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Abstract
Contemporary technology is fostering new demands to manage large collections of complex data, including
the contents of multimedia and biological databases. In many cases the similarity of the data is defined using
a metric distance function. There are many competing algorithmic approaches which, off-line, create data
structures materializing a hierarchical clustering of the data and leverage the triangle inequality to speed the
search for similar data.  In order to determine a solution of general applicability it is important to assess the
variety of methods on various types of real world data.

We evaluate the performance of an algorithm from each of the three major classes of metric-space
indexing methods: generalized hyper-plane, vantage point, and radius-based methods.  The workloads
comprise an image database, a yeast protein sequence database and a database of mass spectrometer protein
signatures.  For range queries of practical interest the multi-vantage point algorithm (MVP-trees) is shown to
be superior.  We further consider the optimization of MVP-trees. We consider a common heuristic, choosing
corners as vantage points, and show that on real workloads choosing centers perform better.

1. Introduction
Digital cameras, on-line music systems and the genomic revolution are generating new large-scale database
management problems.  In each case the retrieval of similar objects from a database is often driven by a
similarity function that is a metric distance function [15, 16, 20, 22, 23, 27, 28, 31]. Often, accurately
modeling similarity is the central focus of the work.  At the same time, researchers are interested in
managing large databases containing these types of data by integrating metric-space indexing methods with
existing relational database technology [2, 3, 7, 8].  This integration is analogous to spatial database
management systems, which add extensions to relational database management systems to manage
collections of 2 and 3 dimensional objects by integrating either K-D-tree or R-tree index structures [1, 11].

Definition [28]: A metric space is a pair (M, d), where M is a nonempty set and d: M*M->R is a real-
valued function, called a metric on M, with the following properties:
(1) For all x, y ∈ M, d(x, y) >= 0 and d(x, y) = 0 if x = y.                                                                (Positivity)
(2) For all x, y ∈ M, d(x, y) = d(y, x).                                                                                              (Symmetry)
(3) For all x, y, z ∈ M, d(x, y) + d(y, z) >= d(x, z).                                                           (Triangle Inequality)

The expression d(x, y) is read “the distance from x to y”.  When there is no confusion, we simply say that
M is a metric space, and the distance function d is a metric.

In metric-space indexing, a hierarchical clustering of the data is materialized as a tree-based data
structure.  Every sub-tree corresponds to a cluster.  Associated with the root of every sub-tree is a predicate
satisfied by every point in the cluster. Given a query, if there is no data point that satisfies both the predicate
of the index node, i.e., in the sub-tree rooted at the node, and the query, the index node can be pruned, and
thus distance calculations are saved. Typically the distance functions in these applications are very costly.

The value of a metric-space approach is that it is unnecessary to find a meaning for the data with respect
to the axes of a coordinate system. The only way for distance calculations to be saved is by making use of the
triangle inequality [6, 13].  Metric-space indexes are usually built off-line, and queries are executed on-line.

The two common query types are range query, which finds all data objects in the database that are within
a certain distance to the query, and k-nearest neighbor query, which finds the k data objects with the smallest
distance to the query. Since the k-nearest neighbor query can be systematically implemented by range query
[6] and our goal is the extension of relational database systems to include metric-space relations (i.e. set-
valued expressions consistent with relational algebra), we only consider range query in this paper.  A range
query can be expressed as a pair (q, r), where q is the query object and r is the query radius.
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As technology drives practical interest in this problem, the data sets are often amply large to require external,
database management system approaches.  Further, it is well recognized in the science of database
management that data is rarely randomly and uniformly distributed and that it is imperative to consider actual
workloads [26].  In surveys by Hjaliason et. al [13] and by Chavez et. al [6], metric-space indexing methods
are organized into three classes. We first assess an implementation of one algorithm from each class,
modifying it, if necessary, to meet the standard characteristics of disk-based indexes as established by the
work on B+-trees.  In particular we consider only balanced tree structures.  Nodes of the index trees are
paginated, meaning the fanout of the nodes, i.e., the number of children, is set such that the storage space for
the nodes corresponds to the size of a disk block.

We consider four workloads, three comprising real data, and the fourth a synthetically generated set of
five dimensional vectors, typical of synthetic data in other studies.  The real data are images, yeast protein
sequence fragments and mass spectrometer protein signatures.

Empirical evaluation of the three methods on these data shows that the MVP method significantly
outperforms the other two on meaningful range query radii.  Further, we consider the heuristic on selection of
vantage points in the initial construction (bulkload), of MVP index structures.  A common heuristic exploited
in the construction of MVP trees is to choose “corners” of the space for vantage points [33].  However, the
arguments that originated this idea assumed that the data is uniformly distributed, and the distance function
had some particular properties.  None of these assumptions are true of our real world workloads.  Thus, we
introduce and evaluate a heuristic that seeks centers as the choice of vantage points.  The key idea is that the
index tree should reflect the intrinsic clustering of the data.  Empirical results show that using centers as
vantage points almost always outperforms corners found by a farthest-first-traversal algorithm, even for
synthetic Euclidean data.

The rest of the paper is arranged as following.  Three metric space index structures are discussed in
Section 2, followed by an introduction to our workloads and experimental results in Section 3. Heuristics of
vantage point selection of MVP methods are discussed in Section 4, and Section 5 consists of conclusions
and future work.

2. Metric-Space Index Structures
In two authoritative surveys metric-space indexing methods are organized into two major classes— general
hyper-plane methods and vantage point methods [13]—and an M-tree algorithm that falls outside of those
classes [6].  Considering that there are now at least two variations on M-trees, we label these algorithms as a
third taxonomic class called radius-based methods [20, 29].

Similar to answering a query of traditional data types using B+-trees, answering a range query in a metric
space may be accomplished by traversing a decision tree.  The traversal can be done in many styles, such as
breadth-first or depth-first order.  When an internal node is visited, a query predicate is compared to an index
predicate parameterized by values stored in the node. If it is determined that the query predicate has no
overlap with the predicate describing the points stored in a sub-tree, the sub-tree can be eliminated from
further consideration.  In other words, we can prune sub-trees from the traversal.  The sub-trees that cannot
be pruned, often more than one, are stored for future visits.  When a leaf node is visited, its pre-stored
information is used to decide whether each data object is a query result or not.  Since there are two excellent
survey articles in the literature, in the following discussion of the algorithm we introduce only the general
logic used to construct the predicates for each category of metric-space indexing method, and important
details of our particular implementation.

2.1 General hyper-plane method
The General Hyper-plane Tree (GHT) was first proposed by Uhlmann in [30].  A GHT is constructed
recursively, top-down.  In each step, two points, c1 and c2, are selected as centers, or pivots, for the two
children, and remaining points are assigned to the closest pivot.  Thus, the data is partitioned into two
clusters.  Then, each cluster is partitioned recursively.  In the best case the tree is balanced and the
construction time complexity is O(nlogn), and the space complexity is also O(nlogn).
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Given a range query (q,r) and an internal node, the distances from the query object to the two pivots are
first calculated. Next, if d(q, c1) + 2r < d(q, c2), then the right child can be pruned, and only the left child is
visited. If d(q, c2) + 2r < d(q, c1), the left child can be pruned, and only the right child is visited. It is possible
neither inequality is satisfied and that both children are visited.

In a leaf index node, a pivot, c, and the distances from each data point to the pivot are stored. Given a
range query (q, r), d (q, c) is first calculated.  Then, for each data point p, if | d(q, c) – d(c, p)| > r, p is pruned.
Otherwise, d(q,p) is calculated. If d(q,p)<=r, p is a result, otherwise it is not.

A GHT is a main-memory binary tree structure.  To use it as an external index, we arrange the size of
each tree node to be equal to the size of a disk page, called the GHT-index.  It can be easily extended to m-
ary trees by select m points as pivots for m children. During the search, the pivot, cm, which is the closest to
the query object, is first found. Then, for each of the remain pivots, c, if d(q, cm) + 2r < d(q, c), the cluster
with c as the pivot can be pruned. Thus, the fanout of the internal nodes is determined by the disk page size,
and the number of nodes visited during the search is a measurement of I/O.  We create balanced trees by
using the same initialization method we developed for radius-based methods, described below.

2.2 Multiple vantage point method
Vantage Point Trees (VPT) were proposed independently by Uhlmann and by Yanilous  [30, 33]. In a VP-
tree, a vantage point VP and a distance r are chosen such that the bounding sphere defined by VP and r
partitions the data into two evenly sized subsets.  A top-down recursive construction results in a balanced
binary tree.

Ozsoyoglu et. al proposed Multiple Vantage Point Trees (MVP-trees) [2,3].  The basic idea is that
several vantage points are chosen.  The distance to each vantage point forms a coordinate.  The fanout of the
internal nodes can be expanded by increasing the number of vantage points, and/or by nesting multiple
bounding spheres for each vantage point.  The topological structure of an MVP-tree is defined by the triple
(v, s, m), where v represents the number of vantage points in each node, and s is the number of distance
intervals as determined by s – 1 bounding spheres around each vantage point. Thus, the fanout of a node is
sv. m is the maximum number of data points in a leaf node.

To keep the partitioning balanced, an MVP-tree is constructed using a double recursion.  Within a node
the first vantage point is used to partition the data into s subsets.  The second vantage point is used to
partition each of those subsets independently. Thus, in the evaluation of a range query, a visit to an internal
node results in v distance calculations, but considers sv disjoint partitions of the data.  The nodes size is also
proportional to sv, containing partitioning data {(VPj, dj,i-min, dj,i-max)| i = 1, 2, …,m, j = 1, 2, …, v}.

Leaf nodes consist of surrogates to data points and their distances to each vantage point.  Therefore, each
data point in a leaf node is defined by a set of predicates, {(VPi, di)| i = 1, 2, …,v}, i.e., the distance for the
data point to VPi is di, where i = 1, 2, …,v.

Given a range query (q, r), and an internal node, with each of its children defined by {(VPj, dj,i-min, dj,i-
max)| i = 1, 2, …,m, j = 1, 2, …, v}. If for any j, dj,i-min - r <= d(VPj, q) <= dj,i-max + r is not satisfied, the
child node can be pruned.  For the detail of the algorithm, interested users are referred to [2,3].  Given a leaf
node, for each data point p, if for any i, di - r <= d(VPj, q) <= di is not satisfied, where i = 1, 2, …, v, the
data point is pruned.  If p cannot be pruned, then d(p, q) is computed.  If d(p,q) <= r, then it is a result,
otherwise it is not.

Similar to the GHT, the original MVP-tree was studied as a main-memory data structure and did not
account for I/O cost.  We implemented a paged MVP-tree, called MVP-index, which for the purpose of this
discussion amounts to setting s and v such that the size of the interior nodes corresponds to a disk page.
Also, each data point in the leaf nodes of the original MVP-tree stores a list of distances from it to each of the
vantage points in the nodes on the path from the leaf to the root of the tree.  In our implementation we
exclude this information (and the opportunity it gives for optimizing distance calculations) in preference to
increasing the storage capacity of the leaf nodes and minimizing I/O.

2.3 Radius-based method
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Radius-based methods, first established by the M-tree algorithm, are sometimes confused with vantage point
methods [7,8].  In both cases the method relies on the choice of pivots and bounding spheres.  In vantage
point methods the bounding spheres form disjoint data partitions.  In radius-based methods the bounding
spheres may overlap. Internally, radius-based methods are more similar to GHTs than VPTs. For each
cluster, a number of pivots are selected, and each remaining point is assigned to a pivot, usually (but not
necessarily) the closest one.  Each cluster is defined by a predicate (c, R), where c is the pivot, and R, called
the covering radius, is the maximum of the distances from cluster members to the pivot.  That is, the pivot
and the radius define a bounding sphere.

Given a range query (q, r), an index node (c, R), and a reference point p, usually the pivot of a parent
node, with pre-calculated distance d(p,c),  if | d(p, q) - d(p, c) | > r+R, the node can be pruned, and d(q, c)
doesn’t need to be calculated.  Otherwise, d(q,c) is first computed, then, if d(q,c) >r + R, the node can be
pruned.  Otherwise, the node cannot be pruned.  The structure and search of the leaf nodes of a Radius-based
index tree is the same as that of a GHT.

M-trees were inspired by R-trees, which also have overlapping predicates. The advantage is that dynamic
database operations, (inserts and deletes), are simpler to implement and the data structure can be kept in
balance using split-and-promote algorithms established by GiST [12]. In earlier work we developed the
radius-based tree (RBT) as a refinement of M-trees [20]. The primary improvement is the initialization of the
data structure [20].  We also used this initialization method to create the balance GHT in this study.  M-tree’s
bulkload algorithm is a divide-and-conquer method.

In M-trees, the data structure is initialized through a top-down construction that selects the pivots at
random and uses some rebalancing heuristics when that fails [7].  The initialization method we developed for
an RBT is a bi-directional method.  Briefly, data is allocated to individual disk-pages through a top-down
recursive construction using farthest-first-traversal [14].  The recursion terminates when the size of the
cluster fits on a disk page.  The resulting tree may not be balanced.  Thus, only the allocation of data to data
pages is kept.  The bounding predicates for each page are then treated as data. The top-down clustering is
repeated, adding an interior level of index nodes above the leaves.  The process is repeated until the
predicates, treated as data, fit into a one disk-page sized node that roots the entire tree. The farthest-first k-
center algorithm has time complexity O(kn), and is guaranteed to produce a clustering within a constant
factor of two of optimal.  We proved that the time complexity of bi-directional bulkload is O(nlgn) in the
best case, but is O(n2) in the worst case [7,20]. We have shown good experimental execution times for the
RBT initialization scheme and shown empirically that it produces significantly tighter bounding spheres than
the M-tree initialization method.

In the RBT we define the radius of a bounding sphere to be the maximum distance between the pivot and
each of the data objects in the sub-tree [20].  In the M-tree, the radius of the bounding sphere to the points in
a sub-tree is computed from the interior nodes, per the maximum sum of the radius of a child and the
distance between the centers of the child and the parent, r = max {ri + d(C, ci)}.  Experimental results show
that RBT-index outperforms the M-tree [20].

3. Experimental Results Per Algorithmic Category

3.1 Workloads

The experiments involve four datasets: yeast protein sequence fragments, mass spectrometer protein
signatures, images, and randomly generated vectors of a 5-dimensional Euclidean space. All the datasets are
publically available [9].

The yeast protein sequence dataset represents the entire yeast proteome as curated by NCBI [25].  The
dataset contains FASTA formatted amino acid translations extracted from GenBank/EMBL/DDBJ annotated
records.  We split the sequences into overlapping fixed length fragments, or q-grams. The fragment length is
set to 5. The distance between two fragments is their weighted edit distance using weights determined by the
mPAM amino-acid substitution model [32].  The distance values are integers between 0 and 30.
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Our mass spectrometer data are theoretic spectra computed from the contents of the SWISS-PROT

database downloaded on 27 April 2004 [24]. Each spectra is represented as a very high dimensional binary
vector, one dimension for each resolvable mass. We defined a pseudo-metric, fuzzy cosine distance, to

Figure 1. Comparison of GHT, RBT and MVP indexes
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approximate the behavior of a similarity measure called the shared peaks count (SPC) commonly used to
“identify proteins by database look-up of mass-spec signatures” [22].  Fuzzy cosine distance is cosine
distance conditioned on a tolerance, t units, of resolvable mass.  That is, in the inner product term, a one is
computed for each pair of ones, one in each vector, that are within t units (dimensions) of a resolvable mass.
Thus, the distance values are continuous in [0, π/2].

The image dataset consists of 10221 images.  Each image is represented by 3 vectors corresponding to its
properties in structure, color, and texture. For each feature vector, a metric distance function is defined [15,
16]. We use a linear combination of the 3 metric distance functions as the distance function in the
experiments. The distance values are continuous in [0,1].

Table 1. Statistics of data
Maximum
database

size in
records

#query

Expected
maximum
application

radius

Max
radius
used

Average size of
result set for

maximum radius
query

Vector 1,000,000 1000 N/A 0.16 439
Protein fragment 30,000 300 5 5 2000
Mass-spec 60,567 600 0.2 0.25 4
Image 10,221 100 0.4 0.5 9900

The uniform vector dataset consists of 1 million vectors randomly selected from the 5-d [0,1] hyper-cube.
Euclidean distance is used.

For each dataset, a number of data points are randomly selected as query objects. Data sets of different
size were derived randomly sampling the largest data set.

To evaluate the performance, the pre-selected query objects are executed with a number of radii on each
index.  Only data of a reasonable radius is used, per the anticipated application.  For a large radius, a major
part of the database is returned as a result.  Normally a user only wants a small number of results, whether he
or she executes a range query or a k-nearest neighbor query.  Moreover, for a large radius, the number of
distance calculations will be close to or even greater than the database size, which makes the search degrade
to a linear scan, and is thus not of much interest.

We are interested in the algorithmic characteristics of the indexing methods.  Thus, only implementation-
independent statistics are desired as performance measurements.  Distance calculations in metric space are
usually based on the content of data objects, and are thus usually costly.  Therefore, as other researchers have
done, we use as performance measurements the average number of distance calculations and the average
number of I/O operations needed to answer the query.  In our implementations, index node size is equal to
the disk page size, 4096 bytes, thus, we simply use the number of nodes visited during the search as the
number of I/O operations.

Table 2. Characteristics of the Data Structures
GHT MVP RBT

Fanout Height (v, s, m) Height Fanout Height
Vector 16 5 (4,2, 20) 5 16 5
Protein fragment 20 3 (3, 3, 50) 4 20 3
Mass-spec 16 4 (4,2,20) 6 16 4
Image 8 4 (3,2,15) 5 8 4

Some statistics of the datasets are listed in Table 1.  Note that the expected maximum application radius
is the maximum radius that is used in real applications.

3.2 Structure of the Indexes

For each kind of data, the data of different size indexes shows similar relationships among the three index
structures.  Thus, we only show the results of the largest databases of each kind of data (Figure 1).  Statistics
about the bulkload parameters and index structure are listed in Table 2.
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3.3 Results

The data is shown in Figure 1.  The figure shows that for all the data types, MVP-index always yields the
smallest number of distance calculations and number of index nodes visited for small radii for almost all
cases.  As the radius increases, MVP index is outperformed by either GHT or RBT.  However, as we can see,
the number of distance calculations or nodes visited at the radii where MVP-index is outperformed is
relatively large, comparing to the database size.  Note, these radii or larger radii are not of much interest, as
discussed before.

It can also be observed that GHT outperforms RBT in most of the cases except for the synthetic
uniformly distributed random vector data.  Since RBT is an optimized version of M-tree, and yields out
better performance than M-tree [20], we can expect that MVP-index to always outperform M-tree, and even
GHT-index will outperform M-tree in most cases.

4. Refining the MVP-Index
The query performance of an MVP-index is affected greatly by its selection of vantage points.  It is a NP
hard problem to decide the optimal set of vantage points.  Many heuristics have been proposed, among them
random selection (random-vp) and farthest points (fp-vp) are popular choices. Random choice has the
advantage of speed and it may be combined with sampling techniques. A further advantage of random
selections relative to other heuristics, is that it usually leads to more balanced data structures, especially
when the data displays little skew.

The use of farthest-first-traversal dates to Yianilos original paper on VPT [33].  Yianilos considered the
use of Euclidean metrics on uniformly distributed data.  In this context there is a persuasive argument that the
surface area of the partitioning spheres should be minimized and that is achieved by finding “corners” of the
space.  The farthest-first-traversal k-center algorithm satisfies an intuitive notion of corner finding.  It is fast,
O(nk) and as been shown to produce clusters within
a factor of 2 of optimal [14].  In its pure form, the
first point in the algorithm is chosen at random.
Since choosing the first point at random provides no
assurance that it will be in a corner, Yianilos
proposed a sampling technique to select the first
point [33]. Two random samples are first generated.
Then, for each point in the first sample, its 2nd-
moment of the distances to points in the second
sample is computed. Finally, the point with the
largest 2nd-moment is selected as the first farthest
point.

In our work, we first select a random point as the first farthest point. Then run farthest-first-traversal on it
to get a number of farthest points. Next, for each farthest point, we find the point with the largest distance to
it in the whole dataset. Finally, we compute the pair-wise distances among all the points selected out
previously, and the select the point with the largest pair-wise distance as the first farthest point.  The
algorithm to select the first farthest point is shown in Figure 2.

After the first farthest point is selected, in each step, the point with the largest distance to the current set of
farthest point is selected as the next farthest point. The distance from a point to a set of points is defined as
the smallest distance from the point to all the points in the set. The time and space complexity of farthest-
first-traversal is O(n), where the number of farthest points is considered as a constant [14].

Even though the integration of farthest-first-traversal clustering with MVP is widespread, including in our
own work, we encountered situations that caused us to question this. Further, even in his own account,
Yianilos’ is explicit about the limits of his argument.  For example, he assumed the zero probability spheres
(ZPS) property, i.e, P( y∈S|d(y,x) =r, ∀x∈S, r>=0) =0, where S is the whole dataset, which implies “The
discrete metric is thus excluded along with many other cases” [33]. The metric on the yeast data set is

selectFirstPoint(D: dataset) {
r = a random point;
f1 = a set of farthest points return by farthest-first-

traversal ( ) with r as the first farthest point;
for (each point pi in f1) find pi’ in D that is the farthest

to p1;
 compute all the pair-wise distances of {r} U f1 U {pi’};
 let d(u,v) be the largest pair-wise distance;
 return u;

}
Figure 2. Algorithm to select first farthest point
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discrete.  The other two practical workloads violate this or some other assumption underlying the corner
argument.

Thus, we investigate three heuristics concerning the
choice of vantage-points.  In particular we introduce the
use of intrinsic cluster centers of the data as vantage-
points. We implement a minimum-sum of diameters

(MSD) clustering algorithm derived from CLARA (Clustering LARge Applications) [18]. CLARA is a
simple k-median algorithm based on sampling and iteration. The time complexity of the algorithm is O(n)
[18]. K-means algorithm can not be applied to metric space directly because algebra operations in metric
space are not defined.  K-center algorithms are also not applicable because its objective only considers the
maximum cluster diameter.  Therefore, k-median and MSD (Minimize the Sum of cluster Diameter)
algorithms are our only choices.  K-median algorithms seek to minimize the sum of distances from all data
points to their cluster centers, while MSD algorithms try to minimize the sum of cluster diameters.  Both are
NP hard problems and there are some primal-dual constant factor approximation algorithms [5, 17].
However, these algorithms usually have high time complexity, which makes them not applicable to the case
of indexes, where the datasets are large.

To compare the effect of the three heuristics, we build MVP-indexes with each heuristics of a series of
sizes for each kind of data.  Then, we used the same method as in Section 4 to collect the statistics as
performance measurements.  Due to page limit, only data of typical radii are presented here.  The data of
vectors, images and mass spectrometer is shown in Figure 3, and data of protein sequence fragments of two
radii is shown in Figure 4.  Note that larger-size sequence fragment data, up to 20 million, is used.
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From these figures, first we can see that center-vp performs the best or close to the best for most of the
cases.  It always outperforms fp-vp except for just a few points. Second, center-vp and random-vp have
similar performance for uniform vector and image. As discussed before, random-vp usually leads to balance
tree.  When the radius is very small, only a few index nodes are visited at each level, and the query
performance is dominated by the height of the index tree.  Therefore, random-vp has good performance for
very small radii.  Figure 4 shows this more clearly. We can see that for radius 1, random-vp outperforms the
other two, while be outperformed by other two at radius 3.

We also notice that there are several dips when databases get larger. We owe this to the randomness in
selection of data, vantage-points and queries.

5. Conclusions and Future Work
Empirical studies of metric space indexing methods seldom consider real data in analyses and evaluation.
This is surprising in light of the broad range of emerging database applications. If the history of spatial
database is a guide, we can anticipate a proliferation of specialized metric-space indexing methods, each of
which showing strength in a particular application area. If the goal is to field a general solution, then we, as a
community, need to find algorithms that are good, or very good, on a broad range of applications.  Avoiding
very poor performance on an occasional application is more important the performing optimally on a few
applications.

A goal of this study is to set a baseline moving forward.  Due to their similarity with R-trees, radius-
based methods may excel in supporting dynamic database operations.  Our experience here is that the
vantage-point and hyper-plane methods are much better at retrieval. At search radii typical of real queries on
these data MVP-index is always better. Our results do demonstrate crossovers at larger radii. Thus, we do not
make a definitive claim of superiority of the MVP methods over GHT-indexes. Such a claim would require a
much broader test suite.

In regards to future research, the algorithms needed to support dynamic operations on MVP-trees have
been published [10].  Further optimization of the search characteristics of MVP-tree would still be beneficial.
The I/O results we report may yield acceptable performance.  However, they do suggest that formal,
adversarial arguments that conclude that good index structures for metric-spaces may be infeasible have
some merit. In our experience, also voiced by Brin, the success of a metric-space indexing method is
connected to ability of the method to accurately model the natural hierarchical clustering that may be
displayed in the data [4].  Per effort to improve M-trees, when packing data on disk-pages, outliers in clusters
may severely impact the ability of the index predicates to form easily distinguishable, (small and prunable),
clusters.  We believe that this should be a primary focus in further efforts. For example, CLARA is based on
random sampling and thus is very likely not accounting for outliers.  In highly skewed data sets, this effect
may be more pronounced.  But highly skewed data sets can display much more structure than uniform data
sets.  Consequently, we believe much more opportunity lay ahead [21].

Last but not least, lessons learned from static clustering and bulk-loading need to be translated to split-
and-promote policies to support dynamic database operations. Considering that there were over 100 papers
describing multidimensional indexing methods before commercial enterprises settled on a choice of R-trees
of K-D trees as the basis of spatial databases, we are optimistic that a general purpose distance-based
database index will be found to support general purpose metric-space index.
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