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Abstract

Planning systems have become an important tool for automating a wide variety
of tasks. Control knowledge guides a planner to find solutions quickly and is crucial
for efficient planning in most domains. Machine learning techniques enable a planning
system to automatically acquire domain-specific search-control knowledge for different
applications. Past approaches to learning control information have usually employed
explanation-based learning (EBL) to generate control rules. Unfortunately, EBL alone
often produces overly complex rules that actually decrease rather than improve overall
planning efficiency. This paper presents a novel learning approach for control knowledge
acquisition that integrates explanation-based learning with techniques from inductive
logic programming. In our learning system ScoPE, EBL is used to constrain an induc-
tive search for control heuristics that help a planner choose between competing plan
refinements. SCOPE is one of the few systems to address learning control informa-
tion for newer, partial-order planners. Specifically, this proposal describes how ScoPk
learns domain-specific control rules for the UCPOP planning algorithm. The resulting
system is shown to produce significant speedup in two different planning domains, and
to be more effective than a pure EBL approach. Future research will be performed
in three main areas. First, SCOPE’s learning algorithm will be extended to include
additional techniques such as constructive induction and rule utility analysis. Second,
ScoPE will be more thoroughly tested; several real-world planning domains have been
identified as possible testbeds, and more in-depth comparisons will be drawn between
ScoPE and other competing approaches. Third, SCOPE will be implemented in a differ-
ent planning system in order to test its portability to other planning algorithms. This
work should demonstrate that machine-learning techniques can be a powerful tool in
the quest for tractable real-world planning.

*This research was supported by the NASA Graduate Student Researchers Program, grant number NGT-
51332.



1 Introduction

In the past few decades, planning systems have become a powerful tool for automatically
performing many daily tasks. Given a set of goals, these systems are designed to output a
list of actions that can be used by an execution agent to perform a task with little or no
human intervention. Planning systems are currently used to perform a range of activities
from manufacturing semiconductors (Fargher & Smith, 1994) to scheduling antenna commu-
nications with orbiting spacecraft (Chien et al., 1995). As the desire for automation grows
more prevalent in today’s society, the need for efficient planning systems grows as well.

Artificial intelligence researchers have introduced numerous approaches to planning, how-
ever, even the newest domain-independent planning algorithms require large amounts of com-
putation and cannot tractably handle most realistic problems. Researchers have recognized
that efficient planning requires incorporating considerable amounts of specific knowledge
about a domain. This additional domain information is often termed “control knowledge”
and indicates how a planner should best achieve its goals. Control knowledge helps a planner
to avoid considerable search by directing it towards the most promising search paths early
in the planning process. This knowledge is usually represented in the form of search-control
rules that can be easily utilized by the planner. Without the addition of control rules, a
planner may be unable to produce a solution in reasonable time.

Unfortunately, constructing control heuristics for a new domain is a difficult, laborious
task. Research in planning and learning attempts to address this problem by developing
methods that automatically acquire search-control knowledge for different domains. By ex-
amining past planning scenarios, a learning system can acquire control information that
will help the planner perform well on future problems. Most past systems have employed
explanation-based learning (EBL) to acquire search-control information. Unfortunately, stan-
dard EBL often produces complex, overly-specific control rules that decrease rather than
improve overall planning performance (Minton, 1988).

This proposal presents a novel learning algorithm for automatically acquiring search-
control knowledge for planning systems. Our learning system SCOPE uses a unique combi-
nation of machine learning techniques to acquire effective search-control rules for planning.
By incorporating induction with EBL to learn simple, approximate control rules, we can
greatly improve the utility of acquired knowledge (Cohen, 1990; Leckie & Zuckerman, 1993).
Specifically, SCOPE (Search Control Optimization of Planning through Experience) inte-
grates explanation-based generalization (EBG) (Mitchell et al., 1986; DeJong & Mooney,
1986) with techniques from inductive logic programming (ILP) (Quinlan, 1990; Muggleton,
1992; Lavrac & Dzeroski, 1994) to learn high-utility rules that can generalize well to new
planning situations.

SCOPE extends previous planning and learning research by acquiring control knowledge
for the newer, more efficient partial-order planners. Most work in learning control rules for
planning has been in the context of linear, state-based planners (Minton, 1989; Gratch & De-
Jong, 1992; Leckie & Zuckerman, 1993). These planners are usually classified as total-order
planners, since plans steps are maintained in a strictly ordered list. Recent experimen-
tal results, however, support that partial-order planners are more efficient than total-order



planners in most domains (Barrett & Weld, 1994; Kambhampati & Chen, 1993; Minton
et al., 1992). In partially-ordered plans, some steps can remain unordered with respect to
each other, thereby allowing a planner to avoid premature commitments to an incorrect
ordering. Though partial-order planners are considered a more proficient planning strategy,
they are not a panacea for efficient planning; added control knowledge can still dramatically
effect their performance. Unfortunately, there has been little work on learning control rules
for partial-order planning systems (Katukam & Kambhampati, 1994).

SCOPE learns control rules in the form of selection heuristics. These heuristics greatly
reduce backtracking by directing a planner to immediately select appropriate plan refine-
ments. SCOPE is implemented in Prolog, which provides a good framework for learning
control knowledge. Many different problem solvers can be easily coded as Prolog programs
and control knowledge is easy to incorporate. A version of the UCPOP planning algorithm
(Penberthy & Weld, 1992) was implemented as a Prolog program to provide a testbed for
ScOPE. In this paper, experimental results are presented on two planning domains that
demonstrate SCOPE can significantly increase partial-order planning efficiency. SCOPE is
also shown to outperform a competing approach based only on EBL.

The remainder of this proposal is organized as follows. A background on planning,
learning, and inductive logic programming is presented in Section 2. Section 3 describes
the UCPOP planner and how control rules are implemented. In section 4, SCOPE’s learning
algorithm is explained. Section 5 presents and analyzes empirical results of applying SCOPE
to two different planning domains. Section 6 discusses related work in learning control
information. Section 7 outlines our future research plan, which includes applying SCOPE to
new real-world domains and extending SCOPE for use on other planning algorithms. The
final section summarizes the goals of this research and its significance.

2 Background

2.1 Planning Basics

A planning problem is traditionally defined as consisting of three main parts: an initial-state,
a set of goals, and a set of possible actions. The solution to a planning problem is an ordered
list of these actions that will transform the initial world state into a state where the goals
are satisfied. The set of available actions depends on the particular task or problem domain.
Most planners operate by beginning with a null plan and then adding actions one at a time
until a solution is found. A planner must be able to perform a number of functions, including
choosing a good action to add to the current plan, detecting when a solution has been found,
and recognizing dead-end search paths that should be abandoned.

In most standard approaches to planning, domain actions (or operators) are represented
in a STRIPS format (Fikes & Nilsson, 1971), which consists of a list of preconditions, an
add list and a delete list. For example, the four operator schemas from the well-known
blocksworld domain (Nilsson, 1980) are shown in Figure 1. In order for an action to be exe-
cuted, its preconditions must be satisfied in the current state of the world. Once an action
is applied, any conditions on its add list are added to the current world state and all delete
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Putdown(?7X)

Preconditions:

Add List:
Delete List:

Pickup(?X)

Preconditions:

Add List:
Delete List:

Stack(?X,?Y)

Preconditions:

Add List:
Delete List:

Unstack(?X,?Y)

Preconditions:

Add List:
Delete List:

Holding(?X)
On-Table(?X),Clear(?X),Arm-Empty
Holding(?X)

On-Table(?X),Clear(?X),Arm-Empty
Holding(?X)
On-Table(?X),Clear(?X),Arm-Empty

Holding(?X),Clear(?Y)
On(?X,?Y),Clear(?X),Arm-Empty
Holding(?X),Clear(?Y)

On(?X,?Y),Clear(?X),Arm-Empty
Holding(?X),Clear(?Y)
On(?X,?Y),Clear(?X),Arm-Empty

Figure 1: Operator Schemas from the Blocksworld

conditions are removed. In other words, an action’s add and delete list describe how the
action changes the world. Unfortunately, this action format is insufficiently expressive for
most realistic planning domains. In order to perform planning in real-world scenarios, the
STRIPS-style action format has been extended by many researchers to include more expres-
sive constructs. Additional constructs include items such as conditional effects, universal
quantification of precondition and effect variables, and disjunctive preconditions (Pendault,

1989; McDermott, 1991; Penberthy & Weld, 1992; Chien & DelJong, 1994).

Given a planning problem, many different search methods have been developed for finding
a correct plan. Most classical planners, including the original STRIPS planner, employ
a state-based search. In this approach, the planner begins with the problem initial state
and attempts to apply operators until the desired goal state is reached. To help guide
its search, the planner always maintains a representation of the current world state. The
planning process can involve either a simple forward search from the initial state or a more
sophisticated goal-directed search that reasons backwards from the goal state. A well-known
goal-directed search technique is means-end analysis, which selects operators that reduce the
difference between the goal state and the current state. This type of planning algorithm is
often termed a total-order approach since the current plan must be maintained as an ordered
list of actions.

A second style of planning employs a plan-based search and does not maintain the current
world state as it proceeds. In this type of planner, operators are still added to the current
plan until a solution is found. However, instead of saving the plan as an ordered list of oper-
ators, the current plan is represented as a partially-ordered set of operators. Only necessary
ordering decisions are saved in the plan; all others are postponed until later in the planning
process when more information will be available. This type of planner typically proceeds
by repeatedly identifying an unachieved goal or precondition and then selecting an operator
that will achieve it. Though only necessary ordering constraints are included in the current
plan, a valid ordering of all operators must always exist. The planning cycle continues until
all goals have been achieved. This type of planner is often referred to as a partial-order
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planner as opposed to the total-order planners discussed above. Many researchers consider
partial-order planning a more powerful and efficient planning strategy since premature or-
dering commitments are delayed until a more informative ordering decision can be made.

(Barrett & Weld, 1994; Kambhampati & Chen, 1993; Minton et al., 1992)

One other important distinction that is often made between planning algorithms is
whether a planner is linear or nonlinear. Over the years, these terms have acquired several
different connotations and are often confused or mistaken with state-based or plan-based. Lin-
ear planners, which are usually equated with state-based planners, typically examine goals
in a “linear” order; if two (or more) goals exist, then the first goal and all of its subgoals
must be achieved before the next goal is considered. In contrast, nonlinear planners do not
employ the linearity restriction and can examine goals in any order. Partial-order planners
are typically nonlinear planners, however they are not required to be. There are also non-
linear planning algorithms that employ a state-based approach (Warren, 1974; Veloso et al.,
1995). Since the terms linear planner and nonlinear planner are not well-defined, many
recent authors choose instead to refer to planners as either total-order or partial-order.

Unfortunately, even with the most current algorithms, most planning problems are diffi-
cult to solve. Even toy domains, such as the well-known blocksworld, quickly become compu-
tationally intractable as problem difficulty increases. This intractability is further aggravated
by more expressive domain definitions. Though constructs such as universal quantification
and conditional effects are important domain representation tools, they greatly contribute
to planning complexity. In order to make planning on many domains more tractable, re-
searchers often attempt to utilize specific knowledge about a domain (Fikes & Nilsson, 1971;
Minton, 1989; Langley & Allen, 1991; Kambhampati et al., 1996). This knowledge can
provide a planner with the extra information needed to make wise decisions early in the
planning process, thereby avoiding large amounts of search.

This additional domain knowledge is usually termed “control” knowledge and is specified
in the form of search-control rules or heuristics. Control rules are used to direct how a planner
searches for a plan. Rules can make decisions such as what goal should be examined next
or what action should be used to achieve a particular goal. Unfortunately, acquiring control
knowledge for new domains is a difficult task. Eliciting knowledge from a domain expert and
coding that knowledge in a usable form can be extremely time-consuming. Plus, for many
domains, a domain expert may not be readily available. Control information must also be
re-acquired each time the domain changes or a new domain is encountered. One attractive
alternative is to allow the system to automatically learn needed control knowledge. This
solution is considered in more detail in the following section.

2.2 Learning Methods for Planning

Planning systems can often automatically acquire control knowledge by utilizing machine
learning techniques. This knowledge can be based directly on user input or derived from
past planning experience. For instance, a system which acts as a learning apprentice is
designed to acquire control information by observing the behavior of a human expert. Other
learning systems are built to learn from their own experience without human intervention.



These autonomous systems are understandably more complex and difficult to build, however,
they are frequently more desirable since they require little or no human overhead.

Several learning techniques have been applied to control knowledge acquisition. Most
common are analytical methods where a domain theory is used to bias the learner toward
useful control information. The most popular of these methods is explanation-based learning
(EBL) (Mitchell et al., 1986; DeJong & Mooney, 1986). In EBL, examples guide the formu-
lation of a concept but no inductive leap is made. An input domain theory designates a set
of “operational” concepts from which learned concepts are drawn. Operational concepts are
usually low-level predicates that have been classified as “easy to evaluate” in the problem
domain, and thus can be used to build efficient concept definitions. Using the domain theory,
a proof is constructed for each example of why that example is a valid member of the target
concept. This proof is then generalized and the set of operational concepts contained in the
proof are used to build a concept definition. Explanation-based learning and other analyti-
cal techniques are considered knowledge-rich due to their ability to explain why a particular
rule was learned. A number of EBL learning systems have been applied to acquire planning
control knowledge (Minton, 1989; Bhatnagar & Mostow, 1994; Kambhampati et al., 1996).
Unfortunately, due to its reliance on a only a few examples, standard EBL can often produce
complex, overly-specific control rules that do not generalize well to new planning situations
(Minton, 1988). Even though the learned rules are correct, the cost of testing their applica-
bility on new planning situations often outweighs their savings. This situation is commonly
known as the utility problem. EBL methods are also hard to apply in domains where it is
difficult to construct a complete and tractable domain theory (Chien, 1989).

At the other extreme are inductive methods which learn through examining examples
of positive and negative planning situations. These empirical methods build control rules
by making inductive leaps based on some domain-independent bias such as an information-
gain heuristic or Occam’s razor (Quinlan, 1983). This type of approach obviates the need
for a domain theory since rules are learned directly from empirical information. Inductive
methods also tend to build more general control rules, and thus often acquire more useful
control knowledge. A disadvantage to inductive algorithms is that they usually require
large numbers of examples to acquire effective control information. These methods can also
easily become computationally intractable since they often search through large amounts of
background information when building control rules. This background information usually
corresponds to extensional definitions of any concepts that can be used to build control
rules. Inductive methods have not received as much attention as EBL, but a few systems
have utilized induction for learning search-control knowledge (Mitchell et al., 1983; Porter

& Kibler, 1986; Langley & Allen, 1991; Leckie & Zuckerman, 1993).

An alternative approach is to use a combination of learning techniques to acquire control
information. Most of these methods attempt to combine EBL with an inductive algorithm
where the main goal is to retain the benefits of a domain theory while also having the
flexibility to learn from the data. For example, instead of building a complete proof, plausible
explanation-based learning (PEBL) (Zweben et al., 1992) first conjectures an example is a
member of target concept, and then confirms the conjecture with empirical data. Other
systems have employed lazy explanation-based learning (LEBL) which generates incomplete
explanations and then incrementally refines any overly-general knowledge using new planning
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examples (Tadepalli, 1989; Borrajo & Veloso, 1994b).

This proposal presents a novel multi-strategy learning approach to control-knowledge
acquisition. Qur learning system SCOPE also uses a combination of EBL and induction to
learn control information. However, instead of generating control rules through EBL and
then inductively refining them, SCOPE directly builds rules using an inductive algorithm.
EBL is used to focus the inductive search so that only highly relevant pieces of background
information are examined. This technique biases the search towards more useful rules, and
also keeps the inductive search at a computationally tractable level. SCOPE also differs
from other learning approaches by employing techniques from inductive logic programming
(Muggleton, 1992; Lavra¢ & Dzeroski, 1994). A detailed description of the SCOPE learning
algorithm is presented in Section 4.

2.3 ILP Methods for Control Learning

Inductive logic programming (ILP) techniques have been primarily used in the past for in-
ducing logic programs based on a set of examples. Due to the expressiveness of first-order
logic, ILP methods can learn relational and recursive concepts that cannot be represented in
the attribute/value representations used by most machine-learning approaches. ILP systems
have successfully induced small programs for simple tasks such as sorting and list manipula-
tion (Muggleton & Buntine, 1988; Quinlan & Cameron-Jones, 1993); as well as performing
well on more complicated tasks such as learning properties of organic molecules (Muggleton
et al., 1992) and predicting the past tense of English verbs (Mooney & Califf, 1995).

More recently, it has been argued that ILP techniques can also be a useful tool for
acquiring control information (Cohen, 1990). Many different problem solving strategies can
be easily coded as Prolog programs and learning mechanisms are also easily implemented
in this framework. Logic programs have long been recognized as a good platform for EBL
techniques since the notion of “explanation” can be equated with the structure of a proof.
On the empirical side, there are a number of current learning systems that employ ILP
techniques to induce Horn clause concept definitions (Quinlan, 1990; Muggleton, 1992). By
casting the problem of learning control rules as a concept learning problem, these inductive
techniques can often be successfully used to acquire control information.

Logic programming also provides a well-understood representation and computation plat-
form upon which to build. A logic program is expressed using the definite clause subset of
first-order logic, where a definite clause is a disjunction of literals having exactly one un-
negated literal. The one unnegated literal represents the clause head while the other literals
comprise the clause body. Computation in this representation is done using a resolution proof
strategy on an existentially quantified goal. For example, a simple logic program to sort lists
(written in Prolog) is shown in Figure 2. The top-level goal of this program is sort(X,Y). An
instantiation of this goal is true when Y is a sorted version of the list represented by X. The
arguments of a top-level goal are usually partitioned into input and output argument sets.
In this example, X is considered the input and Y the output. A program is executed by pro-
viding a goal which has its input arguments instantiated. When a top-level goal is provided,
a theorem-prover constructively proves the existence of the goal meeting any constraints



sort(X,Y) :- permutation(X,Y), ordered(Y).

permutation([],[]) :- true.
permutation([X|Xs],¥s) :- permutation(Xs,Ys1), insert(X,Ys,V¥sl1).

insert (X, [X|Xs],Xs) :- true.
insert(X,[Y|Ys],[Y|Ys1]) :- insert(X,Ys,Ysl).

ordered([X]) :- true.
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Figure 2: Simple Sorting Program

provided through the input arguments. In this process, the prover will produce bindings for
the output arguments. For example, in our simple sorting program, a top-level goal of the
form sort([6,3,1,5,9],Y) would produce the output binding Y = [1,3,5,6,9].

The Prolog programming language provides a practical instantiation of logic program-
ming using a simple control strategy. In Prolog, depth-first search with backtracking is used
to search for a proof. If during execution the current search path fails, then the last deter-
ministic decision point is backtracked upon and a new path explored. Search control in a
Prolog program can be viewed as a clause selection problem (Cohen, 1990), where clause
selection is the process of deciding what program clause should be used to reduce a particular
subgoal during program execution. Different options in a program are represented using sep-
arate clauses which have equivalent heads but different clause bodies. Control information
is usually incorporated into a Prolog program in the form of clause-selection rules. These
rules help avoid inappropriate clause applications, thereby greatly reducing backtracking.

As an example, consider the simple sorting program shown in Figure 2, which sorts a list
by generating permutations of the list until it finds one that is ordered. Permutations are
generated by permuting the tail of the input list and then inserting the head somewhere in the
permuted tail. This program currently performs in O(N!) time. The only nondeterminism
comes from the definition of the predicate insert/3 which can either insert an item at the
beginning of a list or somewhere in the tail. This nondeterminism can be eliminated by
learning a control rule for the first clause that will correctly predict when the item should
be placed at the head of the list.

Figure 3 shows a modified version of the insert clause definition, which was constructed
by the DOLPHIN learning system (Zelle & Mooney, 1993). The first insert clause has
been “guarded” with control information so that attempts to use it inappropriately will fail
immediately. This clause will now only be applied when a element is being inserted into an
empty list or if the new element is less than the head of the current list. The result is an
O(N?) insertion sort program.

Cohen (1990) and Zelle and Mooney (1993) have both introduced systems that acquire
control heuristics to improve the performance of Prolog programs. In these systems, a combi-
nation of EBL with induction is used to learn control rules that eliminate backtracking. Ex-
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insert(X,[X|Xs],Xs) :- insert_controlil(X, [X|Xs],Xs).
insert(X,[Y|Ys],[Y|Ys1]) :- insert(X,Ys,Ysl).

insert_controll (X, [],[X]).
insert_controlil (X, [X|Z],[X,Y|Z]) :- X < Y.

Figure 3: Improved Insert Predicate

perimental results are presented on a variety of domains including several planning domains
which employed a simple linear planner. This proposal presents research that successfully
extends these methods by applying ILP techniques for control knowledge acquisition in a
modern, complex planning system.

3 Learning Control For Partial-Order Planning

Previous research in planning and learning systems has been based almost entirely around
linear, state-based planning algorithms. In recent years, a number of more sophisticated
planning approaches have been introduced that outperform most linear, state-based algo-
rithms. Unfortunately, few control-knowledge acquisition systems have been adapted to
perform on these newer planning algorithms. One style of planning that has acquired much
recent prominence is partial-order planning. This type of approach is widely used in many
current planning systems and we felt a partial-order planner would provide an good testbed
for our control learning system.

3.1 The UCPOP Planner

The base planner we chose for experimentation is UCPOP (Penberthy & Weld, 1992), a
partial-order planner whose step descriptions can include conditional effects and universal
quantification. UCPOP has been proven sound and complete, and a significant amount of
planning research has been based around its algorithm. Given a planning problem that
contains an initial state, a set of goals, and a set of domain operators, the goal of UCPOP
is to determine a sequence of operators that will transform the initial state into a state
where all goals are satisfied. Operators are specified using a representation similar to the
well-known STRIPS format (Fikes & Nilsson, 1971), where operators contain precondition,
add and delete lists.!

UCPOP searches in a space of partial plans, where each plan consists of a partial-ordering
of actions. A partial plan is best described as a four-tuple (S,B8,0,L): where S is a set of
actions, O is a set of ordering constraints over S, £ is a set of causal links, and B is a set

! More specifically, operators are represented in Pednault’s Action Description Language (ADL) (Pendault,
1989), which is actually more expressive then STRIPS since it allows several additional constructs such as
conditional effects and universal quantification. However, since no domains used in this proposal required
these additional constructs we will not consider this point in detail at this time.
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of binding constraints over variables appearing in S. Specifically, § contains all actions that
have been added as current plan steps. The set of orderings, O, specifies a partial ordering of
these actions. Ordering constraints between steps are usually denoted by the “<” relation.
For example 57 < 53 means that step S; is constrained to come before S;. During planning,
there must always exist at least one consistent total ordering of all steps.

Causal links, contained in £, record dependencies between the effects of one action and

the preconditions of another. A link is represented as S % Sy where S7 and S, are plan
steps and @) is an effect of S; and a precondition of S3. In this case, 57 is considered the
link’s producer and S3 its consumer. These links are used to detect threats, which occur

when a new action interferes with a past decision. More specifically, if 5} “ Sy 1s a causal
link in the current plan and there exists a separate action in the plan S3 which threatens
the link, then the following two conditions are satisfied:

e O U S| < S3 <5, is consistent, and

e 53 has =@ as an effect (or has @) as a delete condition).

When a plan contains a threat, it is possible that it will not work as anticipated. To
prevent this from happening, the planner must check for and resolve any discovered threats.
UCPOP employs two main threat resolution strategies: promotion and demotion. For pro-
motion, the planner adds an additional ordering constraint to ensure that S3 is executed
before 51, e.g. 53 < 5. Similarly, for demotion an ordering constraint is added that requires
S3 to be executed after 9,.

Binding constraints are in the form codesignation and noncodesignation constraints.
Codesignation constraints represent the required unification of two variables (7X =?Y) or a
variable and a constant (?X = A). Noncondesignation constraints, conversely, prohibit the
unficiation of two variables (?7X # 7Y’). These constraints, contained in the set B, apply to
variables appearing in the pre- and post-conditions of the actions contained in S.

An overview of the UCPOP algorithm is shown in Figure 4. The algorithm takes three
inputs: a plan (S§,8,0,L), an agenda of outstanding goals, and a set of action schemata A.
The initial null plan for a planning problem has two actions, S = {Ag,A }, one ordering
constraint, O = {Ag < A}, no causal links, £ = {}, and no binding constraints, B = {}.
The initial and goal states are represented in the initial plan by adding the two actions Ag
and A, where the effects of Ay correspond to the initial state and the preconditions of A,
correspond to the desired goal state. The initial agenda contains all top-level goals, where
each goal is represented as a pair (@, A;) where @ is a precondition of A;.

In each planning cycle, a goal is selected from the agenda in Step 2, and in Step 3,
an existing or new action is chosen to assert the goal. After an action is selected, the
corresponding orderings, casual links and codesignation constraints are added to O, £, and
B, and if a new action was selected, it is added to §. Step 4 removes the selected goal from
the agenda, and if a new action was selected to assert it, that action’s preconditions are
added to the agenda. Step 5 checks for possible threats and resolves any found by adding
an additional ordering constraint through either demotion or promotion. UCPOP is called
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Algorithm UCPOP((S,B,0,L), agenda,\)
1. Termination: If agenda is empty, return (S,8,0,L).

2. Goal Selection: Select a goal (@, Anceq) from the agenda where @ is a
precondition of action Aj,ceq.

3. Operator Selection: Choose either an existing action (from §) or a new
action Agqq (instantiated from A) that adds Q. TLet O' = O U {Azqa <
Apeed}, L= LU {Azaa < Apeedl}, and let B’ be the updated set of bindings.
If Agqq is a new action let &' =S U Aggg and O' = O U A, < Aggqd < Awo.

4. Update Goal Set: Let agenda’ = agenda - {{Q, Aneea)}. If Agqa is newly in-
stantiated, then for each condition, @;, on its precondition list add (Q;, Agda)
to agenda’.

. Causal Link Protection: For every action A; in S that might threaten a

(@2}

causal link A, it Ac in L select a consistent ordering constraint, either
(a) Demotion: Add A; < A, to O’, or
(b) Promotion: Add A, < A; to O'.

If neither constraint is consistent then return failure.

6. Recursive Invocation: UCPOP((S',B',0',L'),agenda’ |A)

Figure 4: The UCPOP Partial-Order Planning Algorithm?

recursively until the agenda is empty. On termination, UCPOP uses the constraints found
in O to determine a total ordering of the actions in S, and returns this as the final solution.

A version of the UCPOP partial-order planning algorithm has been implemented as a
Prolog program to provide a testbed for our learning system. Planning decision points
are represented in this program as clause-selection problems (i.e. each decision option is
formulated as a separate clause). As explained in Section 2.3, this type of representation
allows control rules to be easily incorporated into program clauses. Though our planning
algorithm is directly based on UCPOP, there are implementation differences. The most
significant difference is that our Prolog planner operates using a depth-first backtracking
search with a depth bound, while UCPOP normally employs a best-first search strategy.?
To evaluate the efficiency of our planner as compared to the standard LISP implementation
of UCPOP (v2.0) (Barrett et al., 1993), we ran several experiments using problem sets from
two domains. These problem sets are also used for testing the learning algorithm, and are
discussed in Section 5. In these tests, our planner performed comparably to UCPOP and
in some cases, performed better. Though these experiments are not intended to promote
a particular search strategy or programming language, they do indicate that our Prolog
planner is compatible in terms of efficiency to standard UCPOP.

2 Algorithm steps involving conditional effects or universal quanitifcation are not shown here. For more
details on the use of these constructs see (Penberthy & Weld, 1992).

3Kambhampati et al. (1996) also run UCPOP in a depth-first search mode in their control-rule learning
system. This system is discussed further in related work.
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Figure 5: Three competing refinement candidates for achieving the goal Clear(B).

3.2 Planning Decision Points

There are several important decision points in the UCPOP algorithm where the planner
must select from one of several possible plan refinements. These decision points include goal
selection, goal establishment (selecting an existing or new operator), threat selection, and
threat resolution. At these points, there are often a number of valid choices that the planner
must choose from. For instance, there may be several actions that can be added to achieve
a particular goal. In the absence of control information, our Prolog UCPOP will always
select the first valid refinement; other refinements may be tried later through backtracking.
An example of a planning decision point from the blocksworld is shown in Figure 5. Here,
there are three possible refinement candidates for adding a new action to achieve the goal
Clear(B). In this case, only one refinement option (candidate 2) will ever lead to a problem
solution.

SCOPE has been designed to only learn control rules for decisions that might lead to
a failing search path (i.e. might be backtracked over). Though goal selection and threat
selection can affect planner performance, these decisions will never be backtracked upon,
thus, no control rules are learned for these points. Search control rules for the remaining
decisions types (goal establishment and threat resolution) are in the form of refinement-
selection rules.

3.3 Control Rule Format

SCOPE learns control rules in the form of selection rules that define when a particular plan
refinement should be applied. A selection rule consists of a conjunction of conditions that
must all evaluate to true for the refinement to be used. If at least one condition fails, that
refinement will be rejected, and the next refinement candidate evaluated. For example,
shown below is a selection rule for the first candidate from Figure 5, which contains several
control conditions.

Select new-operator Unstack(?X,?Y) to establish goal(Clear(?Y),s;)
If exists-operator(ss) A establishes(s;,On(?X,?Y)) A
possibly-before(ss,s1).

This rule states that the operator Unstack(?X,?Y) should be selected to add Clear(?Y) only
when there is an existing action sy that adds On(?X,?Y) and s, can be ordered before
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the action which requires Clear(?Y), s;. On the planning decision shown in Figure 5, this
rule would fail and thus correctly prevent the planner from selecting the first refinement
candidate. Learned control information is incorporated into the planner so that attempts
to select an inappropriate refinement will immediately fail. SCOPE can also make selection
rules deterministic or nondeterministic depending on the accuracy of the learned rule.

4 The ScoPE Learning System

SCOPE is based on the DOLPHIN speedup learning system (Zelle & Mooney, 1993), which
optimizes logic programs by learning clause-selection rules. DOLPHIN has been shown suc-
cessful at improving program performance in several different domains, including planning
domains which employed a simple state-based planner. DOLPHIN, however, has little suc-
cess improving the performance of a partial-order planner due to the higher complexity of
the planning search space. In particular, DOLPHIN’s simple control rule format lacks the
expressibility necessary to describe complicated planning situations. DOLPHIN also has diffi-
culty successfully generalizing explanations produced by a partial-order planner. Unlike the
simple planner DOLPHIN had previously been applied to, a partial-order planner employs
many nested data structures to represent plan information. DOLPHIN’s learning algorithm
could not properly generalize these complex structures so that proof tree information would
be usable as control knowledge. SCOPE has greatly expanded upon the original DOLPHIN
algorithm to be effective on more complex planning systems.

The input to SCOPE is a planning program and a set of training examples. SCOPE uses
the examples to induce a set of control heuristics which are incorporated into the original
planner. Figure 6 shows the three main phases of SCOPE’s algorithm. First, the example
analysis phase solves the training examples using the original planner and extracts useful
control information. This information is then used in the control rule induction phase to
generate refinement-selection rules. Learned rules are incorporated into the original planner
in the program specialization phase. The complete algorithm is explained in detail in the
next three sections.

4.1 Example Analysis

In the example analysis phase, two main outputs are produced: a set of selection-decision
examples and a set of generalized proof trees. Selection-decision examples are used to record
successful and unsuccessful applications of a plan refinement. Generalized proof trees provide
a background context that explains the success of all correct planning decisions. These two
pieces of information are explained in detail below and are used in the next phase to build
control rules.

Selection-decision examples are produced using the following procedure. First, training
examples are solved using the existing planner. A trace of the planning decision process used
to solve each example is stored in a proof tree, where the tree root represents the top-level
planning goal and the tree nodes correspond to different planning procedure calls. The top
part of a solution tree is shown in Figure 7. The top-level goal in this proof is a call to the
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Figure 6: SCOPE’s High-Level Architecture

planner that includes the initial list of plan actions, ordering constraints, causal-links, and
agenda as input arguments.* The last argument corresponds to the output plan solution. All
subsequent planning procedure calls are included in the proof structure. Proofs of training
problems are used to extract examples of correct and incorrect refinement-selection decisions.
Specifically, a “selection decision” for a particular refinement is a planning subgoal to which
that refinement was applied. A correct decision is an application of that refinement found
on a solution path. An incorrect decision is a refinement application that was tried and
subsequently backtracked over. As an example, consider the planning problem that was
introduced in Figure 5. The planning subgoal represented by this figure corresponds to the
select-operator procedure call shown in Figure 7. A stylized version of this subgoal is
shown below.

For S = (0:Start,G:Goal),
0=(0<G),
L=70,
agenda = (Clear(B),G),(On-Table(B),G),
Select a new-operator 7OP to establish goal(Clear(B),G)

This subgoal would be identified as a positive selection decision example for refinement
candidate 2 from Figure 5 (adding Putdown(A)), and would also be classified as a negative
selection decision example for candidates 1 (adding Unstack(B,A)). Selection decisions such

“Binding constraints in our system are maintained through Prolog, therefore, the set of binding con-
straints, B, is not explicitly represented in planning procedure calls.
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UCPOP([action(0,start),action(g,goa)],[(0<g)],[],[goal (clear(b),g),goal (on-table(b),g)] ,[unstack(b,a) ,putdown(b)])

SELECT-GOAL ([goal(clear(b),g),goal (on-table(b),g)],goal (clear(b),g))

MEMBER(goal(clear(b),g),[goal (clear(b),g) ,goal (on-table(b),0)])

SEL ECT-OPERATOR(goal (clear(b),g),[action(0,start),action(g,goal )],[ (0<g)],[],[goal (clear(b),g) ,goal (on-table(b),g)] ,action(1, putdown(b)))

ADD-ACTION(action(1,putdown(b),[ action(0,start),action(g,goal )] [ action(0,start),action(g,goal ) ,action(1,putdown(b)])

ADD-ORDERING((0<1),[(0<g)] [(0<g),(0<1)])

Figure 7: Solution Proof of Planning Problem from Figure 5°

as this one are collected for all competing planning refinements. Refinements are considered
“competing” if they can be applied in identical planning decisions, such as the three refine-
ment candidates shown in Figure 5. Any given training example may produce numerous
positive and negative examples of refinement selection decisions. Selection decision exam-
ples are used later in induction to represent positive and negative examples of when to apply
particular planning refinements.

The second output of the example analysis phase is a set of generalized proof trees.
Standard EBG techniques (Mitchell et al., 1986; DeJong & Mooney, 1986) are used to
generalize each training example proof. The goal of this generalization is to remove proof
elements that are dependent on the specific example facts while maintaining the overall proof
structure. Generalized proof information is used later to explain new planning situations.
The top part of an example generalized proof tree is shown in Figure 8. This proof was
extracted from the solution trace shown in Figure 7. The generalized proof of an example
provides a context which “explains” the success of correct decisions.

Even after EBG has been applied, some tree nodes still contain complex lists as argu-
ments. These arguments correspond to items such as the list of plan actions (S), the list
of plan ordering constraints (O), etc. In order to promote more general control knowledge,
any lists remaining in a generalized proof tree are generalized directly to variables. Without
this extra generalization, proof tree information containing these lists is too specialized to be
useful in control rules. This procedure allows SCOPE to build simpler, more general control
rules while still retaining enough information in the generalized proof nodes to effectively
focus the inductive search.

5For space purposes, some information is not shown here. For instance, action data structures should
also contain precondition and effect lists.
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UCPOP(A ctions0,Orderings0,Links0,Goal sO,Sol ution)

SELECT-GOAL (Goals0,goal (clear(X),g))

MEMBER(goal (clear(X),g),Goal s0)

SEL ECT-OPERATOR(goal (clear(X),g),Actions0,0Orderings0,Links0,Goal s0,action(ANum1,putdown(X)))

ADD-ACTION(action(ANum1,putdown(A),ActionsD,Actionsl)

ADD-ORDERING((0<ANum1),0Orderings0,0Orderingsl)

v

Figure 8: Generalized Proof Tree of Solution Trace from Figure 7

4.2 Control Rule Induction

The goal of the induction phase is to produce an operational definition of when it is useful to
apply a plan refinement candidate. Given a candidate, C, we desire a definition of the concept
“subgoals for which C is useful”. In the blocksworld domain, such a definition is learned
for each of the refinements shown in Figure 5. In this context, control rule learning can be
viewed as relational concept learning. A number of systems (Quinlan, 1990; Muggleton, 1992;
Zelle & Mooney, 1994a) have been designed to tackle this type of learning problem. SCOPE
employs a version of Quinlan’s FOIL algorithm to learn control rules through induction.

The choice of a FoiL-like framework is motivated by a number of factors. First, the
basic FOIL algorithm is relatively easy to implement and has proven efficient in a number of
domains. Second, FOIL has a “most general” bias which tends to produce simple definitions.
Such a bias is important for learning rules with a low match cost, which helps avoid the
utility problem. Third, it is relatively easy to bias FOIL with prior knowledge (Pazzani &
Kibler, 1992). In our case, we can utilize the information contained in the generalized proof
trees of planning solution traces.

4.2.1 FoIr Algorithm

FolIL attempts to learn a concept definition in terms of a given set of background predicates.
This definition is composed of a set of Horn clauses that cover all of the positive examples
of a concept, and none of the negative examples. The selection-decision examples collected
in the example analysis phase provide the sets of positive and negative examples for each
planning refinement candidate.
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Initialization
Definition := null
Remaining := all positive examples
While Remaining is not empty
Find a clause, C| that covers some examples in Remaining,
but no negative examples.
Remove examples covered by C'from Remaining.

Add C'to Definition.

Figure 9: Basic FoiL Covering Algorithm

FoIL may be viewed as a simple covering algorithm which has the basic form shown
in Figure 9. The “find a clause” step is implemented by a general-to-specific hill-climbing
search. FOIL adds antecedents to the developing clause one at a time. At each step FOIL
evaluates all possible literals that might be added and selects the one which maximizes an
information-based gain heuristic. This heuristic prefers literals that cover more positive
examples and fewer negative examples.

The generation of candidate literals to add to a developing clause normally consists of
trying each background predicate with all possible combinations of variables currently in the
clause and any new predicate variables. Any predicates that can be used as rule antecedents
must be introduced as background knowledge. SCOPE uses an intensional version of FOIL
where background predicates can be defined as Prolog programs instead of requiring an
extensional representation (Mooney & Califf, 1995).

One major drawback to FOIL (and other similar inductive algorithms) is that the hill-
climbing search for a good antecedent can easily explode, especially when there are numerous
background predicates with large numbers of arguments. When selecting each new clause
antecedent, FOIL tries all possible variable combinations for all predicates before making
its choice. This search grows exponentially as the number of predicate arguments increases.
SCOPE circumvents this search problem by using the generalized proofs of training examples.
By examining the proof trees, SCOPE identifies a small set of potential literals that could be
added as antecedents to the current clause definition. Literals are added in a way that utilizes
variable connections already established in the proof tree. This approach nicely focuses the
FoIL search by only considering literals (and variable combinations) that were found useful
in solving the training examples.

4.2.2 Building Control Rules from Proof Trees

The generalized proofs of training examples can be seen as giving the context for the ap-
propriate applications of refinement candidates within a proof. Some nodes of a generalized
proof tree contain calls to “operational” predicates. These are usually low-level predicates
that have been classified as “easy to evaluate” within the problem domain, and thus can be
used to build efficient concept definitions. The operational nodes of a proof represent all of
the primitive conditions that had to be satisfied for the proof to succeed. SCOPE employs
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induction in an attempt to identify a small set of these simple tests that will provide neces-
sary guidance in determining whether the application of a refinement candidate is likely to
lead to a solution. Since test conditions that verify a planning decision are sometimes not
executed until much later, it is important to consider an entire example proof instead of just
the surrounding context of a particular decision. For instance, the planner might not verify
that choosing the action Putdown(a) to establish the goal Clear(a) is correct until much later
in the planning process when it checks to see if some other action has asserted Holding(a).

SCOPE employs the same general covering algorithm as FoIL but modifies the clause
construction step. Clauses are successively specialized by considering how their target re-
finements were used in solving training examples. Suppose we are learning a definition for
when each of the refinement candidates in Figure 5 should be applied. The program predi-
cate representing this type of refinement is select-operator. This predicate is defined with
several arguments including the unachieved goal and an output argument for the selected
operator. (Plan state information, such as the list of current plan steps, is also automati-
cally included as arguments to any refinement predicate.) The full predicate head of this
refinement is shown below.

select-operator(Goal,Steps,Orderings, Links,Agenda,ReturnOp)

For each refinement candidate, SCOPE begins with the most general definition possible.
For instance, the most general definition covering candidate 1’s selection examples is the
following; call this clause C.

select-operator(Goal,Steps,Orderings,Links,Agenda,unstack(A,B)) -
TRUE

This overly general definition covers all positive examples and all negative examples of when
to apply candidate 1, since it will always evaluate to true. C can be specialized by adding
antecedents to its body. This is done by unifying C’s head with a (generalized) proof subgoal
that was solved by applying candidate 1 and then adding an operational literal from the
same proof tree which shares some variables with the subgoal. For example, one possible
specialization of the above clause is shown below.

select-operator((clear(B),S1),Steps0,Orderings,Links,Agenda,unstack(A,B)) :-
establishes(on(A,B),Stepsl,52).

Here, a proof tree literal has been added which checks if there is an existing plan step, S2,

that establishes the goal On(A,B).

Variables in a newly added antecedent can be connected with the existing rule head in
several ways. First, by unifying a rule head with a generalized subgoal, variables in the rule
head become unified with variables existing in a proof tree. All operational literals in that
proof that share variables with the generalized subgoal are tested as possible antecedents.
This method initially establishes many relevant variable connections between a rule head
and its antecedents.
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A second way variable connections may be established is through the standard FOIL
technique of unifying variables of the same type. When SCOPE tests a literal for use in a
control rule, the literal may contain input parameters that are not bound by the rule head
or other existing literals in the rule. If such parameters exist, SCOPE attempts to unify these
parameters with terms of the same type that are already present in the rule. For example,
the rule shown above has an antecedent with an unbound input, Steps1, which does not
match any other variables in the rule. SCOPE can modify the rule, as shown below, so that
the Steps1 is unified with a term of the same type from the rule head, Steps0.

select-operator((clear(B),S1),Steps,Orderings,Links,Agenda,unstack(A,B)) :-
establishes(on(A,B),Steps,52).

For each unbound input parameter, all possible variable unifications are tested as possible
specializations of the current rule and the specialization which maximizes FOIL’s information-
gain heuristic is selected.

4.2.3 Types of Literals

SCOPE considers several different types of control rule antecedents during induction. Besides
pulling literals directly from the generalized proof trees, SCOPE can also use negated proof
literals, determinate literals, and literals representing non-codesignation constraints.

A good reason for not selecting one refinement candidate is that another refinement
is preferable; therefore, a good control-rule antecedent for one candidate’s control rule can
often be successfully used as a negated rule antecedent for a competing refinement. Potential
negated antecedents for a refinement’s control rules are determined by combining the sets
of possible antecedents for the control rules of all other competing refinements. Negated
antecedents can be added to a rule in several ways. Standard FOIL only adds antecedents
to a rule until all negative examples are removed. If there are any positives left to cover, a
new rule is created. Alternatively, SCOPE can consider adding negated antecedents in order
to cover more positives. Instead of only appending negated antecedents to the end of a
rule, our induction algorithm considers conjunctively grouping them with existing negated
antecedents. This procedure can increase the number of positive examples covered by a rule.
For example, assume the induction algorithm is currently considering adding the antecedent
not(ant4) to the following rule.

rulehead :- antl, not(ant2), ant3.

SCOPE can form either of the two rules shown below, where in standard FoIL, only the first
rule would have been considered.

rulehead :- ant, not(ant2), ant3, not(ant4).
rulehead :- ant, not(ant2, ant4), ant3.
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The first rule is more specific than the original rule and could possibly exclude more negative
examples. The second rule, however, is more general than the original rule and could cover
more positive examples.

Determinate literals can be used to introduce new variables into a clause (Quinlan, 1991;
Muggleton, 1992). These are literals which produce only one possible binding for each output
parameter, and thus their inclusion does not significantly increase the inductive search space.
Determinate literals are typically not added through standard induction since they produce
little or no gain. However, they can still be useful as rule antecedents by introducing relevant
information into a rule. In our induction procedure, all possible determinate literals are
automatically added when a new clause is created. If any prove unnecessary they are simply
pruned after clause construction has ended. SCOPE currently considers adding two types of
determinate literals, find-initial-state(Steps,InitState) and find-final-state(Steps,FinalState); both
input a list of plan steps and output the list of propositions representing the initial or final
state. These literals are included so control rules can easily access information about the
initial and goal states.

The last type of potential literal is a non-codesignation constraint of the form X; # X;,
where X; and X are variables existing in a clause. This antecedent checks if two variables (of
the same type) are nonunifiable.® For example, it may be beneficial to check if two actions
are not the same, as in the following rule for candidate 2.

select-operator((S1,clear(A)),Steps0,Orderings,Links,Agenda,putdown(A)) -
establishes(holding(A),Steps0,52),
S1 # S2.

This rule states that Putdown(A) will be selected to achieve Clear(A) if there is an existing
action, S2, that establishes Holding(A) and S2 is not the same action which requires Clear(4).
Incorporating different antecedent types helps SCOPE to learn expressive control rules that
can describe partial-order planning situations.

4.2.4 Relational Clichés

One other feature has been added to SCOPE’s algorithm to promote the learning of better
control rules. Often during induction, an individual literal may not provide any gain when
tested as a possible rule antecedent. However, when grouped with another related literal,
the conjunction of the two literals may provide significant gain. In standard hill-climbing,
this useful combination of literals may never be discovered if neither literal provides any gain
individually. Furthermore, searching through all possible combinations of literals is not a
practical consideration. To address this problem, Silverstein and Pazzani (1991) introduced
relational clichés to suggest potentially useful combinations of predicates during relational
learning. These clichés provides an efficient means of searching through a restricted subset
of the space of predicate combinations.

SLiterals of the form X; = X; are automatically considered through the Prolog unification of rule terms.
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Relational clichés consist of two parts:

1. A pattern, which is an abstract description of a conjunction of predicates.

2. A set of restrictions, which constrain the predicates and variable bindings that can be
used to fill the associated pattern.

Currently, only the two patterns listed below have been added to our system.

Patternl: member(A,C), member(B,C)

Restrictions: C must be a list of initial or goal state propositions.

Pattern2: not(member(A,C))not(member(B,C))
Restrictions: same as above

These two patterns allow induction to test for concepts present in the initial and final
states that may be defined by two conditions. These particular patterns were introduced
based on our observations of SCOPE’s behavior on a transportation domain (introduced in
Section 5). In this domain, it is often useful to check whether an object is in one city in the
initial state and a different city in the goal state. For instance, if the current goal is to move
an object X to a certain location Y, then, the predicates member (at-obj(X,Z),InitState) and
member (same-city(Y,Z),InitState) could be used to determine whether the object X must
be transported between cities. To represent this concept, the two general patterns listed
above are used. These patterns could be made more specific by adding more specialized
restrictions, however, by keeping their description general other useful concepts contained in
the initial and goal states may be discovered. Also, these two patterns are not forced to be
domain-specific and thus could be useful in other domains besides the transportion domain
which originally inspired them. More specific patterns may be eventually added when testing
on more complex domains.

To use relational clichés in our induction algorithm, additional rule specializations are
generated by adding all combinations of predicates that fit one of the above patterns and
associated restrictions. These specializations are then added to the pool of all possible rule
specializations from which the rule with the highest gain is chosen. Another possiblity is
to only consider relational clichés if no single literal is found to have any gain. However,
since our inductive search has proved relatively efficient, we currently allow induction to
immediately consider relational clichés as possible rule antecedents.

4.3 Program Specialization Phase

Once refinement selection rules have been learned, they are passed to the program spe-
cialization phase which adds this control information into the original planner. The basic
approach is to guard each refinement candidate with the selection information. This forces
a refinement application to fail quickly on subgoals to which the refinement should not be
applied.
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select-op((clear(B),51),Steps,OrderCons, Links,Agenda,unstack(A,B)) :-
find-init-state(Steps, Init),
member(on(A,B),Init),
not(member((on(B,C),51),Agenda),member(on-table(B),Init)),!.

select-op((clear(A),G),Steps,OrderCons,Links,Agenda,putdown(A)) -
not(member((on(A,B),G),Agenda)),!.

select-op((clear(A),S1),Steps,OrderCons,Links,Agenda,putdown(A)) -
member((on-table(A),S2),Agenda),
not(establishes(on-table(A),S3)).

Figure 10: Learned control rules for two refinement candidates

A decision is also made as to whether the control information has made the planner
deterministic. If a refinement rule covers no incorrect selection decisions in the induction
phase, then it is assumed that the rule is fully accurate and no other refinement candidates
will need to be considered. This type of rule is marked as deterministic by adding a Prolog
cut (!) after the last rule condition, which will prevent any backtracking over the refinement
selection if all rule conditions are true. If a refinement rule could not exclude all incorrect
decisions in the previous phase, then the planner is still allowed to backtrack over the selection
of that refinement (i.e. no cut is added). This type of rule can still substantially improve
planning efficiency by preventing many inappropriate applications of that refinement.

Figure 10 shows several learned selection rules for the first two refinement candidates
(from Figure 5). The first rule allows Unstack(A,B) to be applied only when 4 is found to
be on B initially, and Stack(B,C) should not be selected instead. The second and third rule
allow Putdown(A) to be applied only when A should be placed on the table and not stacked on
another block. Notice, the first and second rules are marked as deterministic and thus, once
found to be true, cannot be backtracked upon. The last rule, however, does not contrain a
cut and could be backtracked over if necessary.

5 Preliminary Evaluation of SCOPE

5.1 Experimental Design

Two planning domains were used to test the SCOPE learning system. For the first domain,
the standard set of blocksworld operators from Nilsson (1980) were used. The logistics
transportation domain of Veloso (1992) was adopted for a second set of experiments. In
this domain, packages must be delivered to different locations in several cities. Packages are
transported between cities by airplane and within a city by truck. In both domains, a test
set of 100 independently generated problems was used to evaluate performance. SCOPE was
trained on separate example sets of increasing size. Ten trials were run for each training set
size, after which results were averaged. Training and test problems were produced for both
domains by generating random initial and final states. In blocksworld, problems contained
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two to six blocks and one to four goals. Logistics problems contained up to two packages and
three cities, and one or two goals. No time limit was imposed on planning in either domain,
but a uniform depth bound on the plan length was used during testing that allowed for all
problems to be solved. All tests were performed on a Sun SPARCstation 5.

For each trial, SCOPE learned control rules from the given training set and produced a
modified planner. Since SCOPE only specializes decisions in the original planner, the new
planning program is guaranteed to be sound with respect to the original one. Unfortunately,
the new planner is not guaranteed to be complete. Some control rules could be too specialized
and thus the new planner may not solve all problems solvable by the original planner. In
order to guarantee the completeness of the final planner, a strategy used by Cohen (1990) is
adopted. If the final planner fails to find a solution to a test problem, the initial planning
program is used to solve the problem. When this situation occurs in testing, both the failure
time for the new planner and the solution time for the original planner are included in the
total solution time for that problem.

5.2 Results

Figures 11 and 12 present the experimental results. The times shown represent the number
of seconds required to solve the problems in the test sets after SCOPE was trained on a given
number of examples. Each learning curve was generated by averaging the results of 10 trials.
In both domains, SCOPE consistently produced a more efficient planner and significantly
decreased solution times on the test sets. In the blocksworld, SCOPE produced modified
planning programs that were an average of 11.3 times faster than the original planner. For
the logistics domain, SCOPE produced programs that were an average of 5.3 times faster.
These results indicate that SCOPE can significantly improve the performance of a partial-
order planner.

Learned control information was able to cover an average of 97% of the test examples
in these domains. On any uncovered examples, the new planner would tend to fail quickly,

23



System Orig. Time | Final Time | Speedup | Orig. %Sol | Final %Sol
UCPOP+EBL 7872 5350 1.47X 51% 69%
SCOPE 5312 1857 2.86X 59% 94%

Table 1: ScoPE vs. UCPOP+EBL

and the original planning program would be used to produce a solution. These failures were
usually due to one or two learned rules that were slightly inaccurate. Further extensions to
ScOPE should improve the overall accuracy of learned rules and further increase performance
results in these domains.

5.3 Comparison to Other Systems

Only one other learning system has been developed to learn search-control rules for a partial-
order planner. UCPOP+EBL (Kambhampati et al., 1996) uses standard explanation-based
learning to generate control rules in response to planning failures and is discussed in more
detail in Section 6. To compare the two systems, we replicated an experiment used by Kamb-
hampati et al. (1996). Problems were randomly generated from a version of the blocksworld
domain that contained between three to six blocks and three to four goals.” SCOPE was
trained on a set of 100 problems. The test set also contained 100 problems and a CPU time
limit of 120 seconds was imposed during testing. Data was collected on planner speedup and
on the number of test problems that could be solved under the time limit. The results are
shown in Table 1. Both systems were able to increase the number of test problems solved,
however, SCOPE had a much higher success rate. Overall, SCOPE achieved a better speedup
ratio, producing a more efficient planner. By combining EBL with induction, SCOPE was
able to learn better planning control heuristics than EBL did alone. These results are par-
ticularly significant since UCPOP+EBL requires additional domain axioms which were not
provided to SCOPE. It should be noted, however, that since these two systems were run on
different platforms, the times reported here represent only a rough comparison.

6 Related Work

6.1 Learning Control for Problem Solving

Early research in learning control rules has been focused on a variety of problem solving
applications, such as symbolic integration, eight-puzzle, and the N-Queens problem. To
acquire control information, most previous learning systems employed a similar method to
SCOPE’s of analyzing the search space. Positive and negative examples of problem solver
behavior are identified (Mitchell et al., 1983; Langley, 1985), and then control heuristics are
learned to cover the positive examples and rule out the negatives. Several early approaches

“In order to replicate the experiments of (Kambhampati et al., 1996), the blocksworld domain theory used
for these tests slightly differed from the one used for the experiments presented in Section 5. Both domains
employed similar predicates however the Section 5 domain definition consists of four operators while the
domain used here has only two.
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also used a combination of induction and EBL to learn control information. The LEX-2
(Mitchell et al., 1983) and MetaLEX (Keller, 1987) systems constructed rules by inducing
over complete explanation-based generalizations of problem-solving traces. SCOPE, on the
other hand, uses induction to select the most useful pieces of EBG generalizations.

Some work has also been done on learning approximations to EBL rules. The ULS
system (Chase et al., 1989) acquired conservative approximations to EBL rules by simply
dropping one or two conditions. ULS was very limited in the rules it could generate, unlike
SCcOPE, which uses an inductive learning mechanism to build rules from scratch. A more
closely related system is AxA-EBL (Cohen, 1990), which integrates an induction mechanism
to learn approximate EBL rules. AxA-EBL first learns a control rule by applying EBG to
the proof of a correct control decision. A pool of candidate control rules is then formed by
considering all k-bound approzimations of this rules, where a k-bounded approximation is
formed by dropping k or less rule conditions. AxA-EBL then searches this pool for a small
set of rules that maximizes coverages of the positive examples and minimizes coverage of
the negative examples. Although quite successful, this system does has several weaknesses.
First, the number of k-bounded approximations grows exponentially in k, thus & is limited
to very small values. A second problem is that explanations for subgoals only consider the
context of that particular subgoal. Often the conditions which cause a particular operator
to fail, lie outside the proof of the specific subgoal to which that operator was applied.

The DOLPHIN system (Zelle & Mooney, 1993) improves on AxA-EBL by using a more
powerful induction algorithm (FOIL) and analyzing proof trees of entire problems instead of
only explaining individual subgoal successes. Though DOLPHIN has been shown successful
at improving program performance in several domains, as mentioned in Section 4, DOLPHIN
had little success improving the performance of a partial-order planner. Previously, DOLPHIN
had been mainly applied to simple logic programs whose search space was easy to analyze.
However, when tested on our UCPOP planner, DOLPHIN, could not generate rules that
were expressive enough to describe partial-order planning situations. DOLPHIN also has
difficulty successfully generalizing explanations generated by UCPOP. Generalized proof tree
information was too complex to be useful in building effective search-control rules. SCOPE has
greatly expanded upon the DOLPHIN algorithm in several ways. First, extra generalization
techniques were applied to some proof tree literals so that proof information would be more
useful in building control rules. Second, the induction algorithm was significantly extended
to include features such as variable matching, additional literals types, and relational clichés.

6.2 Learning Control Specifically for Planning

A significant amount of research in learning control knowledege has been explicitly directed
towards improving planning systems. Most of this research has concentrated on linear, state-
based planners. For instance, the PRODIGY planning and learning system (Minton, 1989)
employs a version of EBL to learn control rules for a linear, state-based planner. Rules are
learned that can select, reject, or prefer refinement candidates for several different decision
types. A number of other systems have also applied EBL to learn search-control for planning.
StATIC (Etzioni, 1993) acquires control rules by analyzing the problem domain theory. This
system uses EBL to analyze a graph structure that captures the precondition/effect depen-
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dencies between the actions in the domain. This analysis is then used to derive goal-ordering
rules for the PRODIGY state-based planner. FAILSAFE (Bhatnagar & Mostow, 1994) was de-
signed to learn control rules in domains where the underlying domain theory was recursive.
FAILSAFE uses a forward-searching state-based planner and learns by building incomplete
explanations of its execution time failures.

Not all learning approaches have relied on EBL. GRASSHOPPER (Leckie & Zuckerman,
1993) uses an inductive approach to learn planning control knowledge. Given a set of training
examples, GRASSHOPPER looks for sets of similar decisions that could form the basis for
search-control rules. Rule preconditions are generated by generalizing the current world
state information that held at the beginning of each decision.

All of these learning systems have been shown successful at improving planner perfor-
mance in a variety of domains. However, unlike SCOPE, each system’s architecture is limited
to apply only to a linear, state-based planner. For instance, most of the rules generated
by these early systems heavily rely on current state information which is not available in a
partial-order planner. These systems would also have difficulty analyzing the search space
of a partial-order planner. Since partial-order planners operate in a plan-space instead of
a state-space, the process of creating and generalizing explanations is more complex. Re-
moving the linearity assumption adds further complications for learning search-control not
addressed by these early systems, since many more search paths must be considered. Un-
fortunately, very few systems have been built to acquire control knowledge for more modern
planning techniques.

HAMLET (Borrajo & Veloso, 1994b) is one more recent system, which learns control
knowledge for the nonlinear planner underlying PRODIGY4.0. HAMLET uses a combination
of EBL with induction to acquire control rules. HAMLET first generates a bounded explana-
tion of each planning decision and then incrementally refines any incomplete or inaccurate
explanations. Control rules can either be specialized if they are found to cover negative exam-
ples or generalized if they are found to exclude positive examples. Unlike SCOPE, HAMLET
uses EBL to build rules, and induction is primarily used to refine learned knowledge. Also,
though the Prodigy4.0 planner is fairly modern, it is still considered a state-based planner
and many rule conditions used by HAMLET are directly dependent on current state infor-
mation. It is thus unclear, how HAMLET would perform on a partial-order (or plan-space)
planner. HAMLET has successfully improved the performance of the PRODIGY4.0 planner in
the blocksworld and logistics planning domains. When comparing to the results reported in
(Borrajo & Veloso, 1994b), SCOPE achieves a greater speedup factor in blocksworld (11.3 vs
1.8) and in the logistics domain (5.3 vs 1.8). However, since different problem distributions
were used in these experiments and HAMLET is built upon a different planning platform, we
can only draw a rough comparison between HAMLET and SCOPE.

The only system besides SCOPE to learn control information for partial-order planning is
UCPOP+EBL (Kambhampati et al., 1996). This system also learns search control rules for
UCPOP, but uses a purely explanation-based approach. Specifically, UCPOP+EBL employs
the standard EBL techniques of regression, explanation propagation and rule generation to
acquire search-control rules. Rules are learned only in response to past planning failures.
UCPOP+EBL learns from both analytical failures (dead-end search paths) and depth limit

failures (the search path crosses a depth limit). In order to explain the failures of search
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paths that cross over a depth limit, this system can utilize extra domain axioms. These
axioms, which are defined as “readily available physical laws of the domain”, help detect
and explain inconsistencies at some depth limit failures. UCPOP+EBL is limited in the
rules it can learn, however, since only explainable failures can be utilized for learning. Even
with additional domain axioms, it may be difficult or impossible to explain some depth limit
failures. SCOPE, on the other hand, can learn rules to avoid all unpromising paths, as long as
a solution path has been identified. SCOPE also requires no additional domain information,

such as the domain axioms provided to UCPOP+EBL.

UCPOP+EBL has been shown to improve planning performance in several domains, in-
cluding the blocksworld, however, as shown in Section 5, SCOPE outperforms UCPOP+EBL
in this domain. Unfortunately, neither systems appears to generate the optimal set of con-
trol rules since both fail to solve all test examples. An interesting future research idea is to
combine techniques from both systems to in order to learn more effective control knowledge.
This research propspect is discussed further in the following section.

7 Future Work

There are several issues we hope to address in future research. First, several enhancements
to SCOPE’s algorithm are planned. These include incorporating a method that directly
evaluates control-rule utility, and including a method of constructive induction which could
further rule quality. Second, SCOPE should be tested on more complex domains that contain
conditional effects, universal quantification, and other more-expressive planning constructs.
Next, we want to to examine ways of using SCOPE to improve plan quality as well as planner
efficiency. Finally, we hope to apply the SCOPE learning system to a different type of planning
algorithm. Each of these topics is addressed below.

7.1 Enhancing SCOPE

Currently, SCOPE automatically includes any learned rule in its final set of control rules,
however, some rules are probably much more useful than others. The utility of individual
rules can often dramatically vary and too many rules of low utility can even lead to lower
performance (Minton, 1988). This occurence, commonly known as the utility problem, can
be prevented by only including the most useful control rules in the final planner. Thus, we
would like to incorporate a method into SCOPE that directly evaluates control-rule utility.
Researchers have introduced a variety of techniques for determining the best rules to save
(Greiner & Likuski, 1989; Markovitch & Scott, 1989; Subramanian & Feldman, 1990; Gratch
& Delong, 1992). As yet, no one has applied such techniques to evalutate rules for a partial-
order planner, however, we feel that such a method could be easily integrated into our
learning system.

Another possible improvement is to replace or modify the standard FOIL information-
gain heuristic currently used by SCOPE’s induction algorithm. Though the results with this
heuristic have been encouraging, experimenting with different heuristics may be beneficial.
One possibility is to replace this heuristic with a metric that more directly measures rule
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utility. This modification could improve performance by encouraging the system to only
select highly-useful control rule antecedents. Another problem with the current heuristic is
that a good rule is often discarded because it covers one or two negative control examples.
Even if such a rule is retained, it will be considered “nondeterministic” (no cut will be added)
and could be bactracked upon, causing a potential loss in speedup. SCOPE could benefit
from methods for handling noisy data that have been in employed in FOIL and other related
systems (Quinlan, 1990; Muggleton, 1992; Lavra¢ & Dzeroski, 1994). In SCOPE’s framework,
a small percentage of incorrectly covered examples could be treated as noise, thereby allowing
some good rules to be retained and more rules to be marked as deterministic. This procedure
could cause even more backtracking to be eliminating, resulting in lower solution times for
many examples. Problems that are not correctly covered by rules are already handled by
retaining a backup of the original planner. Since most backtracking would be eliminated, the
new planner should fail quickly on these examples, thus incurring very little extra time to
solve them. Speedup gain on all other examples could make this approach beneficial overall.

Another planned enhancement is the incorporation of constructive induction to invent
new predicates when needed. Currently, the pool of possible control rule antecedents is drawn
mainly from program predicates which were used in the main planning algorithm. However,
for complete optimization of a planner or other problem solver, it is often necessary to
introduce new concepts for use in the control language. For instance, it may be helpful in
the logistics domain, to have a predicate which tests whether two objects are initially in the
same city. Currently, it is possible for the user to provide SCOPE with extra concepts that
could be found useful in the form of determiniate literals or relational cliches. However, a
better method would be for the system to learn these concepts automatically. Constructive
induction techniques have been implemented in a several ILP systems (Kijsirikul et al., 1992;
Zelle & Mooney, 1994b) and could help SCOPE learn more accurate and efficient conrol rules.

Furthermore, it is often the case that concepts that are useful in making a control decision
about a certain plan refinement are also useful for making decisions about other related
refinements. However, even with constructive induction, these “shared” concepts must be
relearned from scratch for each new control rule. In a FoiL-like inductive learner, it is
relatively easy to make a newly constructed concept available for reuse to simple adding it
to the list of predicates that can be used as control rule antecedents. Unfortunately, the
definition of this concept may be incomplete or incorrect, depending on the particular set
of training examples that were used to construct it. This problem can be remedied by the
following approach. If a previously defined concept is found to be the best choice for the
next control-rule antecedent, yet it does not cover all the positive control examples, this
concept can be redefined by merging the original set of control examples with the new set
and then recursively inducing rules to cover all positive examples. This type of concept
sharing procedure could help further reduce the inductive search space, and make SCOPE’s
learning algorithm more efficient.

One last possible research direction is to utilize information about planning failures to
learn more effective control rules. Currently, SCOPE only uses the generalized solution proofs
of the training examples to bias the inductive search. Another approach is to also utilize
explanations of why particular search paths failed. For instance, the generalized failure
explanations created by the UCPOP+EBL learning system could also be used to bias the
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inductive search. This approach would allow control rules to directly utilize relelvant failure
information. In particular, rules would have access to the sets of conditions which caused
many search paths explored in the training examples to fail. This information could help
SCOPE to build more effective rules which more accurately avoid unpromising search paths.

7.2 Experimental Evalution

In order to evaluate the efficacy of the SCOPE framework for improving planning efficiency,
experimental tests on larger problems are planned. The experimental methodology will
involve producing learning curves likes those shown in Section 5 which demonstrate perfor-
mance improvement. We also plan to present more extensive comparisons between our ap-
proach and any other competing methods for partial-order planning such as UCPOP+EBL.

ScoPE will be tested on more complex domains that contain expressive constructs such as
conditional effects and universal quantification. Several domains have already been identified
that would provide an interesting testbed for future experiments. The first is the UM
Translog domain being developed at the University of Maryland. UM Translog (Andrews
et al., 1995) was inspired by the logistics transportation domain used in Section 5, however,
it is an order of magnitue larger in size (41 actions vs. 6) and provides more complex
features and goal interactions. In this domain, packages must still be delivered between
cities, however there are more modes of transportation, vehicles and packages have special
loading methods, and some routes of transportation can be temporarily unavailable. The
detailed set of operators in this domain provide for long plans (an average of 40 steps) with
many possible solutions to the same problem.

The PRODIGY Process Planning domain (Gil, 1991) is another large-scale complex do-
main that could be used to further evaluate SCOPE’s learning algorithm. This domain
incorporates detailed knowledge about the automation of manufacturing processes and is
one of the largest domains available for general-purpose planners. Actions include activites
such as machining, joining and finishing of parts. In total, this domain contains 81 different
operators and plans often consist of over 100 steps. Both the UM Translog and the Process
Planning domains provide an extensive set of interesting entities and actions, which can be
used to specify complex planning problems, and thus would provide very interesting test
domains for SCOPE and other planning and learning systems.

7.3 Improving Plan Quality

We also plan to examine ways of using SCOPE to improve plan quality as well as planner
efficiency. Borrajo and Veloso (1994a) and Pérez and Carbonell (1994) have used learned
control information to guide the PRODIGY4.0 planner towards better solutions. In this type
of approach, rules are acquired that will improve the final plan as opposed to just improving
planner efficiency. There are a variety of notions of what constitutes a “good plan”. The
most common metrics include the length of a plan, the plan’s total execution time, and the
number of resources required to execute the plan. SCOPE could be modified to collect positive
control examples only from high-quality solutions so that control rules are focused on one
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or more quality issues as well as speedup. To date, little work has been done on improving
plan quality in a partial-order planner; and no work has been attempted on learning control
knowledge for improving plan quality for such a planner. Thus, we feel this is an important
line of research that would be beneficial to the planning community.

7.4 Applying ScOPE to Other Planning Systems

Finally, we want to demonstrate that SCOPE’s learning algorithm is not limited to improving
the performance of only one type of planner. We intend to apply SCOPE to at least one
different planning algorithm in hopes of achieving similar performance gains. There are
several other types of planners besides partial-order that are prominent in the planning
community today. One is an hierarchical-task network (HTN) planner (Erol et al., 1994a).
As opposed to most operator-based planners, HT'N planners specify plan modifications in
terms of task reduction rules. These reduction rules are then used to decompose abstract
goals into lower level tasks. A set of similar constraints as found in an operator-based
planner (e.g. orderings, causal-links) is maintained in an HTN planner and many of the
same methods can be used to resolve possible conflicts. HTN planners have several decision
points where control knowledge could be useful, including what task reduction rule to apply,
and what constraint resolution method to use. HT'N planners are argued by some researchers
to be more useful for real-world applications since they offer more flexibility in expressing
domain knowledge. There are several well-developed HTN algorithms that would be good
testbeds for SCOPE. These include UMCP (Erol et al., 1994b), developed at the University of
Maryland, and COLLAGE (Lansky & Getoor, 1995), developed at the NASA Ames Research

Center.

Another breed of planners that we will consider are those that use a combination of plan-
space and state-space techniques. Kambhampati and Srivastava (1995) recently introduced
the UCP planning algorithm which casts plan-space and state-space planning methods into
a single framework. UCP has the freedom to interleave these two refinement strategies on a
singular plan represenation. Veloso and Stone (1995) has also developed a new approach to
planning that combines these two refinement strategies by using a flexible approach to order-
ing commitments. FLECS can use both least-commitment and eager-commitment strategies
and can vary its use across different problems and domains. This strategy integrates tech-
niques from both partial-order and total-order planners. Both UCP and FLECS could highly
benefit from learned control knowledge since they have been especially designed to take ad-
vantage of heuristic knowledge at the choice points just described.

8 Conclusion

SCOPE provides a new mechanism for learning search-control information in planning sys-
tems. By using a unique combination of explanation-based learning and inductive logic
programming, SCOPE can acquire high-utility control rules for a complex planning system.
Specifically, rules are learned by inducing concept definitions of when to apply particular
plan refinements. Explanation-based generalization aids the inductive search by focusing it
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towards the best pieces of background information. Unlike most approaches which are lim-
ited to linear, state-space planners, SCOPE learns control rules for the newer, more effective
partial-order planners. When evaluated on a version of the UCPOP planning algorithm,
SCcOPE significantly improved planner performance in both the blocksworld and logistics
transportation domains. SCOPE also outperforms a the competing method based only on
EBL. Future enhancements to SCOPE include incorporating a method for rule utility analysis
and utilizing contructive induction techniques to learn more effective control rules. SCOPE
will also be evaluated on more complex planning domains; future experiments include mea-
suring planner speedup and plan quality improvements. Finally, SCOPE will be applied
to a new planning system to demonstrate the versatility of SCOPE’s control rule learning
algorithm.
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