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GOALS
Existing visual classifiers can recognize hundreds of cat-
egories of objects. Can we describe these objects in con-
text without paired image-caption training data?

Visual Classifiers. 

Existing captioners.
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NOC (ours): Jointly train on multiple 
sources with auxiliary objectives.
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init + train A horse standing in the dirt.

We propose Novel Object Captioner which can describe
objects unseen in paired image-caption data.

NOC KEY INSIGHTS
Train jointly on multiple data sources.
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1. Learn from unpaired data. Train visual CNN
on unpaired image data, and an LSTM Language
Model on unannotated text data.

2. Capture semantic similarity of words in the lan-
guage model using dense word embeddings.

3. Train jointly to describe novel objects. A vi-
sual recognition CNN, a language model, and an
image-caption model [1] are trained jointly on dif-
ferent data sources with shared parameters.

EVALUATION
We hold out a subset of data from COCO [2].

COCO Image-Caption DataCOCO Image Data

”An elephant galloping 
in the green grass”

”Two people playing 
ball in a field”

”Someone is about to 
eat some pizza”

Elephant, Galloping, 
Green, Grass

People, Playing, 
Ball, Field

Pizza

1. COCO Held-out dataset

2.

638 categories from ImageNet not mentioned in COCO.
52 classes with rare mentions (med∼5 images) in COCO.

MODEL
Share network parameters and train jointly on multiple data sources and with different objectives.
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TRAINING DATA
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In-Domain: COCO

bear, brown, field, 
grassy, trees, 

walking

A brown bear 
walking on a grassy 

field next to trees

In-Domain: COCO

Out of domain: 

impala

Out of domain: 
  UkWac, BNC,
  Wikipedia.

okapi dress

RESULTS

COCO (held-out) ImageNet

F1 (Utility): Ability to recognize and incorporate new words. METEOR: Fluency and sentece quality.

IMAGENET HUMAN EVAL.
Word Incorporation: Which model incorporates the
word (name of the object) in the sentence better?
Image Description: Which describes the image better?

Word Incorporation Image Description

43.78

25.74

6.10

24.37

40.16

59.84

Intersection (both DCC and NOC can caption): NOC
maintains descriptive quality but captions more objects.

EXAMPLES

A woman is posing for a 
picture with a chiffon dress.

A small pheasant is 
standing in a field.

A large chime hanging 
on a metal pole

NOC (ours): A plate of food with 
hollandaise sauce and vegetables.
DCC: A plate of food with a fork 
and a hollandaise.

NOC: A red and blue woollen 
yarn sitting on a wooden table.
DCC: A red and white cat 
sitting on top of a red woollen.

NOC: A man is standing on a 
green field with a scythe.
DCC: A small child is holding a 
small child on a skateboard.

A porpoise in a pool of water 
with a porpoise in the water.

A man gymnast in a blue shirt 
doing a trick on a skateboard.

A sunglass mirror reflection 
of a mirror in a mirror.

ER
R
O
R
S

A large building with a verandah 
and tropical plants in it.

A bowl filled with lots of 
lychee and lychee.

A man holding a lychee 
and lychee tree.

A okapi is in the grass 
with a okapi.

A large glacier with a 
mountain in the background.

A osprey flying over a 
large grassy area.
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