add_clink(A,at_airplane(B,C),D,G,I,L),

add_ordering(A,D,F,K),

J=E,

member_action(action(D,fly_airplane(B,C,_),_,_),E).

select_action(goal(at_airplane(B,C),D),E,F,G,M,H,I,J,K,L,M,N,old) :-

nonvar(C),

find_existing_action(at_airplane(B,C),D,E,F,G,M,N,[],A,H),

can_add_ordering(A,D,F),

add_clink(A,at_airplane(B,C),D,G,I,L),

add_ordering(A,D,F,K),

J=E.

110

Bibliography

Agosa, J. M., & Wilkins, D. E. (1996). Using SIPE-2 to plan emergency response to marine oil

spills. IEEE Expert, 11, 6{8.

Andrews, S., Kettler, B., Erol, K., & Hendler, J. (1995). UM Translog: A planning domain for the

development and benchmarking of planning systems. Tech. rep. CS-TR-3487, Institute for

Advanced Computer Studies, University of Maryland.

Barrett, A., & Weld, D. (1994). Partial order planning: Evaluating possible e�ciency gains.

Arti�cial Intelligence, 67, 71{112.

Barrett, A., & et al. (1995). UCPOP: User's manual (version 4.0). Tech. rep. 93-09-06d, Department

of Computer Science and Engineering, University of Washington.

Barrett, A., Golden, K., Penberthy, S., & Weld, D. (1993). UCPOP: User's manual (version

2.0). Tech. rep. 93-09-06, Department of Computer Science and Engineering, University of

Washington.

Bhatnagar, N., & Mostow, J. (1994). On-line learning from search failure. Machine Learning, 15,

69{117.

Blum, A., & Furst, M. (1997). Fast planning through planning graph analysis. Arti�cial Intelligence,

90, 281{300.

Borrajo, D., & Veloso, M. (1994). Incremental learning of control knowledge for nonlinear problem

solving. In Proceedings of the European Conference on Machine Learning, ECML-94, pp.

64{82 Springer Verlag.

Borrajo, D., & Veloso, M. (1997). Lazy incremental learning of control knowledge for e�ciently

obtaining quality plans. Arti�cial Intelligence Review, 11, 371{405.

Cameron-Jones, R. M., & Quinlan, J. R. (1994). E�cient top-down induction of logic programs.

SIGART Bulletin, 1 (5), 33{42.

Carbonell, J., & et al. (1992). PRODIGY4.0: The manual and tutorial. Tech. rep. CMU-CS-92-150,

School of Computer Science, Carnegie Mellon University, Pittsburg, PA.

Chase, M., Zweben, M., Piazza, R., Burger, J., Maglio, P., & Hirsh, H. (1989). Approximating

learned search control knowledge. In Proceedings of the Sixth International Workshop on

Machine Learning, pp. 40{42 Ithaca, NY.

111

Chien, S. (1989). Using and re�ning simpli�cations: Explanation-based learning of plans in in-

tractable domains. In Proceedings of the Eleventh International Joint Conference on Arti�cial

Intelligence, pp. 590{595 Detroit, MI.

Chien, S., & DeJong, G. (1994). Incremental reasoning in explanation-based learning of plans. In

Proceedings of the Second International Conference of AI Planning Systems Chicago.

Chien, S., Govindjee, A., Estlin, T., Wang, X., & Jr., R. H. (1997). Automated generation of

antenna operation procedures: A knowledge-based approach. Telecommunications and Data

Acquisition, 142.

Cohen, W. W. (1990). Learning approximate control rules of high utility. In Proceedings of the

Seventh International Conference on Machine Learning, pp. 268{276 Austin, TX.

DeJong, G. F., & Mooney, R. J. (1986). Explanation-based learning: An alternative view. Machine

Learning, 1 (2), 145{176. Reprinted in Readings in Machine Learning, J. W. Shavlik and T.

G. Dietterich (eds.), Morgan Kaufman, San Mateo, CA, 1990.

Descotte, Y., & Latombe, J.-C. (1985). Making compromises among antagonist constraints in a

planner. Arti�cial Intelligence, 27, 183{217.

Erol, K., Nau, D., & Hendler, J. (1994a). HTN planning: Complexity and expressivity. In Proceed-

ings of the Twelfth National Conference on Arti�cial Intelligence, pp. 1123{1128 Seattle.

Erol, K., Nau, D., & Hendler, J. (1994b). UMCP: A sound and complete planning procedure for

hierarchical task-network planning. In Proceedings of the Second International Conference of

AI Planning Systems Chicago.

Estlin, T. A., & Mooney, R. J. (1996). Multi-strategy learning of search control for partial-order

planning. In Proceedings of the Thirteenth National Conference on Arti�cial Intelligence, pp.

843{848 Portland, OR.

Etzioni, O. (1993). Acquiring search control knowledge via static analysis. Arti�cial Intelligence,

60 (2).

Etzioni, O., & Etzioni, R. (1994). Statistical methods for analyzing speedup learning experiments.

Machine Learning, 14, 337{347.

Fargher, H., & Smith, R. (1994). Planning in a exible semiconductor manufacturing environment.

In Zweben, M., & Fox, M. (Eds.), Intelligent Scheduling, pp. 545{580. Morgan Kaufmann,

San Francisco, CA.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem proving

to problem solving. Arti�cial Intelligence, 2 (3/4).

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1972). Learning and executing generalized robot plans.

Arti�cial Intelligence, 3 (4), 251{288.

Foulser, D., Li, M., & Yang, Q. (1992). Theory and algorithms for plan merging. Arti�cial

Intelligence, 52, 143{181.

112

Gerevini, A., & Schubert, L. (1996). Accelerating partial-order planners: Some techniques for

e�ective search control and pruning. Journal of Arti�cial Intelligence Research, 5, 95{137.

Gil, Y. (1991). A speci�cation of manufacturing processes for planning. Tech. rep. CMU-CS-91-179,

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

Gratch, J., & DeJong, G. (1992). COMPOSER: A probabilistic solution to the utility problem in

speed-up learning. In Proceedings of the Tenth National Conference on Arti�cial Intelligence,

pp. 235{240 San Jose, CA.

Greiner, R., & Likuski, J. (1989). Incorporating redundant learned rules: A preliminary formal

analysis of ebl. In Proceedings of the Eleventh International Joint Conference on Arti�cial

Intelligence, pp. 744{749 Detroit, MI.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of

minimum cost parts. IEEE transactions on SSC, 4, 100{107.

Hayes, C. (1990). Machining Planning: A Model of an Expert Level Planning Process. Ph.D. thesis,

The Robotics Institue, Carnegie Mellon University.

Iwamoto, M. (1994). A planner with quality goal and its speedup learning for optimization problem.

In Proceedings of the Second International Conference of AI Planning Systems Chicago.

Kambhampati, S., & Chen, J. (1993). Relative utility of EBG based plan reuse in partial ordering vs.

total ordering. In Proceedings of the Eleventh National Conference on Arti�cial Intelligence,

pp. 514{519 Washington, D.C.

Kambhampati, S., Katukam, S., & Qu, Y. (1996). Failure driven search control for partial order

planners: An explanation based approach. Arti�cial Intelligence, 88.

Kambhampati, S., & Srivastava, B. (1996). Universal classical planner: An algorithm for unifying

state-space and plan-space planning. In Ghallab, M., & Milani, A. (Eds.), New Directions in

AI Planning, pp. 61{75 Amsterdam. IOS Press.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic, and stochastic

search. In Proceedings of the Thirteenth National Conference on Ariticial Intelligence, pp.

1194{1200 Portland, OR.

Keller, R. (1987). The Role of Explicit Contextual Knowledge in Learning Concepts to Improve

Performance. Ph.D. thesis, Rutgers University, New Brunswick, N. Also appears as tech.

report ML-TR-7.

Kijsirikul, B., Numao, M., & Shimura, M. (1992). Discrimination-based constructive induction of

logic programs. In Proceedings of the Tenth National Conference on Arti�cial Intelligence,

pp. 44{49 San Jose, CA.

Korf, R. (1985). Depth-�rst iterative-deepening: An optimal admissable tree search. Arti�cial

Intelligence, 27 (1).

113

Langley, P. (1985). Learning to search: From weak methods to domain speci�c heuristics. Cognitive

Science, 9 (2), 217{260.

Langley, P., & Allen, J. (1991). The acquisition of human planning expertise. In Proceedings of the

Eighth International Workshop on Machine Learning, pp. 80{84 Evanston,IL.

Lansky, A., & Getoor, L. (1995). Scope and abstraction: Two criteria for localized planning.

In Proceedings of the Fifteenth International Joint Conference on Arti�cial Intelligence, pp.

1612{1618 Montreal, CA.

Lavra�c, N., & D�zeroski, S. (1994). Inductive Logic Programming: Techniques and Applications.

Ellis Horwood.

Leckie, C., & Zuckerman, I. (1993). An inductive approach to learning search control rules for

planning. In Proceedings of the Thirteenth International Joint Conference on Arti�cial Intel-

ligence, pp. 1100{1105 Chamberry,France.

Markovitch, S., & Scott, P. D. (1989). Utilization �ltering: A method for reducing the inherent

harmfulness of deductively learning knowledge. In Proceedings of the Eleventh International

Joint Conference on Arti�cial Intelligence, pp. 738{743 Detroit, MI.

McDermott, D. (1991). Regression planning. International Journal of Intelligent Systems, 6, 357{

416.

Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning. In

Proceedings of the Seventh National Conference on Arti�cial Intelligence, pp. 564{569 St.

Paul, MN.

Minton, S. (1989). Explanation-based learning: A problem solving perspective. Arti�cial Intelli-

gence, 40, 63{118.

Minton, S. N. (1988). Learning E�ective Search Control Knowledge: An Explanantion-Based Ap-

proach. Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA.

Minton, S. (1985). Selectively generalizing plans for problem solving. In Proceedings of the Ninth

International Conference on Ariticial Intelligence, pp. 569{599 Los Angeles, CA.

Minton, S., Drummond, M., Bresina, J. L., & Phillips, A. B. (1992). Total order vs. partial order

planning: Factors inuencing performance. In Proceedings of the Third International Confer-

ence on Principles of Knowledge Representation and Reasoning, pp. 83{92 Cambridge,CA.

Mitchell, T., Utgo�, T., & Banerji, R. (1983). Learning problem solving heuristics by experimenta-

tion. In Michalski, R., Mitchell, T., & Carbonell, J. (Eds.), Machine Learning: An Arti�cial

Intelligence Approach. Morgan Kaufmann, Palo Alto, CA.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generalization:

A unifying view. Machine Learning, 1 (1), 47{80.

114

Mooney, R. J. (1989). The e�ect of rule use on the utility of explanation-based learning. In

Proceedings of the Eleventh International Joint Conference on Arti�cial Intelligence, pp. 725{

730 Detroit, MI.

Mooney, R. J., & Cali�, M. E. (1995). Induction of �rst-order decision lists: Results on learning

the past tense of English verbs. Journal of Arti�cial Intelligence Research, 3, 1{24.

Muggleton, S., & Buntine, W. (1988). Machine invention of �rst-order predicates by inverting

resolution. In Proceedings of the Fifth International Conference on Machine Learning, pp.

339{352 Ann Arbor, MI.

Muggleton, S., King, R., & Sternberg, M. (1992). Protein secondary structure prediction using

logic-based machine learning. Protein Engineering, 5 (7), 647{657.

Muggleton, S. H. (Ed.). (1992). Inductive Logic Programming. Academic Press, New York, NY.

Nilsson, N. (1980). Principles of Arti�cial Intelligence. Tioga, Palo Alto, CA.

Pazzani, M., & Kibler, D. (1992). The utility of background knowledge in inductive learning.

Machine Learning, 9, 57{94.

Penberthy, J., & Weld, D. S. (1992). UCPOP: A sound, complete, partial order planner for ADL. In

Proceedings of the Third International Conference on Principles of Knowledge Representation

and Reasoning, pp. 113{114 Cambridge,MA.

Pendault, E. (1989). ADL: Exploring the middle ground between strips and the situation calculus.

In Proceedings of the First International Conference on Principles of Knowledge Representa-

tion and Reasoning.

P�erez, M. A. (1995). Learning Search Control Knowledge to Improve Plan Quality. Ph.D. thesis,

School of Computer Science, Carnegie Mellon University.

P�erez, M. A. (1996). Representing and learning quality-improving search control knowledge. In

Proceedings of the Thirteenth International Conference on Machine Learning Bari,Italy.

P�erez, M. A., & Carbonell, J. (1994). Control knowledge to improve the plan quality. In Proceedings

of the Second International Conference of AI Planning Systems Chicago, IL.

Poet, M. A., & Smith, D. E. (1993). Threat-removal strategies for partial-order planning. In Proceed-

ings of the Eleventh National Conference on Arti�cial Intelligence, pp. 492{499 Washington,

D.C.

Pollack, M. E. (1992). The uses of plans. Arti�cial Intelligence, 57, 43{68.

Porter, B. W., & Kibler, D. F. (1986). Experimental goal regression: A method for learning

problem-solving. Machine Learning, 1 (3), 249{285.

Quinlan, J. R. (1983). Learning e�cient classi�cation procedures and their application to chess end

games. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning:

An Arti�cial Intelligence Approach. Morgan Kaufmann, Los Altos, CA.

115

Quinlan, J. R. (1991). Determinate literals in inductive logic programming. In Proceedings of the

Eighth International Workshop on Machine Learning Evanston, IL.

Quinlan, J. R., & Cameron-Jones, R. M. (1993). FOIL: A midterm report. In Proceedings of the

European Conference on Machine Learning, pp. 3{20 Vienna.

Quinlan, J. (1990). Learning logical de�nitions from relations. Machine Learning, 5 (3), 239{266.

Reddy, C., & Tadepalli, P. (1997). Learning goal-decomposition rules using exercises. In Proceedings

of the Fourteenth International Conference on Machine Learning, pp. 278{286 Nashville,TN.

Silverstein, G., & Pazzani, M. J. (1991). Relational clich�es: Constraining constructive induction

during relational learning. In Proceedings of the Eighth International Workshop on Machine

Learning, pp. 203{207 Evanston, IL.

Subramanian, D., & Feldman, R. (1990). The utility of EBL in recursive domains. In Proceedings

of the Eighth National Conference on Arti�cial Intelligence, pp. 942{949 Boston, MA.

Tadepalli, P. (1989). Lazy explanation-based learning: A solution to the intractable theory prob-

lem. In Proceedings of the Eleventh International Joint Conference on Arti�cial Intelligence

Detroit, MI.

Veloso, M., Carbonell, J., P�erez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrated planning

and learning: The PRODIGY architecture. Journal of Theoretical and Experimental Arti�cial

Intelligence Research, 7 (1).

Veloso, M., & Stone, P. (1995). FLECS: Planning with a exible commitment strategy. Journal of

Arti�cial Intelligence Research, 3, 25{52.

Veloso, M. M. (1992). Learning by Analogical Reasoning in General Problem Solving. Ph.D. thesis,

School of Computer Science, Carnegie Mellon University.

Warren, D. (1974). WARPLAN: A system for generating plans. Tech. rep. Memo No. 76, Depart-

ment of Computational Logic, University of Edinburgh.

Weld, D. (1994). An introduction to least commitment planning. AI Magazine, 15 (4), 27{61.

Wilensky, R. W. (1983). Planning and Understanding: A Computational Approach to Human

Reasoning. Addison-Wesley, Reading, MA.

Williamson, M., & Hanks, S. (1994). Optimal planning with a goal-directed utility model. In

Proceedings of the Second International Conference of AI Planning Systems, pp. 176{181

Chicago.

Winston, P. H., Binford, T. O., Katz, B., & Lowry, M. (1983). Learning physical descriptions

from functional de�nitions, examples, and precedents. In Proceedings of the Third National

Conference on Arti�cial Intelligence, pp. 433{439 Washington, D.C.

116

Zelle, J. M., & Mooney, R. J. (1993). Combining FOIL and EBG to speed-up logic programs. In

Proceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence, pp.

1106{1111 Chambery, France.

Zelle, J. M., & Mooney, R. J. (1994a). Combining top-down and bottom-up methods in inductive

logic programming. In Proceedings of the Eleventh International Conference on Machine

Learning, pp. 343{351 New Brunswick, NJ.

Zelle, J. M., & Mooney, R. J. (1994b). Inducing deterministic Prolog parsers from treebanks: A

machine learning approach. In Proceedings of the Twelfth National Conference on Arti�cial

Intelligence, pp. 748{753 Seattle, WA.

Zweben, M., Davis, E., Daun, B., Drascher, E., Deale, M., & Eskey, M. (1992). Learning to improve

constraint-based scheduling. Arti�cial Intelligence, 58, 271{296.

117

