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Abstract 

The hyper-exponential growth of biological sequence data and complex queries 
demand new approaches of managing sequence databases where sequence data is 
preprocessed off-line and organized in data structures such that on-line queries can be 
executed quickly. Due to the complications of computing biological similarity based on 
local alignments, such index structures are typically constructed on q-grams (substrings 
of length q) and embody a three-way trade-off between speed, accuracy and scalability. 

The development of a biologically effective distance metric on amino-acid 
substitution, mPAM, permits this approach to be extended beyond direct nucleotide 
comparison to codon similarity and protein sequences. We consider the storage and 
retrieval of protein q-grams using a metric-space index structure, the MVP-tree. Using a 
controlled sequence homology benchmark, we evaluate the trade-off between sensitivity 
and selectivity as a function of speed and length of the q-grams. We conclude that the 
system only slightly penetrates the curse of dimensionality and can be expected to offer 
scalable performance. We will discuss our experimental results to show that the protein 
sequences can be indexed in metric space with accuracy and scalability.   
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1. Introduction 
The literature on biological sequence analysis speaks to two kinds of alignments, 

global alignment and local alignment, but only local alignment is of practical interest to 
biologists. A further challenge is that in most applications biologically interesting results 
must entail a model of sequence evolution. Distance models based on simple edit distance 
and Hamming distance form metric distance functions (metrics) among global alignments 
but are not effective evolutionary models. BLAST variants form a defacto-standard for 
computing local alignments. However, a BLAST search comprises a linear scan of a 
database of sequences. These issues, together with the growing volume of data, are the 
driving forces in the development of new methods of biosequence database management 
that comprise initializing a database of biosequences, off-line, in order to speed up the 
execution of on-line queries. This problem forms a rich research environment to 
investigate, with trade-offs between accuracy, scalability and speed.  
Definition 1 Global Alignment Problem: Given an alphabet, A, and a similarity 
substitution matrix, M, corresponding to an evolutionary model, the global alignment 
problem for two sequences s={ s1s2s3…sm|si∈A} , t={ t1t2t3…tn|ti∈A}  is to find strings �, 
�, which are obtained from s and t respectively by inserting spaces either into or at the 
ends of s and t, and whose score computed using M is at a maximum (for similarity 
measure) or minimum (for distance measure) over all pairs of such strings obtained from 
s and t.  
Definition 2 Local Alignment Problem: Given an alphabet A with a similarity 
substitution matrix M, corresponding to an evolutionary model, the local alignment 
problem for two sequences s = { s1s2s3…sm|si∈A} , t = { t1t2t3…tn|ti∈A}  is to find 
substrings  and  of s and t, respectively, whose similarity (optimal global alignment) 
value is maximum over all pairs of substrings from s and t. (Gusfield, 1997)  

In this work we investigate the use of metric-space index methods to accelerate 
protein-sequence retrieval. Since the similarity of nucleotide sequences is often 
determined by considering the similarity of putative proteins encoded by such genetic 
sequences, the results are important for genomic databases as well. 
Definition 3 Metric Space Metric space is a set of objects with a binary distance 
function, d, satisfying the following conditions for every three objects x, y & z (Chavez et 
al., 2001): 

i. d(x,y) ≥ 0 and d(x,y) = 0 iff x = y;      (Positivity) 
ii. d(x,y) = d(y,x);                                    (Symmetry) 
iii. d(x,z) + d(y,z) ≥ d(x,y).                       (Triangle Inequality) 

The merit of metric-space indexing is that the triangle inequality may be 
leveraged to safely rule out the similarity of the query object with a large number of 
objects by computing a single distance between a query object and a well chosen data 
object. Metric-space indexing exploits the intrinsic clustering of a dataset and can prune a 
search space without regard to a mapping of the data to a coordinate system (Chavez et 
al., 2001). It is clear from an abundance of bioinformatics discoveries that biological data 
is not random and exhibits interesting structure with respect to clustering, a necessary 
properties for metric space indexing (Linial et al., 1999; Brin 1994). 

A primary challenge of this approach is that established biological models of 
similarity, PAM and BLOSSUM, do not form metrics (Dayhoff et al., 1978; Henikoff and 
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Henikoff, 1992). Most biological similarity models are derived from probabilistic methods 
that reward more similar features with greater positive numbers and are difficult to 
algebraically transform into metrics. Even given a metric for global-alignment, local 
alignment still does not form metric. Consider the optimal local alignment among three 
sequences, R, S and T. The ordered set of subsequences, representing an optimal local 
alignment of sequences S and T could be completely disjoint from those for R and T. If 
so, we cannot make any statement concerning the relatedness of R and S without 
comparing R with S.  

One approach for finding useful optimal local alignments, likely inspired by 
BLAST, is to divide the sequences in a sequence database into substrings of length q, 
called q-grams, and similarly divide the query sequence into q-grams. A global alignment 
is resolved among the q-grams. Those results were then used to determine a local 
alignment. In BLAST, matching q-grams (hot-spots) between the query and database are 
found through a sequential scan of the database. For sequences with a sufficient number 
of matching q-grams, those q-grams can be chained together to form a complete local 
alignment (Gusfield, 1997).  By dividing the database into q-grams, which BLAST does 
not do, the database may be structured using an index. 

Some systems, such as the SST and BLAT systems, have made progress by 
structuring nucleotide databases in this manner (Giladi et. al., 2002; Kent, 2002). 
However, these approaches use Hamming distance and simple edit distance, respectively. 
Initial success was achieved by targeting the sequence assembly problem where 
evolutionary criteria are unimportant. Subsequently these systems are being effectively 
applied to genomic analysis problems whose data is limited to sequences from 
evolutionarily close organisms (Rouchka et al., 2002).  

In our previous work, we revisited the mathematics used to derive the PAM family 
of amino acid substitution matrices (Point accepted mutation model). Starting from the 
original raw data, in-lieu of computing the frequency of substitutions, we computed the 
expected time between substitutions. The resulting weight matrix, mPAM, forms an 
evolutionary metric on the amino acid alphabet. Using the Smith-Waterman algorithm for 
computing local-alignments, we validated that the mPAM matrix produces biologically 
effective results (Xu and Miranker, 2003). 

It follows from Sellers theorem, that if the mPAM weighting/substitution matrix is 
used to compute the global alignment of amino acid sequences, then the global alignment 
forms a metric (Sellers 1974). Consequently, amino-acid q-grams may now be organized, 
off-line, in metric-space index structures such that evolutionary criteria can be used to 
quickly determine q-gram matches. Following we describe the construction and 
performance of a tree based index structure, the MVP-tree (Bozkaya and Ozsoyglu, 1997), 
for matching q-grams of protein sequences using global alignment as a distance function 
parameterized by mPAM. This improves on  similar work where only exact or near exact 
matching q-grams can be found.  The index supports range searches returning all q-grams 
in a neighborhood of radius r centered on the query q-gram. The q-grams returned from 
range queries can be used to compute local alignments. The trade-off among speed, 
selectivity and sensitivity is directly affected by the length of the q-gram, q, and 
searching radius, r. By sensitivity, we mean the ability to identify all true positive hits on 
a query sequence. By selectivity, we mean the ability to filter out false positive hits 
during initial q-grams searching. Low selectivity will directly increase the workload for a 
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successive chaining algorithm, while low sensitivity will decrease the accuracy of results. 
In general, longer q-grams increase selectivity but imply larger radius searches. Larger 
radius searches increase sensitivity but decrease selectivity. We have conducted a set of 
experiments for empirical analysis to determine optimal parameter selection. Our results 
show that the protein sequences can be effectively indexed in metric space with 
comparable accuracy to basic BLASTp and scalable performance. 

2. Related Work 

 Recently several efforts have focused on building scalable offline sequence 
database index structures to support faster online search. The ED-tree, an index structure 
designed for homology searches on a DNA sequence database, shows 6 times the speed 
of BLASTn (Tan et al., 2003). The SST algorithm partitioned each sequence into 
overlapping q-grams and mapped those q-grams to a vector space. Similarity was 
measured as the Hamming distance between vectors. A tree-structure index was built by 
k-means clustering and vector quantization to achieve O(nlogm) scalability, where n is 
the length of the query sequence and m is the length or size of the database (Giladi et.al., 
2002). Giladi et. al. report an SST execution speed 27 times the execution speed of 
BLAST2 for sequence assembly on databases of 120,000 nucleotides and estimate a 200 
fold speed-up over BLAST2 on mega-base-pair databases. BLAT claimed a speed 40 
times faster than WU_BLASTX, based on simple edit distance supported by hashing to 
achieve O(n) scalability using O(m) memory (Kent, 2002).  

The primary goal of all of these approaches is to improve the speed of search for 
matching q-grams. Whether stated directly, as in the ED-tree, or indirectly, as in SST and 
BLAT, these methods can also be used in heuristic algorithms to deduce a local 
alignment from the returned q-grams. Tree based index structures can offer a scalable, 
O(log(N)) performance for q-gram searching. The popular homology sequence search 
tool, BLAST, begins with a linear scan of the database, O(N), to construct the hot-spot 
index of exact matches, followed by a heuristic extending algorithm to approximate the 
local alignment result. The expected time complexity of BLAST comprises three parts: 
aW for generating W q-grams within neighborhood of the q-gram in query, bN for 
scanning database with N residues for exactly matches, and cNW/20w for extending hits. 
(Altschul et al., 1990).  

Although SST and BLAT can be applied to protein sequences, the actual feasibility 
is severely restricted. First, the alphabet size of peptides is much larger than the alphabet 
size of nucleotide sequences. Second, both algorithms determine exact or near-exact 
fragment matches. Finally, important popular evolutionary models for peptides, PAM and 
BLOSUM, are formulated as log-odds matrices, which violate all of the metric properties. 

The doubling time of the sequence content of GenBank has shrunk from 18 months 
to 15 months and its rate of growth continues to accelerate (Benson et al., 2002). Hence, 
the volume of biological sequence data is growing faster than Moore’s law (Patterson and 
Hennessy, 1996) and it has now reached a rate of growth that ensures a widening gulf 
between computer capacity and biological computing requirements. In addition to the 
scale of data, the workload of queries is also increasing dramatically. For example, one 
needs to run millions of searches to compare two genomes. The consequent degradation 
in the performance and increasing demands require investigation into search methods that 
organize the database off-line in order to speed on-line search. 
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3. Algorithms and Implementation 
Our homology search algorithm modifies a general framework for computing 

local-alignments by matching q-grams first proposed and analyzed by Myers, 
contemporaneously with the development of BLAST (Wu et al., 1990; Myers, 1994).  
We will refer to the precise algorithm as Myers94. Our algorithm is as follows:  

Build Index Structure (off-line):   
1) Divide the sequences to be indexed into a set of overlapping substrings of length q, 

with step size 1.   
2) Build an index structure D using weighted Hamming distance to support fast 

online range query. 
Homology Search Query (on-line): 
1) Divide query string W into a set of overlapping substrings, F={ wi| i=0..|W|-q} , of 

length q with step size 1.   
2) For each wi in F, run range query Q(wi, r) against database D to find a set of 

matching q-grams, Ri={ f i,j | d(f i,j, wi)<=r, f i,j∈D wi∈F } , where d is the distance 
function.  

3) Using a greedy heuristic algorithm to extend and chain all fragments in 
R0UR1U…URW-T to deduce the result of homology search based on local 
alignment for query W. 

The primary change to Myers94 that we investigate in this paper is that, by virtue 
of the metric-space index for each query fragment, we are able to look-up, on-line, all 
matching q-grams in the database within a neighborhood of radius r.  In Myers94 the off-
line index is constructed to support exact matching of fragments. In the on-line phase for 
each q-gram of the query sequence, Myers94 generates every possible q-gram within 
similarity distance r.  For each generated q-gram the index is used to determine which q-
grams in the database, if any, match the query q-grams. In other words, we replace 
Myers’  generate and test method with a more powerful index that directly finds matching 
fragments. We note that BLAST uses the similar neighborhood generating method as 
Myers94. In BLAST, since similarity is used to characterize the neighborhood, the 
triangle inequality is absent and a direct index-lookup for q-grams cannot be done using 
metric-indexing methods. Thus, our entire approach was predicated on achieving the 
mPAM result. Also, the average-case complexity analysis of Myers94 is dominated by 
the number of matches found in the index, not the number of fragments in the generated 
neighborhood. Thus, this improvement, by itself, does not let us improve upon the formal 
algorithmic analysis. Last but not least, the algorithmic framework illustrated above 
includes several other simplifications on Myers94. These simplifications, detailed later, 
represent performance enhancing extensions that we leave for future work.  

Since we focus on the searching phase in this paper, we only detail our algorithms 
used for searching fragments. Our implementation for chaining is essentially equivalent 
to Gusfield’s chaining and thus will not be detailed (Gusfield, 1997). 
3.1 MVP-tree Index Structure  

Algorithm designers have leveraged the triangle inequality to produce entire 
classes of data structures to speed up metric-space search (Chavez et al., 2001). The 
“metric tree”  and “generalized-hyperplane tree”  (GHT) were proposed as tree structures 
for continuous distance functions in 1991 (Uhlmann, 1991). Later the GHT was extended 
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to GHT in m dimensions (Brin 1995). A more detailed effort on the “metric tree,”  
detailed vantage point trees (VPT), followed (Yianilos, 1993). There are several 
derivatives of VPT, such as MVPT (Bozkaya and Ozsoyglu, 1997, 1999), and VPF with 
time complexity O(n1-plogn) (Yianiols, 1999). Another algorithm, SAT, or spatial 
approximation tree, has approximately O(n 1-

�
(1/loglogn)) at query time (Navarro, 1999). 

In preliminary work we implemented three methods of a metric-space index, one 
for each of the three major categories of metric-space index structure: vantage-point, 
generalized-hyperplane and bounding spheres. We determined that for biological 
sequence data the vantage-point method was superior. 

  Although our implementation remains in main-memory we organized our node 
structures and initialization algorithm in a manner consistent with disk-mapped storage 
structures in anticipation of integrating this into MoBIoS, (Molecular Biological 
Information System), a next-generation database management system exploring the 
application of metric-space indexing for life-science data in general (Miranker et al., 
2003). In our implementation, the MVP-tree is built recursively from the root. For each 
level, we first select m points as vantage points using the farthest first traversal algorithm 
(Hochbaum and Shmoys, 1985). For each vantage point, we select n – 1 distances, split 
points which partition the data into n evenly sized partitions. Hence, the fanout for each 
level is nm. This process is continued until the partitions are sized such that a leaf node 
fits into a disk page. The typical node structure of a multi-vantage-point tree is shown in 
Figure1.  

Our node structure is implemented differently from the original MVP node 
structures proposed by Bozkaya et al. First, we set the size of each leaf node to be the 
same as the disk page size, so each node access will take exactly one disk I/O operation if 
it is not already buffered in memory. Second, for each data object in a leaf node we do 
not store a list of distances between itself and each vantage point in its parent.  Such a list 
can save the distance calculations when searching a leaf node, but also requires a larger 
amount of storage space. Since we fix our leaf node size as a disk page, the extra storage 
required could increase the depth of the tree and, in anticipation of disk-based 
implementation, increase disk reads.  

Figure 1 Vantage point tree structure 

VP1 
d1,n 

d1,1 VP2 d2,1 

d2,n 

 child1 ... childn 
VP1 d1,1 [min,max] … d1,n [min,max] 
… … … … 

VPn dn,1 [min,max] … dn,n [min,max] 
(a) Internal node 

 child1 ... childn 
VP1 d1,1 … d1,n 
… … … … 

VPn dn,1 … dn,n 
(b) Leaf node 
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The precise form of the bounding predicates in an MVP-tree is: P([V i, rmin, i, rmax, 

i ]). Specifically, the predicate requires that, for each vantage point V i, the distance from 
V i to any data object in the sub-tree of the node is within the range [rmin, i, rmax, i]. We refer 
the reader to Bozkaya and Ozsoyoglu for detail of the search process (Bozkaya and 
Ozsoyglu, 1997,1999). 
3.2 Distance Function 

The key result of this section is that in the context of matching short overlapping q-grams, 
weighted Hamming distance yields the same matches as global alignment.  Thus, we can 
replace an O(n2) calculation for an O(n) calculation.  Although the use of an index 
structure substantially reduces the total number of distance calculations, distance 
calculations remain as the performance bottleneck.  

Definition 4 Substitution Cost Function The substitution cost function, M(x,y),  where 
x and y are symbols from an alphabet, A, returns a nonnegative real number modeling the 
cost of substituting the sequence element x with the element y.  Substitution weights are 
usually encoded in a substitution weight matrix; Where ‘_’  denotes the gap, M(x,_) or 
M(_, x)  returns gap penalty g.    

Definition 5 Global Alignment Distance Function Given substitution cost function 
M(x,y), and two sequences A: a1a2…an and B: b1b2…bn,, where x, y, ai and bi are drawn 
from an alphabet A, the global alignment distance function GD(A, B)  is defined as  

  GD(A,B)=Gn+1,n+1 

  where G is an n+1 x n+1 matrix and  
G0,i= g* i  for i=0…n+1, 
Gj,0= g* j for j=0…n+1, and 
Gi,j = Min( Gi-1,j-1+M(ai, bi),    for i,j  0  
        Gi-1,j+M(ai, _), 
        Gi,j-1+M(_, bi))   

 The global alignment distance calculation is adapted from the Needleman-
Wunsch global alignment algorithm, which was proposed for similarity measure. The 
same algorithm can also be used for distance measure with minor variation. The time 
complexity for global alignment distance is O(n2) (Needleman and Wunsch, 1970). 

Sellers showed that if the substitution cost function forms a metric, then the 
optimal global alignment distance over sequences drawn from the same alphabet is also a 
metric (Sellers, 1974). A degenerate case of this is where the substitution cost function 
amounts to the identity matrix. Then optimal global alignment becomes equivalent to the 
simple edit distance function, which is well known to be a metric. Since our substitution 
cost function, defined using mPAM, satisfies metric distance properties, the computed 
global alignment distances also form a metric.  

Definition 6 Weighted Hamming Distance Given substitution cost function M(x,y), and 
two sequences A: a1a2…an and B: b1b2…bn,, where x, y, ai and bi are drawn from an 
alphabet A,  the weighted Hamming distance function SD(A, B)  is defined as  

  SD(A,B)= 
i=1
Σ
n

M(ai,bi)  
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Definition 7 Range Query Given a set of objects O and a distance function d(a,b), range 
query Qd(q,r) returns a set of objects { o∈O | d(o,q) r} . 

   If, under certain conditions, the global alignment distance is always the same as 
the weighted Hamming Distance, the global alignment distance can then be replaced by a 
weighted Hamming Distance computation for the same range query. Due to frequent 
distance computations during a range query, weighted Hamming distance computation 
can save a significant amount of query time, since weighted Hamming distance only 
requires O(n) computation time.  

Lemma 1 Given a substitution cost function M, a set of q-grams O, and a radius r, for all 
queries q∈O, if r 2g-1 then QSD(q,r)=QGD(q,r), where g is the gap penalty from 
substitution cost function used in both SD and GD. 
Proof:  

From the definition of the global alignment problem, it is trivial to show that the 
following two properties hold:  

P1.  GD(x,y)  SD(x,y) for any x, y  
P2. GD(x,y) = SD(x,y), if there is no space insertion to form optimal global 

alignment. 
a) Assume there is a q-gram o ∈ O, such that o∈ QSD(q,r) and o∉QGD(q,r). 

By range query definition, SD(o, q) r. P1 implies that GD(o,q)  SD(o, q) r. So 
o must be in QGD(q,r), which contradicts the assumption that o∉QGD(q,r). Hence, if o∈ 
QSD(q,r), QSD(q,r)⊆ QGD(q,r). 
b) Assume there is a q-gram p ∈ O, such that p∈ QGD(q,r) and p∉QSD(q,r) when r 2g-1,  

The assumption indicates that QSD(q,r) > r > 2g-1  QGD(q,r). Since 2g-1  
QGD(q,r), there muse be no space inserted into either p or q to form the optimal global 
alignment. Otherwise GD(p,q)  2g. From P2, it follows that GD(p,q) = SD(p,q) and p ∈ 
QSD(q,r), which contradicts the assumption p∉QSD(q,r). Hence, if p∈QGD(q,r), then 
p∈QSD(q,r) i.e. QGD(q,r)⊆ QSD(q,r) when r 2g-1. 
Therefore, from a) and b), QSD(q,r)=QGD(q,r) when r 2g-1. ���� 

 Based on many biological models, the gap penalty, which corresponds to the cost 
of insertion or deletion, is bigger than any mismatch score, which corresponds to the cost 
of substitution (Gusfield, 1997). So radius of 2g-1 is quite a large radius for a short q-
gram. In the course of our experiments we observed there was no need to perform any 
range queries with a radius bigger than 2g-1. We promptly moved to weighted Hamming 
distance and witnessed precisely a factor of q improvement in execution times.  
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4. Experiment Results 
The primary variables of our empirical analysis are the length of the q-gram and the 

radius of the search. We show that an MVP-tree provides scalable search.  With the goal 
of producing an effective system, we assess how the choice of q-gram length and 
neighborhood radius impacts raw speed and accuracy. 

4.1 Workload and Methodology  

To assess sensitivity, we use an accuracy benchmark suite curated and furnished by 
NCBI (ftp.ncbi.nlm.nih.gov/pub/impala/blastest). The data set contains 6433 yeast 
protein sequences (about 2,892,155 residues). The query set contains 103 sequences 
whose true positive hits have been identified by human experts and whose curation is 
continually refined (Schaffer et al., 2001). The benchmark suite was downloaded in 
August 2002. The tests were conducted using Java 1.4 for Linux (SUSE 8.0; dual 
AMDXP 1800+ processors with 2GB memory).  

For each query sequence s of length k, we divided s into a set of q-grams, { f i| 
i=1..k-q+1} , referred to as query fragments. We collected the results from the range 
query QSD(f i,r) for all i and used a chaining algorithm to form final answers (Joseph et al., 
1992). To control trade-off issues, as they may be influenced by the heuristics of the 
chaining algorithm, we exhaustively considered all of the returned q-grams. Since this 
paper focuses on the parameterization of the searching stage, we will not discuss the 
chaining algorithm, which is also a very important and complex problem in homology 
search. All of the timing results, unless otherwise noted, are time for the q-gram look up 
and do not include time spent on the chaining algorithm.  

We use receiver-operating characteristic (ROC) scores to measure the accuracy of 
the search result (Gribskov and Robinson, 1996). For each query, the ROC50 value is 
computed by comparing the result list with the list of true positive hits. The ROC50 value 
has been computed as follows: 

     ROCn = 
1

nT 
i=1
Σ
n

ti                                                    (1) 

where ti is the number of true positive hits ranked ahead of the ith false positive, and T is the total 
number of true positives. 

4.2 Choice of Fragment Length and Search Radius 
We tested the effect of various parameters and the hypothesis that there is an 

optimal setting which best trades off between accuracy and speed. There are many 
parameters whose values have impact on  the performance of algorithms. Among those, 
the length of the q-gram and search radius are the two most important parameters, since 
they impact the number of q-gram searches and results independent of data structure. For 
a given fragment length, a larger radius results in higher sensitivity and lower selectivity. 
As we will quantify, better sensitivity comes at the expense of speed.    
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In order to study the trade-off between selectivity and sensitivity, we projected the 

original benchmark database down to those sequences that are a true positive hit for at 
least one the test queries. Call the new database T. We built a set of q-gram databases T 
with different q-gram lengths. The entire query set was executed for each fragment length 
and a range of query radii. We computed the average percentage of the total q-grams in 
the database returned per q-gram query as selectivity, and the percentage of true positive 
hits within those results for each query as sensitivity. Table-1 details selected points of 
interest. The full results are plotted in Figure-2. The goal was to find the minimum radius 
for each different q-gram length that is necessary to identify all of the true positive hits 
for all queries. The ideal search result for each query would be such that the result 
contains at least one q-gram from every expected answer sequence and contains only q-
grams from the answer set of that query.   

  
 
 

Fragment 
length 

Search 
Radius 

Average % true Positive 
Hits Returned 

Average % fragments 
returned  

Returned TP/ 
Returned fragment 

3 0 99.30% 3.53% 28.13388423 

4 2 100.00% 8.85% 11.30505334 

5 3 97.91% 2.10% 46.53131343 

5 4 100.00% 14.87% 6.726649907 

6 5 99.40% 4.25% 23.36353288 

7 6 99.70% 6.78% 14.7048246 

8 8 99.80% 9.40% 10.6207366 

9 11 99.70% 11.92% 8.36498572 

Figure-2 Range searches with various radius were run on databases of total true 
positive hits set from benchmark with various q-gram lengths. The accuracy, 
percentage true positive hits returned, and selectivity, percentage of q-gram 
returned, are compared for different radius, q-gram length combination.  
    

Table-1 Accuracy and selectivity comparison for various fragment lengths and search radii 

   (q=5, r=3) 

 (q=5, r=4) 
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Based on the ratio of percent returned TP and percent returned fragments, we 
determined to use a radius 3 search on databases with 5-gram as our default setting. The 
parameters of the MVP trees were 2 vantage points per node, 2 partitions per vantage 
points and a maximum of 100 q-grams per leaf node. We further tested those parameters 
on the complete yeast data set included in the benchmark  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-3a plots the average search time for each query sequence as a function of 

radius. We see search time increases quickly for large search radii. For 5-gram, the 
searching time required for radius 4 is more than twice the amount of time used for radius 
3. This phenomenon is known as “ the curse of dimensionality”  (Bellman 1961).  It is 
arguable that our challenge in this approach is to determine if there is a combination of 
parameters that produces biologically effective results without encroaching too far 
beyond the knee of the curse so as to swamp the computation time. Figure-3b further 
illustrates this problem. While the result size for a radius 3 search is only about twice the 
result size from a radius 2 search, there are 6 times more results from a radius 4 search 
than a radius 3 search. 

4.3 Search Strategy  

One of our simplifications to Myers94 is that in the on-line portion we have 
implemented a breadth first algorithm where all search results for all query q-grams are 
collected and then chained.  Myers details a depth-first strategy that integrates search 
with chaining, such that when a distant q-gram matching the beginning of the sequence is 
chained into a result, the size of the neighborhood around the search for q-grams 
matching later in the sequence is shrunk. A depth-first method has significant merit in our 
framework, since even slight reductions in the search radius may result in substantial 
reduction in the number of matching q-grams and concomitant execution time. We leave 
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Figure-3a Average searching time per query 
sequence vs. radius for yeast data set.  

Figure-3b Average percentage of fragments 
returned vs. radius for yeast data set 
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the depth-first integration of chaining heuristics with search strategy as an open problem 
subject to future work.   

In-lieu of studying depth-first enhancement, we further investigate a biologically 
motivated refinement to our search strategy, AutoRadiusQuery. When assessing if two 
biological sequences are homologous biologists consider properties beyond character 
substitution. The properties include compositional bias (relative frequency of the 
different acids) and the likelyhood that individual stretches of sequence are chemically 
active.  In BLAST these aspects are embodied in the SEG and DUST filters, e-scores and 
a user selectable choice of substitution cost functions, i.e. a variety of PAM, BLOSSUM 
and other matrices (Wootton & Federhen 1993; Altschul and Gish, 1996; Altschul et al., 2001). 

In AutoRadiusQuery, the radius of the search is adjusted in anticipation of the 
search results. In nature, some amino acids are subject to substitution more often than 
others. As a result, an amino acid with high mutability has a shorter distance to other 
amino acids. In addition, twenty amino acids are not uniformly distributed. Composition 
bias of a database and varying mutability of amino acids cause the result size to fluctuate 
greatly for range queries of different q-grams with the same radius. Due to the choice of 
small length for q-gram, some simple repeat patterns may occur frequently with no 
biological significance but considerably increase computation load. AutoRadiusQuery 
automatically adjusts searching radius based on the predicated size of the result for each 
fragment. For a given fragment, if the predicated size of the result is smaller than a 
predetermined lower bound for a default radius, then the actual searching radius will be 
automatically increased by 1 from the default radius. We compared the accuracy and 
speed trade-off between fixed radius search and AutoRadiusSeach.  
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Indexed Search 
Search 
Method 

Sequential Search with Smith-
Waterman local alignment algorithm  Radius 3 Radius 4 

AutoRadius
Search 

BLASTP 

Matrix 
name 

mPAM PAM250 PAM70 MPAM PAM250 PAM70 

Average 
ROC50 

0.48 0.59 0.50 0.45 0.53 0.50 0.53 0.42 

 
 
Figure4 plots the comparison between fixed radius search and self-adjustable 

radius search. The ROC50 scores were computed after applying the chaining algorithm 
and the total time also includes the time for chaining. The graph indicates that 
AutoRadiusSearch produces a better trade-off between accuracy and speed than range 
search with a fixed radius. Table-2 compared the average ROC50 score for each query 
from our algorithm and the results using other searching algorithm with the same 
benchmark. Here, we show that using metric space indexing, protein sequence homology search 
could yield accuracy comparable with BLASTp on same benchmark. Note that the accuracy 
of results is actually affected by many factors, such as the value of substitution matrices, 
searching strategies and chaining strategies, etc. We will discuss more on these factors 
affecting the trade-off between the speed and accuracy in the discussion section.      

4.4 Scalability Study  

 Scalability is important in the face of the growth of genomic data. In this section, 
we tested whether our data structure can scale well as the size of the dataset grows. The 
data used for the scalability study was downloaded from Genbank in July 2003   
(ftp://ftp.ncbi.nih.gov/genbank/genpept.fsa.z). The dataset contains FASTA formatted amino 
acid translations extracted from GenBank/EMBL/DDBJ records that are annotated with 
one or more CDS features.  A set of databases was built with different subsets of the data 
that were sequentially taken from the full dataset. The same set of queries from the yeast 
benchmark was used for all the databases with AutoRadiusSearch. 
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Figure-5a Average number of distance 
calculation per query search vs. database size  

Figure-5b Average number of leaf nodes 
visited per query search vs. database size 

Table-2 Comparison of average of ROC50 value for various searches 
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The average number of distance calculations and average numbers of leaf nodes 
visited are plotted in Figure-5. Both figures reveal scalability with the size of the database. 
It is also interesting to notice that both numbers slightly decreased for a larger data set. 
We have reason to believe that as the database grows the logical locality of the clusters 
starts to correspond better to the physical clustering on pages (Mao et al., 2003). The 
effect is that entire contents of sub-trees could be found and returned in their entirety 
without further distance calculations, thus reducing the number of distance calculations.  
Similarly, entire sub-trees can be pruned, reducing the number of leaves visited.   
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Figure-6 shows average searching time (as wall clock time) for different sizes of 
data. Despite a slight increase, the results also showed good scalability.  

5. Discussions and Future Work   
We have shown that by using the mPAM substitution matrix and metric-space 

indexing, protein sequence databases can be managed while taking evolutionary criteria 
into consideration. In particular, MVP-trees provide scalable q-gram range search 
performance for peptide sequences and yield accuracy comparable to the popular 
methods as demonstrated by an established benchmark. These results are also applicable 
to DNA sequence database when sequence homology must consider the transcription of 
reading frames to amino acids. 

Given this basis, it is fair to ask, “How does this relate to BLAST, and what work 
remains to create a scalable alternative to BLAST?”. We did not report execution times 
for our system as it is implemented in Java and our concentration has been on the 
feasibility of the approach. The most important result of this study is that we have 
confirmed empirically that the curse of dimensionality affects biological sequence data.  
Even so, good accuracy can be achieved without encroaching fatally into the unstable 
region.  On that basis we can enumerate a number of open research problems whose 
resolutions pave the road to new biological sequence management systems. 
 The choice of substitution matrix is, in general, still an open issue in biology. The 
mPAM matrix is simply the first biologically effective metric-substitution matrix.  Just as 
the BLOSSUM matrices are sometimes seen as an improvement over PAM matrices, we 
expect mPAM can be improved upon. Our conjecture is that a better matrix will achieve 
comparable accuracy at narrower radii with consequent improvements. 

Figure-6 Average search time vs. database size 
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 A lesson of the AutoRadiusSearch is that good accuracy may be achieved by a 
context dependent choice of radii.  Myers also laid groundwork for varying the radii of 
the search. Key elements of BLAST include filtering-out low complexity regions and 
computing a probabilistic significance score (e-value) for each output sequence (Altschul 
and Gish, 1996; Promponas et al., 2000; Wootton and Federhen 1993). These elements taken 
together suggest that the ultimate algorithm for scalable sequence retrieval will be 
composed of a depth-first search strategy where the scope of the search is parameterized 
by the anticipated significance of the next matching fragments. This amounts to 
integrating the search and chaining phases. We believe that relying on domain knowledge 
of the indexed data is a key to avoid the curse of dimensionality.   
 The choices of using an MVP tree and parameter selections are based on 
empirical results not yet thoroughly investigated. Based on the results of the scalability 
test, it is arguable that there is no universally optimal setting. Since the parameter 
selection directly interferes with clustering, an extension to MVP-trees that allows them 
to automatically adapt to domain specific clustering is called for (Yianilos, 1999; Navarro, 
1999).  A data structure called the M-tree attempted to do so, but we found it to be 
ineffective in this application (Mao et al., 2003). The results also indicate the presence of 
duplicate entries in large datasets. These contributed to the slight increase in search time 
while both the average number of distance calculation and the average number of leaves 
visited stay low. One simple solution is to implement “buckets”  in leaf nodes. Each 
“bucket”  represents a q-gram with a unique sequence and stores a list of the q-grams that 
share the same sequence but are from different locations.  

Lastly, it is important to recognize that sequence analysis problems now go far 
beyond BLAST homology searches. Generating genomic data is no longer difficult for 
biologists but analyzing and mining the data is.  Over 250 genomes from different species 
have been sequenced. By the end of 2005, over 1000 genomes will have been sequenced.  
Comparing whole genomes to one another—not merely the genetic sequences, but their 
annotation as genes and proteins—is proving to be an increasingly powerful means of 
biological discovery (Marcotte, 2002). O(log(n)) retrieval methods may lead to very fast 
all against all genome analysis (Wang, et al., 1994), analysis that will soon be impossible 
with algorithms that use linear scans. 
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