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Abstract

Semi-supervised clustering employs a small
amount of labeled data to aid unsupervised
learning. Previous work in the area has em-
ployed one of two approaches: 1) Search-
based methods that utilize supervised data to
guide the search for the best clustering, and
2) Similarity-based methods that use super-
vised data to adapt the underlying similarity
metric used by the clustering algorithm. This
paper presents a unified approach based on
the K-Means clustering algorithm that incor-
porates both of these techniques. Experimen-
tal results demonstrate that the combined
approach generally produces better clusters
than either of the individual approaches.

1. Introduction

In many learning tasks, there is a large supply of un-
labeled data but limited labeled data since it can be
expensive to generate. Consequently, semi-supervised
learning, learning from a combination of both labeled
and unlabeled data, has become a topic of signifi-
cant recent interest (Blum & Mitchell, 1998; Joachims,
1999; Nigam et al., 2000). More specifically, semi-
supervised clustering, the use of class labels or con-
straints1 on some examples to aid standard unsuper-
vised clustering, has been the focus of several projects
in the past few years (Wagstaff et al., 2001; Basu et al.,
2002; Klein et al., 2002; Xing et al., 2003).

Existing methods for semi-supervised clustering fall
into two general approaches that we call search-based
and similarity-based. In search-based approaches, the
clustering algorithm itself is modified so that user-
provided labels or constraints are used to bias the

1Constraints typically specify that two examples must
be in the same class (must-link) or must be in different
classes (cannot-link).

search for an appropriate partition. This can be
done by modifying the objective function for evalu-
ating clusterings so that it includes satisfying con-
straints (Demiriz et al., 1999), enforcing constraints
during the clustering process (Wagstaff et al., 2001),
and/or initializing clusters based on labeled exam-
ples (Basu et al., 2002). In similarity-based ap-
proaches, an existing clustering algorithm that uses
a similarity metric is employed; however, the simi-
larity metric is first trained to satisfy the labels or
constraints in the supervised data. Several similar-
ity metrics have been used for similarity-based semi-
supervised clustering including string-edit distance
trained using EM (Bilenko & Mooney, 2003), KL di-
vergence trained using gradient descent (Cohn et al.,
2000), Euclidean distance modified by a shortest-path
algorithm (Klein et al., 2002), or Mahalanobis dis-
tances trained using convex optimization (Xing et al.,
2003). Several clustering algorithms using trained sim-
ilarity metrics have been employed for semi-supervised
clustering, including single-link (Bilenko & Mooney,
2003) and complete-link (Klein et al., 2002) agglom-
erative clustering, EM (Cohn et al., 2000), and K-
Means (Xing et al., 2003).

Unfortunately, similarity-based and search-based ap-
proaches to semi-supervised clustering have not been
adequately compared experimentally, so their relative
strengths and weaknesses are largely unknown. Also,
the two approaches are not incompatible, therefore,
applying a search-based approach with a trained simi-
larity metric is clearly an additional option which may
have advantages over both existing approaches. In this
paper, we present a new unified semi-supervised clus-
tering algorithm derived from K-Means that incorpo-
rates both metric learning and using labeled data as
seeds and/or constraints. By ablating the similarity-
based and search-based components in this unified
method, we present experimental results comparing
and combining the two approaches. Both methods for



semi-supervision individually can improve clustering
accuracy, although metric learning requires sufficient
labeled data to be beneficial. Finally, when metric
learning is helpful, combining it with seeding and con-
straints results in even better performance than either
approach alone.

2. Problem Formulation

2.1. Clustering with K-Means

K-Means is a clustering algorithm based on itera-
tive relocation that partitions a dataset into K clus-
ters, locally minimizing the total distance between
the data points and the cluster centroids. Let X =
{xi}

N
i=1,xi ∈

�
m be a set of data points, xid be the

d-th component of xi, {µh}
K
h=1 represent the K cluster

centroids, and li be the cluster assignment of a point
xi, where li ∈ L and L = {1, . . . ,K}. The Euclidean
K-Means algorithm creates a K-partitioning2 {Xl}

K
l=1

of X so that the objective function
∑

xi∈X
‖xi −µli

‖2

is locally minimized.

It can be shown that the K-Means algorithm is es-
sentially an EM algorithm on a mixture of K Gaus-
sians under assumptions of identity covariance of the
Gaussians, uniform priors of the mixture components
and expectation under a particular conditional distri-
bution (Basu et al., 2002). If X denotes the observed
data, Θ denotes the current estimate of the parameter
values of the mixture of Gaussians model and L de-
notes the missing data, then in the E-step the EM al-
gorithm computes the expected value of the complete-
data log-likelihood log p(X ,L|Θ) over the conditional
distribution p(L|X ,Θ) (Bilmes, 1997). Maximizing
the complete data log-likelihood under the assump-
tions specified above can be shown to be equivalent
to minimizing the K-Means objective function. In the
Euclidean K-Means formulation, the distance between
a point xi and its corresponding cluster centroid µli

is
calculated using the square of the Euclidean distance
‖xi − µli

‖2 = (xi − µli
)T (xi − µli

). This measure of
distance is a direct consequence of the identity covari-
ance assumption of the underlying Gaussians.

2.2. Semi-supervised Clustering with

Constraints

In a semi-supervised clustering setting, a small amount
of labeled data is available to aid the unsupervised
clustering process. For pairwise constrained cluster-
ing, we consider a framework that has pairwise must-
link and cannot-link constraints (with an associated
cost of violating each constraint) between points in a
dataset, in addition to having distances between the

2K disjoint subsets of X , whose union is X

points (Wagstaff et al., 2001). Supervision in the form
of constraints is generally more practical than provid-
ing class labels in the clustering framework, since true
labels may be unknown a priori, while a human expert
can easily specify whether pairs of points belong to the
same cluster or different clusters.

Since K-Means clustering cannot handle pairwise con-
straints explicitly, we formulate the goal of clustering
in the pairwise constrained clustering framework as
minimizing a combined objective function, which is
defined as the sum of the total square distances be-
tween the points and their cluster centroids and the
cost of violating the pairwise constraints. The mathe-
matical formulation of this framework is motivated by
the metric labeling problem and the generalized Potts
model (Kleinberg & Tardos, 1999; Boykov et al., 1998).

In the pairwise constrained clustering framework, let
M be the set of unordered must-link pairs such that
(xi,xj) ∈ M implies xi and xj should be assigned
to the same cluster, and C be the set of unordered
cannot-link pairs such that (xi,xj) ∈ C implies xi

and xj should be assigned to different clusters. Let
W = {wij} and W = {wij} be two sets that give
the weights corresponding to the must-link constraints
in M and the cannot-link constraints in C respec-
tively. Let dM and dC be two metrics that quantify the
cost of violating must-link and cannot-link constraints:
dM (li, lj) = � [li 6= lj ] and dC(li, lj) = � [li = lj ], where

� is the indicator function ( � [true] = 1, � [false] =
0) and li are the cluster labels. Using this model, the
problem of pairwise constrained clustering under must-
link and cannot-link constraints is formulated as min-
imizing the following objective function, where point
xi is assigned to the partition Xli with centroid µli

:

Jpckm =
∑

xi∈X

‖xi − µli
‖2 +

∑

(xi,xj)∈M

wij � [li 6= lj ]

+
∑

(xi,xj)∈C

wij � [li = lj ] (1)

We will refer to this model as the pairwise constrained
K-Means (PC-KMeans) model.

2.3. Semi-supervised Clustering via Metric

Learning

Another avenue for utilizing labeled data involves
adapting the distance metric employed by the clus-
tering algorithm. Intuitively, this allows capturing the
user’s view of which objects should be considered sim-
ilar and which dissimilar. Since the original data rep-
resentation may not be embedded in a space where
clusters are sufficiently separated, modifying the dis-
tance metric transforms the representation so that dis-



tances between same-cluster objects are minimized,
while distances between different-cluster objects are
maximized. As a result, clusters discovered using the
learned distance metrics adhere more closely to the no-
tion of similarity expressed by the labeled data than
the clusters obtained using untrained distance metrics.

Following previous work (Xing et al., 2003), we
can parameterize Euclidean distance with a sym-
metric positive-definite weight matrix A as follows:

‖xi − xj‖A =
√

(xi − µli
)T A(xi − µli

). If A is re-

stricted to be a diagonal matrix, then it scales each
axis by a different weight and corresponds to fea-
ture weighting; otherwise new features are created
that are linear combinations of the original features.
In our clustering formulation, using the matrix A is
equivalent to considering a generalized version of the
K-Means model described in Section 2.1, where all
the Gaussians have a covariance matrix A−1 (Bilmes,
1997).

It can be easily shown that maximizing the complete
data log-likelihood under this generalized K-Means
model is equivalent to minimizing the objective func-
tion:

Jmkmeans =
∑

xi∈X

‖xi − µli
‖2
A
− log(det(A)) (2)

where the second term arises due to the normalizing
constant of a Gaussian with covariance matrix A−1.

2.4. Unifying Constraints and Metric Learning

in Clustering

Previous work on semi-supervised clustering (Cohn
et al., 2000; Xing et al., 2003) that used labeled data
for learning a metric only utilized the pairwise con-
straint information to learn weights that minimize con-
straint violations. We propose to incorporate met-
ric learning directly into the clustering algorithm in
a way that allows unlabeled data to influence the met-
ric learning process along with pairwise constraints.

Combining objective functions (1) and (2) leads to the
following objective function that attempts to minimize
cluster dispersion under a learned metric along with
minimizing the number of constraint violations:

Jcombined =
∑

xi∈X

‖xi − µli
‖2
A

+
∑

(xi,xj)∈M

wij � [li 6= lj ]

+
∑

(xi,xj)∈C

wij � [li = lj ] − log(det(A)) (3)

If we assume uniform weights wij and wij , as tradi-
tionally done in the generalized Potts model (Boykov

et al., 1998), one problem with this objective func-
tion would be that all constraint violations are treated
equally. However, the cost of violating a must-link
constraint between two close points should be higher
than the cost of violating a must-link constraint be-
tween two points that are far apart. Such cost as-
signment reflects the intuition that it is a “worse er-
ror” to violate a must-link constraint between similar
points, and such an error should have more impact
on the metric learning framework. Multiplying the
weights wij with the penalty function fM (xi,xj) =
max(αmin, αmax − ‖xi − xj‖

2
A

) gives us the overall
cost of violating a must-link constraint between two
points xi and xj , where αmin and αmax are non-
negative constants that correspond to minimum and
maximum penalties respectively. They can be set as
fractions of the square of the maximum must-link dis-
tance max(xi,xj)∈M ‖xi−xj‖

2, thus guaranteeing that
the penalty for violating a constraint is always posi-
tive. Overall, this formulation enables the penalty for
violating a must-link constraint to be proportional to
the “seriousness” of the violation.

Analogously, the cost of violating a cannot-link con-
straint between two distant points should be higher
than the cost of violating a cannot-link constraint be-
tween points that are close, since the former is a “worse
error”. Multiplying weights wij with fC(xi,xj) =
min(αmin + ‖xi − xj‖

2
A

, αmax) allows us to take the
“seriousness” of the constraint violation into account.
The combined objective function then becomes:

Jmpckm =
∑

xi∈X

‖xi − µli
‖2
A
− log(det(A))

+
∑

(xi,xj)∈M

wijfM (xi,xj) � [li 6= lj ]

+
∑

(xi,xj)∈C

wijfC(xi,xj) � [li = lj ] (4)

The weights wij and wij provide a way to specify the
relative importance of the unlabeled versus labeled
data while allowing individual constraint weights.
This objective function Jmpckm is greedily optimized
by our proposed metric pairwise constrained K-Means
(MPC-KMeans) algorithm that uses a K-Means-type
iteration.

3. Algorithm

Given a set of data points X , a set of must-link con-
straints M, a set of cannot-link constraints C, cor-
responding weight sets W and W , and the number
of clusters to form K, metric pairwise constrained K-
Means (MPC-KMeans) finds a disjoint K partition-
ing {Xh}

K
h=1 of X (with each partition having a cen-

troid µh) such that Jmpckm is (locally) minimized.



The algorithm MPC-KMeans has two components.
Utilizing constraints during cluster initialization and
satisfaction of the constraints during every cluster as-
signment step constitutes the search-based component
of the algorithm. Learning the distance metric by re-
estimating the weight matrix A during each algorithm
iteration based on current constraint violations is the
similarity-based component.

Intuitively, the search-based technique uses the pair-
wise constraints to generate seed clusters that initialize
the clustering algorithm, and also uses the constraints
to guide the clustering process through the iterations.
Seeds inferred from the constraints bias the cluster-
ing towards a good region of the search space, thereby
possibly reducing the chances of it getting stuck in
poor local optima, while a clustering that satisfies the
user-specified constraints is produced simultaneously.

The similarity-based technique distorts the metric
space to minimize the costs of violated constraints,
possibly removing the violations in the subsequent it-
erations. Implicitly, the space where data points are
embedded is transformed to respect the user-provided
constraints, thus capturing the notion of similarity ap-
propriate for the dataset from the user’s perspective.

3.1. Initialization

To generate the seed clusters during the initializa-
tion step of MPC-KMeans, we take the transitive
closure of the must-link constraints (Wagstaff et al.,
2001) and augment the set M by adding these entailed
constraints, assuming consistency of the constraints.
Let the number of connected components in the aug-
mented set M be λ. These λ connected components
are used to create λ neighborhood sets {Np}

λ
p=1, where

each neighborhood set consists of points connected by
must-links from the augmented set M. For every pair
of neighborhoods Np and Np′ that have at least one
cannot-link between them, we add cannot-link con-
straints between every pair of points in Np and Np′

and augment the cannot-link set C by these entailed
constraints. We will overload notation from this point
and refer to the augmented must-link and cannot-link
sets as M and C respectively.

Note that the neighborhood sets Np, which contain the
neighborhood information inferred from the must-link
constraints and are unchanged during the iterations of
the algorithm, are different from the partition sets Xh,
which contain the cluster partitioning information and
get updated at each iteration of the algorithm.

After this preprocessing step, we get λ neighborhood
sets {Np}

λ
p=1. These neighborhoods provide a good

initial starting point for the MPC-KMeans algo-

rithm. If λ ≥ K, where K is the required number of
clusters, we select the K neighborhood sets of largest
size and initialize the K cluster centers with the cen-
troids of these sets. If λ < K, we initialize λ cluster
centers with the centroids of the λ neighborhood sets.
We then look for a point x that is connected by cannot-
links to every neighborhood set. If such a point exists,
it is used to initialize the (λ + 1)th cluster. If there
are any more cluster centroids left uninitialized, we
initialize them by random points obtained by random
perturbations of the global centroid of X .

3.2. E step

MPC-KMeans alternates between cluster assignment
in the E-step, and centroid estimation and metric
learning in the M-step (see Figure 1).

In the E-step of MPC-KMeans, every point x is as-
signed to a cluster so that the sum of the distance of
x to the cluster centroid and the cost of constraint vi-
olations possibly incurred by this cluster assignment
is minimized. Note that this assignment step is order-
dependent, since the subsets of M and C associated
with each cluster may change with the assignment of a
point. In the cluster assignment step, each point moves
to a new cluster only if the component of Jmpckm con-
tributed by this point decreases. So when all points
are given their new assignment, Jmpckm will decrease
or remain the same.

3.3. M step

In the M-step, the cluster centroids µh are first re-
estimated using the points in Xh. As a result, the
contribution of each cluster to Jmpckm is minimized.
The pairwise constraints do not take in part in this
centroid re-estimation step because the constraints are
not an explicit function of the centroid. Thus, only the
first term (the distance component) of Jmpckm is min-
imized in this step. The centroid re-estimation step
effectively remains the same as K-Means.

The second part of the M-step is metric learning,
where the matrix A is re-estimated to decrease the
objective function Jmpckm. The updated matrix A is

obtained by taking the partial derivative
∂Jmpckm

∂A
and

setting it to zero, resulting in:

A =

(

∑

xi∈X

(xi − µli
)(xi − µli

)T

−
∑

(xi,xj)∈M∗

wij(xi − xj)(xi − xj)
T � [li 6= lj ]

+
∑

(xi,xj)∈C∗

wij(xi − xj)(xi − xj)
T � [li = lj ]

)−1



where M∗ and C∗ are subsets of M and C that exclude
the constraint pairs for which the penalty functions
fM and fC take the threshold values αmin and αmax

respectively. See Appendix A for the details of the
derivation.

Since estimating a full matrix A from limited train-
ing data is difficult, we limit ourselves to diagonal A,
which is equivalent to learning a metric via feature
weighting. In that case, the d-th diagonal element of
A, add, corresponds to the weight of the d-th feature:

add =

„

X

xi∈X

(xid − µlid)2 −
X

(xi,xj)∈M∗

wij(xid − xjd)2 � [li 6= lj ]

+
X

(xi,xj)∈C∗

wij(xid − xjd)2 � [li = lj ]

«−1

Intuitively, the first term in the sum,
∑

xi∈X
(xid −

µlid
)2, scales the weight of each feature propor-

tionately to the feature’s contribution to the over-
all cluster dispersion, analogously to scaling per-
formed when computing Mahalanobis distance. The
second two terms that depend on constraint viola-
tions, −

∑

(xi,xj)∈M∗ wij(xid − xjd)
2 � [li 6= lj ] and

∑

(xi,xj)∈C∗ wij(xid −xjd)
2 � [li = lj ], respectively con-

tract and stretch each dimension attempting to mend
the current violations. Thus, the metric weights are
adjusted at each iteration in such a way that the con-
tribution of different attributes to distance is equal-
ized, while constraint violations are minimized.

The objective function decreases after every cluster
assignment, centroid re-estimation and metric learn-
ing step till convergence, implying that the MPC-

KMeans algorithm will converge to a local minima
of Jmpckm.

4. Experiments

4.1. Methodology and Datasets

Experiments were conducted on several datasets from
the UCI repository: Iris, Wine, and representative
randomly sampled subsets from the Pen-Digits and
Letter datasets. For Pen-Digits and Letter, we chose
two sets of three classes: {I, J, L} from Letter and
{3, 8, 9} from Pen-Digits, sampling 20% of the data
points from the original datasets randomly. These
classes were chosen from the handwriting recognition
datasets since they intuitively represent difficult visual
discrimination problems.

We have used pairwise F-measure to evaluate the clus-
tering results. It is based on the traditional informa-
tion retrieval measures, adapted for evaluating cluster-
ing by considering same-cluster pairs:

Algorithm: m-PCKMeans

Input: Set of data points X = {xi}
N
i=1,

set of must-link constraints M = {(xi,xj)},
set of cannot-link constraints C = {(xi,xj)},
number of clusters K, sets of constraint weights W and W .

Output: Disjoint K partitioning {Xh}
K
h=1 of X such that

objective function Jmpckm is (locally) minimized.
Method:

1. Initialize clusters:
1a. create the λ neighborhoods {Np}

λ
p=1 from M and C

1b. sort the indices p in decreasing size of Np

1c. if λ ≥ K

initialize {µ
(0)
h }

K
h=1 with centroids of {Np}

K
p=1

else if λ < K

initialize {µ
(0)
h }

λ
h=1 with centroids of {Np}

λ
p=1

if ∃ point x cannot-linked to all neighborhoods {Np}
λ
p=1

initialize µ
(0)
λ+1 with x

initialize remaining clusters at random
2. Repeat until convergence

2a. assign cluster: Assign each data point xi to cluster h∗

(i.e. set X
(t+1)
h∗ ), for h∗ = arg min

h

(‖xi − µ
(t)
h ‖

2
A
− log(det(A))

+
∑

(xi,xj)∈M wijfM (xi,xj) � [h 6= lj ]

+
∑

(xi,xj)∈C wijfC(xi,xj) � [h = lj ])

2b. estimate means: {µ
(t+1)
h }Kh=1 ← {

1

|X
(t+1)
h

|

∑
x∈X

(t+1)
h

x}Kh=1

2c. update metric: A−1 =
∑

xi∈X (xi − µli
)(xi − µli

)T

−
∑

(xi,xj)∈M∗ wij(xi − xj)(xi − xj)
T � [li 6= lj ]

+
∑

(xi,xj)∈C∗ wij(xi − xj)(xi − xj)
T � [li = lj ]

2d. t← (t + 1)

Figure 1. MPC-KMeans algorithm

Precision =
#PairsCorrectlyPredictedInSameCluster

TotalPairsPredictedInSameCluster

Recall =
#PairsCorrectlyPredictedInSameCluster

TotalPairsInSameCluster

F − measure =
2 × Precision × Recall

Precision + Recall

We generated learning curves with 10-fold cross-
validation for each dataset to determine the effect of
utilizing the pairwise constraints. Each point in the
learning curve represents a particular number of pair-
wise constraints given as input to the algorithm. Unit
constraint weights W and W were used, since the
datasets did not provide individual weights for the
constraints. The maximum square distance between
must-link constraints was used as value for αmax, while
αmin was set to 0. The clustering algorithm is run on
the whole dataset, but the pairwise F-measure is cal-
culated only on the test set. Results were averaged
over 50 runs of 10 folds.

4.2. Results and Discussion

Figs.2-5 show learning curves for the four datasets.
For each dataset, we compared four semi-supervised
clustering schemes:
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Figure 2. Results on the Iris dataset
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Figure 3. Results on the Wine dataset
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Figure 4. Results on the Digits-389 dataset
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Figure 5. Results on the Letter-IJL dataset

• MPC-KMeans clustering, which involves both
seeding and metric learning in the unified frame-
work described in Section 2.4;

• m-KMeans, which is K-Means clustering with
the metric learning component described in Sec-
tion 3.3, without utilizing constraints for seeding;

• PC-KMeans clustering, which utilizes con-
straints for seeding the initial clusters and forces
the cluster assignments to respect the constraints
without doing any metric learning, as outlined in
Section 2.2;

• Unsupervised K-Means clustering.

On the presented datasets, the unified approach
(MPC-KMeans) outperforms individual seeding
(PC-KMeans) and metric learning (m-KMeans) ap-
proaches. The learning curves illustrate that providing
pairwise constraints is beneficial to clustering quality.

For the Wine and Letter-IJL datasets, the difference
between methods that utilize metric learning (MPC-

KMeans and m-KMeans) and those that do not
(PC-KMeans and regular K-Means) with no pairwise
constraints indicates that even in the absence of con-
straints, weighting features by their variance (essen-
tially using Mahalanobis distance) improves clustering
accuracy. For the Wine dataset, additional constraints
provide an insubstantial improvement in cluster qual-
ity on this dataset, which shows that meaningful fea-
ture weights are obtained from scaling by variance us-
ing just the unlabeled data.

Some of the metric learning curves display a character-
istic “dip”, where clustering accuracy decreases when
initial constraints are provided, but after a certain
point starts to increase and eventually outperforms the
initial point of the learning curve. We conjecture that
this phenomenon is due to the fact that feature weights
learned from few constraints are unreliable, while in-



creasing the number of constraints provides the met-
ric learning mechanism enough data to estimate good
metric parameters.

On the other hand, seeding the clusters with a small
number of pairwise constraints has an immediate pos-
itive effect on the final cluster quality, while providing
more pairwise constraints has diminishing returns, i.e.,
PC-KMeans learning curves rise slowly. When both
seeding and metric learning are utilized, the unified
approach benefits from the individual strengths of the
two methods, as can be seen from the MPC-KMeans

results.

Overall, our results indicate that the unified approach
to utilizing pairwise constraints in clustering outper-
forms using seeding and metric learning individually
and leads to improvements in cluster quality.

5. Future Work

Extending our approach to high-dimensional datasets
like text, where Euclidean distance performs poorly, is
the primary avenue for future research. We are cur-
rently working on a formulation that utilizes an objec-
tive function similar to Jmpckm for spherical K-Means
(Dhillon & Modha, 2001). The weight matrix A is
likely to be singular for high-dimensional data; such a
scenario could be handled by regularization.

Comparing our unified approach to other search-based
and similarity-based techniques, e.g., those of (Xing
et al., 2003) and (Cohn et al., 2000), is another area
for future work. We are also planning to incorporate
active selection of pairwise constraints in a framework
similar to (Basu et al., 2003) with our proposed ap-
proach.

In some situations, obtaining data labels directly in-
stead of pairwise constraints may be possible. While it
is possible to infer pairwise constraints in such scenar-
ios from the labels, the number of pairwise constraints
grows quadratically with the amount of labeled data,
making training on the entire set of pairwise con-
straints intractable. In such scenarios, sampling mech-
anisms for selecting a small number of meaningful
pairwise constraints are an interesting topic for future
work.

6. Conclusions

This paper has presented a new approach to semi-
supervised clustering that unifies the previous search-
based and similarity-based methods. We have pre-
sented a general formalization of the semi-supervised
learning problem that has allowed us to develop a vari-

ation of the standard K-Means clustering algorithm
that uses supervised data both as seeds and constraints
during search, as well as for adapting the underlying
distance metric. By ablating the individual compo-
nents of this unified approach, we have experimentally
compared the individual approaches to each other and
to their combination. When only small amounts of su-
pervised data are used, the search-based approach pro-
duces more accurate clusters than the similarity-based
approach. By combining the advantages of both tech-
niques, the unified approach generally performs better
than either of the approaches individually.
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A. Appendix

Given the objective function:

Jmpckm =
∑

xi∈X

‖xi − µli
‖2
A
− log(det(A))

+
∑

(xi,xj)∈M

wijfM (xi,xj) � [li 6= lj ]

+
∑

(xi,xj)∈C

wijfC(xi,xj) � [li = lj ]

we obtain the M-step updates for cluster centroids
{µh}

K
h=1 and metric parameterization matrix A by

taking the partial derivatives of Jmpckm and setting
them to zero. We use the following properties from
linear algebra:

1. xT Ax = tr(AxxT )

2. ∂
∂A

tr(AB) = B + BT − diag(B)

3. ∂
∂A

log(det(A)) = 2A−1 − diag(A−1)

4. 2A = diag(A) ⇒ A = 0

Following is the derivation for estimating the cluster
centroids µh and the weight matrix A:

∂Jmpckm

∂µh

= 0 ⇒ µh =

∑

xj∈Xh
xj

|Xh|

∂Jmpckm

∂A
= 0 ⇒

⇒
∂

∂A

[

∑

xi∈X

tr(A(xi − µli
)(xi − µli

)T )

+
∑

(xi,xj)∈M

wij max(αmin,

αmax − tr(A(xi − xj)(xi − xj)
T )) � [li 6= lj ]

+
∑

(xi,xj)∈C

wij min(αmax,

αmin + tr(A(xi − xj)(xi − xj)
T )) � [li = lj ]

− log(det(A))

]

= 0 (by Prop.1)

⇒ 2

[

∑

xi∈X

(xi − µli
)(xi − µli

)T

−
∑

(xi,xj)∈M∗

wij(xi − xj)(xi − xj)
T � [li 6= lj ]

+
∑

(xi,xj)∈C∗

wij(xi − xj)(xi − xj)
T � [li = lj ] − A−1

]

= diag

[

∑

xi∈X

(xi − µli
)(xi − µli

)T

−
∑

(xi,xj)∈M∗

wij(xi − xj)(xi − xj)
T � [li 6= lj ]

+
∑

(xi,xj)∈C∗

wij(xi − xj)(xi − xj)
T � [li = lj ]

−A−1

]

(by Prop.2 and Prop.3)

⇒ A−1 =
∑

xi∈X

(xi − µli
)(xi − µli

)T

−
∑

(xi,xj)∈M∗

wij(xi − xj)(xi − xj)
T � [li 6= lj ]

+
∑

(xi,xj)∈C∗

wij(xi − xj)(xi − xj)
T � [li = lj ] (by Prop.4)


