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ABSTRACT
Motivation: We address the question of whether there exists
an effective evolutionary model of amino-acid substitution that
forms a metric-distance function. There is always a trade-off
between speed and sensitivity among competing computa-
tional methods of determining sequence homology. A metric
model of evolution is a prerequisite for the development of an
entire class of fast sequence analysis algorithms that are both
scalable, O(log n) and sensitive.
Results: We have reworked the mathematics of the point
accepted mutation model (PAM) by calculating the expected
time between accepted mutations in lieu of calculating log-
odds probabilities. The resulting substitution matrix (mPAM)
forms a metric. We validate the application of the mPAM evol-
utionary model for sequence homology by executing sequence
queries from a controlled yeast protein homology search
benchmark. We compare the accuracy of the results of mPAM
and PAM similarity matrices as well as three prior metric
models.The experiment shows that mPAM significantly outper-
forms the other three metrics and sufficiently approaches the
sensitivity of PAM250 to make it applicable to the management
of protein sequence databases.
Contact: xwj@cs.utexas.edu

INTRODUCTION
Computational methods of biological sequence analysis
usually involve a trade-off between speed, scalability and
sensitivity. By sensitivity, we mean the ability of an algorithm
to identify similar sequences based on evolutionary criteria
rather than simple mathematical constructions of strings of
letters. Scalability refers to the rate of increase in execution
time as a function of the amount of data being analyzed.

The fastest and most scalable homology algorithms, SST
and BLAT, first compile a sequence database into a data
structure that supports a fast nearest-neighbor search in a
metric-space (Giladi et al., 2002; Kent, 2002). Due to their
choice of distance metrics, these systems are also the least
sensitive, and their concomitant applicability is limited. SST,
due to Giladi et al. (2002), uses Hamming distance and a
tree-based index structure to achieve O[mlog (n)] scalability,
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where m is the length of the query sequence and n is the length
or size of the database. Giladi et al. (2002) report an SST exe-
cution speed of 27 times the execution speed of BLAST2 for
sequence assembly on databases of 120 000 nt and estimate a
200-fold speed-up over BLAST2 on megabasepair databases.
BLAT, due to Kent (2002), is based on a simple edit dis-
tance supported by hashing to achieve O(m) scalability using
O(n) memory. Kent (2002) reported BLAT execution speeds
40 times those of WU-TBLASTX.

Definition. A metric space is a set of objects with a binary
distance function d, satisfying the following for every three
objects x, y and z:

(i) d(x, y) ≥ 0 and d(x, y) = 0 iff x = y; (Positivity)
(ii) d(x, y) = d(y, x); (Symmetry)
(iii) d(x, z) + d(y, z) ≥ d(x, y). (Triangle

Inequality)

Algorithm designers have leveraged the triangle inequality to
produce entire classes of data structures to speed up metric-
space search (Chavez et al., 2001). Intuitively, the triangle
inequality says that if two objects are similar to a third object,
they cannot be too dissimilar to one another. Algorithmic-
ally, the triangle inequality allows subsets of very similar
data to be organized and clustered. If a new data element
is sufficiently dissimilar to a given element in a cluster, then
similarity with the remaining elements in the cluster may be
ruled out, without any additional similarity comparisons. One
algorithmic class is equivalent to materializing a hierarch-
ical clustering of a dataset off-line as a searchable tree-based
data structure. These methods are similar in structure to the
index trees intrinsic to the architecture of database manage-
ment systems and tend toward the same scalable, O(log n),
on-line search time1 (Brin, 1995). SST is in this class; BLAT
is an instance of a hash-based algorithm.

These approaches form a sharp contrast with the general-
ity of a Smith–Waterman local-alignment algorithm which
compares each possible pairing of sequence elements and

1That is as the database grows in n, the computation required to locate related
data grows in proportion to log n. For example, in log2, if it takes 20 units of
computation to locate a data object among one million objects, it will only
take 30 units of computation to locate a data object among one billion objects.
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assesses, by virtue of a weight matrix, the probability that
one element may be replaced by another. A Smith–Waterman
alignment requires O(n ∗ m) computation. BLAST, which
can be viewed as an approximation to Smith–Waterman,
begins with a linear scan of the database, O(n), to construct
the hot-spot index of exact matches of length k. Those exact
matches are then extended to form the local alignment results.
The expected-time complexity of BLAST is approximately
aW + bn + cnW/20w, where w is the number of words gener-
ated and n is the number of residues in the database (Altschul
et al., 1990).

Since the growth rate of sequence databases now exceeds the
growth rate of processor speeds (Benson et al., 2002), the con-
sequent degradation in the performance of BLAST requires
investigation of search methods that organize the database off-
line in order to speed on-line search. SST and BLAT embody
this organization by storing overlapping k-mers (sequence
fragments of length k) of sequences. Although SST and BLAT
were initially developed to support sequence assembly, these
methods can also be used in heuristic algorithms to deduce a
local alignment from the returned k-mers (Gusfield, 1997).
However, Hamming distance and simple edit distance are
mathematically convenient sequence metrics that only minim-
ally reflect evolutionary criteria. BLAT continues to be used to
research problems that involve evolutionarily close sequences,
e.g. comparison of the human and mouse genomes (Kent,
2002; Rouchka et al., 2002; Cox et al., 2002; Hedenfalk et al.,
2003). Further, these metric-distance functions (metrics) rely
on the small alphabet size of nucleic acids to maintain com-
putational feasibility, and thus these approaches have been
limited to direct nucleotide to nucleotide comparisons.

If the similarity of a pair of k-mers of protein sequences
could be qualified by evolutionary criteria that also formed a
metric, it follows that a fully sensitive sequence homology
search could be conducted without comparing all pairs of
sequence elements. In other words, one can anticipate that
the emergence of an evolutionary sequence metric will open
research into SST- and BLAT-like algorithms that maintain
existing speed and scalability while approaching the general
sensitivity of the Smith–Waterman algorithm. This problem
was first posed by Sellers (1974).

It is fair to ask, ‘Can the biology of evolution be modeled
as a metric?’ The accepted mutation rate between pairs of
amino acids is usually asymmetric. The stipulation of the
triangle inequality is a significant restriction on possible math-
ematical models. The PAM family of amino-acid substitution
matrices (Dayhoff et al., 1978) has defied efforts to identify
a simple, effective algebraic normalization to convert it into
metric space (Taylor and Jones, 1993; Linial et al., 1997).

We derive a metric amino-acid substitution matrix (here-
after mPAM) that reflects evolutionary bias by revisiting the
mathematics used to derive the PAM matrices as well as
the original data (Dayhoff et al., 1978). Rather than being
concerned with the frequency of substitutions, we compute

the expected time between substitutions. An amino-acid pair
with a high substitution rate should take less time to appear
than a pair with a lower substitution rate. Thus, more similar
sequences will score closer to zero, one of the requirements
of a metric.

We validate mPAM by testing its accuracy using a con-
trolled yeast sequence query benchmark in conjunction with
Smith–Waterman alignment (Smith and Waterman, 1981).
The benchmark comprises 103 sequence queries whose true
positive hits have been identified by human experts (Schaffer
et al., 2001). We compare the accuracy of mPAM with
that of the PAM matrices as well as three other metric
matrices detailed below. Since nearly all sequence homology
algorithms operate by dividing the database sequences and/or
the query sequences into k-mers (Smith–Waterman being the
notable exception), we evaluate the relative performance of
the mPAM and PAM250 matrices on randomly generated sets
of short sequences. The results indicate that mPAM, with met-
ric space indexing algorithms, can be a general solution to the
task of building a protein sequence database with O(log n)

search performance.
Of the many efforts to develop amino-acid substitution

matrices, we have identified two approaches that have res-
ulted in metrics (Fitch, 1966; Taylor and Jones, 1993). The
genetic-code matrix was derived by examining the differences
in the nucleotide sequences of codons (Fitch, 1966). More pre-
cisely, the entry in the substitution matrix for any amino-acid
pair is defined as the minimum edit-distance between their
codons. Taylor and Jones (1993) propose and evaluate a vari-
ety of methods for projecting similarity matrices into metric
space. They report their inter-row distance method applied to
PAM250 as the most effective. Thus in our evaluation, we
compare the genetic-code and inter-row matrices to PAM250
as well as simple-edit distance.

As a historic note, Needleman and Wunsch’s (1970) clas-
sic paper on formulating global alignment used simple-edit
distance, which is a metric. Sellers (1974) then proved that if
the substitution matrix of a set of characters forms a metric,
then the weighted edit distance between sequences of those
characters is also a metric. Waterman et al. (1976) extended
Sellers results to include gaps.

Smith and Waterman (1981) then introduced their local-
alignment algorithm and concomitantly the use of probability
measures, in lieu of metrics, as the basis of substitution
matrices. In what has become a de facto standard, Dayhoff
et al. (1978) introduced log-odds statistics as the basis of
the entries of substitution matrices. The PAM and BLOSUM
log-odds matrices are in dominant use, with PAM matrices
preferred when evolutionary criteria are involved (Gonnet and
Benner, 1996; Henikoff and Henikoff, 1992).

If log-odds matrices, such as PAM matrices, are used to
weight edit-distance, the result is not a metric. Log-odds
reward more similar sequences with higher scores, an intu-
itively appealing result that reverses metric order; in a metric
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nearly identical objects must be close to 0 distance apart.
Further, log-odds scoring matrices contain negative values
violating metric positivity (i).

SYSTEMS AND METHODS
The point accepted mutation model
The PAM family of matrices details a Markovian model of
evolution (Baldi et al., 1994). The model was derived from
the observation of 71 groups of closely related proteins. The
protein sequences were aligned, and a phylogenetic tree,
including putative ancestral sequences, was computed using
maximum parsimony. The accepted mutations through paths
in the tree were counted to reflect evolutionary substitution
rates. Furthermore, the counts for the 1-PAM probability mat-
rix were normalized to achieve a substitution rate of 1%.
Multiplying the 1-PAM matrix by itself N times yields the
N PAM probability matrix. This model has the following
assumptions that resemble those in molecular clock theory:

(1) Amino acids mutate independently of each other.

(2) The probability of mutation depends only on the amino
acid and the amount of evolution.

A value in the PAM probability matrix has the following
meaning:

Mij = p(j → i | j)

= p (j mutated to i within 250 PAM evolution

distance|occurrence of j).

From the accepted mutation matrix, a relatedness odds matrix
is defined as:

Rij = p[(j → i | j) | i] = p(j → i | j)

fi

= Mij

fi

= p(j mutated to i per occurrence of i, j),

where fi is the observed frequency of the amino acid i.
The commonly used PAM250 similarity matrix is a log-

odds matrix, P , derived from the relatedness odds matrix for
250 PAM distance.

Pij = 10 log Rij .

In the corresponding log-odds matrix, each value has the
following biological meanings:

(a) Each value Pij corresponds to the log of the likelihood
of how closely amino acids i and j are related compared
with independent events. The log values make for an
additive model.

(b) The value of Pii varies for different amino acids. This
value gives the likelihood that an amino acid remains
unchanged over time. It corresponds to the varying
mutability of different amino acids.

(c) A high positive value of Pij corresponds to a high likeli-
hood that amino acids j and i are related. Dissimilarity
is quantified as a negative value. This scoring scheme
makes it easier to pick up maximum local similarity
because the value zero, which corresponds to random
chance, acts as a cut-off score.

Matrix evaluation method
For validation purposes we compare the accuracy of the dif-
ferent matrices using Smith–Waterman local alignments. To
do so, the metric matrices must be converted into similar-
ity matrices. (Correctness of the Smith–Waterman algorithm
requires the substitution matrix have a mix of positive and neg-
ative values.) The conversion method involves calculating, for
each matrix, the median matrix element value and subtracting
it from each matrix element, which we determined produced
the best results. For mPAM, the resulting sign of the value
provides similar meaning as the sign of the entry in a PAM
matrix.

The test was conducted on a yeast protein database with
6433 protein sequences using a Linux machine (SUSE 8.0;
dual AMDXP 1800+ processors with 2 GB memory). The
query set contains 103 sequences whose true positive hits have
been identified by human experts and whose curation is con-
tinually refined (Schaffer et al., 2001). The yeast database
and query set as well as the set of true positive hits were
downloaded from ftp.ncbi.nlm.nih.gov/pub/impala/blastest
in August 2002.

For the 103 queries, we computed Smith–Waterman local
alignment scores using the following matrices: mPAM,
PAM250, PAM70, identity matrix (simple-edit distance),
genetic code matrix and inter-row distance matrix. For com-
parison, we also ran the same search on a stand-alone version
of BLAST using the PAM250 and PAM70 matrices. Our
Smith–Waterman implementation was coded in Java.

We used receiver-operating characteristic (ROC) scores to
compare the accuracy of each matrix (Gribskov and Robinson,
1996). For each entry in the database, the local alignment score
was calculated. The result is sorted by decreasing alignment
score. The ROC50 value is computed by comparing the result
list with the list of true positive hits. The ROC value has been
computed as the following:

ROCn = 1

nT

n∑
i=0

ti , (1)

where ti is the number of true positive hits ranked ahead of the
i-th false positive, and T is the total number of true positives.

RESULTS
Matrix derivation results
In the PAM derivation, Dayhoff et al. (1978) normalized
accepted mutation frequency data to form the concept of a
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1-PAM distance. This suggests that there may be other normal-
izations of the data resulting in different models but with the
same evolutionary bias. Our approach is to address this nor-
malization with respect to time period rather than frequency.
Since more frequent substitutions correspond to shorter time
periods, more similar sequences would be scored with smal-
ler values, consistent with a metric. Thus, to derive a metric
substitution matrix, we address two sub-problems:

(a) how to define a symmetric mutability between a pair of
amino acids;

(b) how to convert the probabilities into expected time with
respect to metric properties.

The accepted mutation probability, MAB, for amino acids A
and B given by PAM is the observed probability that amino
acid B could be substituted by amino acid A within a given
evolutionary distance. This asymmetric matrix is derived from
experimental data. For the first problem, mutual mutabil-
ity of amino acids A and B corresponds to the relatedness
between amino acid A and amino acid B. To establish an
unbiased view, we assume that if there were no mutations, all
amino acids would occur in nature with uniform probability
(Wootton and Federhen, 1993). We define the mutual mutab-
ility of two amino acids as the probability that the two amino
acids evolve to the same amino acid by accepted mutation
within given evolutionary distance. Hence, the relatedness of
any two amino acids is associated with not only the probability
of direct substitution between them but also intervening sub-
stitutions. The probability that amino acid A and amino acid B
could be the same through accepted mutation is defined as the
summation of the probability that amino acid A and amino
acid B could be mutated to the same amino acid in the same
period of evolutional time (2). Hence, we define

p(a, b) =
∑
x

[p(a → x | a) ∗ p(b → x | b)]

=
∑
x

(Mxa ∗ Mxb) if a �= b

p(a, b) = 1 if a = b, (2)

where x is any amino acid.
The assumption that any amino-acid mutation happens ran-

domly at a constant rate makes its probability distribution
random and memoryless, which is often modeled as an expo-
nential distribution. The exponential probability distribution
function is

F(t) = 1 − e−λt , (3)

where λ is the constant that corresponds to the accepted
mutation rate. Equation (3) is a standard representation of
the exponentional probability distribution. F(t) is defined as
the probability that an event, amino-acid substitution in this
case, occurs within time interval t (Casella and Berger, 2002).

Fig. 1. The mPAM250 matrix: the related expected time (based
on 250 PAM distance as one unit) for one amino acid to replace
another, per Equation (8) and the PAM250 matrix. The illustrated
result for C/W was the actual result decreased by 1 to maintain metric
properties.

The probability density function is

f (t) = d

dt
F (t) = d

dt
(1 − e−λt ) = λeλt . (4)

The expected time, t , for an event to happen is

E(t) =
∫ ∞

0
t ∗ f (t) dt =

∫ ∞

0
tλeλt dt = 1

λ
. (5)

Since the probability given by the PAM250 probability matrix
is that for one amino acid to mutate to another amino acid at
the same position based on 250 acceptable mutations per 100
amino acids, we define the time needed for 250 acceptable
mutations per 100 amino acids as one mPAM time unit. It
follows that the accepted mutation rate, λ, for each pair of
amino acids a, b is given by

λ(a→b) = − ln[1 − p(a, b)]. (6)

The expected mean time between two successive events is

T(a↔b) = 1

λ(a↔b)

= − 1

ln[1 − p(a, b)] . (7)

Thus, the elements of the distance matrix are calculated by
the following:

D (a, b) = − 1

ln (1.0 − ∑[p(a → x)p(b → x)]) if a �= b,

D (a, b) = 0 if a = b.
(8)

The matrix in Figure 1, mPAM, is the set of normalized
solutions for Equation (8) with respect to the PAM250 mat-
rix, except for the pair of entries representing the solution for
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Fig. 2. The difference between ROC50 using mPAM and PAM250.
The x-dimension shows the range of difference. For example, the
bar at 0.2 shows the number of queries on which the PAM250 has
better ROC50 than mPAM within 0.1–0.2 difference. Negative values
indicate that mPAM has better performance than PAM250. The bar
at 0 shows that there are 26 queries for which mPAM and PAM250
have the same ROC50 value.

cysteine (C) and tryptophan (W). The solution for cysteine and
tryptophan is 8, the largest distance between any two amino
acids. However, this single value causes three of the 1140
possible triangle inequalities to fail. Decreasing this single
distance to 7 results in a metric-matrix and maintains cysteine
and tryptophan as the unique pair of most infrequently sub-
stituted amino acids. Hence, the alteration will not have any
impact on the rank of distance between amino-acid pairs. We
round to a single digit since this was the resolution of the res-
ults in the source data (Dayhoff et al., 1978). In the Discussion
section, we detail a conjecture per the general ability of this
construction to produce metrics.

Matrix evaluation result
Figure 2 plots the comparison of ROC50 scores for each query
with respect to mPAM and PAM250. The mPAM ROC50

score was subtracted from PAM ROC50. A negative differ-
ence indicates a more accurate query result is returned by
mPAM. The mPAM alignments score the same as (26 cases)
or better than (17 cases) PAM in 43 out of 103 queries, or
nearly 43% of the total number of queries. Among 60 cases
where PAM250 outperformed mPAM, 21 queries score just
0.1 less accurate. A challenge in integrating the results across
the queries is that the size of the true positive sets is different,
preventing simple merging of the true positive sets. The size
of the true positive sets ranges from 1 to 123 and averages
10. For a sequence query with a total of 10 true positive res-
ults, just one disagreement in the number of true positive hits
ranked ahead of the first false positive result can induce a 0.1
difference in the ROC50 score.

In order to assess the overall performance, we averaged the
ROC plots among the 103 queries. Figure 3 is a plot of the

results. We see that mPAM performs very close to PAM70
(Table 1) in net performance. The inter-row distance mat-
rix is the best of the three prior metric substitution matrices.
PAM250 is nearly the best PAMx matrix for this bench-
mark. Although mPAM has almost the same performance as
PAM70, it is at a slight disadvantage compared with PAM250.
However, by examining the knees of the curves, we see that
the discrepancy between the inter-row matrix and mPAM is
about 50% larger than the discrepancy between mPAM and
PAM250.

In practice, many sequence homology search methods con-
struct the database by breaking sequences into fragments of
fixed length. Query sequences may also be broken into fixed-
length fragments. For example, the fragment length (hot-spot)
for BLAST defaults to 11 nt. The SST and BLAT packages
were analyzed for fragment lengths 4–10 and 8–16, respect-
ively (Altschul et al., 1990; Giladi et al., 2002; Kent, 2002).
A search is conducted by matching query fragments with
database fragments using global alignment. The matching
fragments are chained together to form a complete local align-
ment. In these approaches, the quality of fragment matching
is vital to the final result.

To test the quality of mPAM on fragmented representations,
we randomly generated a set of sequence fragments 10 amino
acids long. For each matrix, we computed all global align-
ments between pairs of fragments and then sorted them by
score. We chose the rank list produced by PAM250 as the
standard. The PAM250 list was compared with each other list,
and the percentage of the same hits among the top t hits was
computed (Fig. 4). The result from mPAM had good similarity
to PAM250 at small distances and significantly outperformed
the other metrics in general. These results suggest specific-
ally that SST- and BLAT-like algorithms can be extended to
protein sequences by replacing Hamming and edit distances
with mPAM distance. These algorithms would also achieve
much better sensitivity. Furthermore, when fragment match-
ing uses exact or near-exact matching, short fragment lengths
are required to retain good selectivity. With mPAM, it may
be possible to use much longer fragment lengths, which will
help improve speed. Sensitivity may be maintained by using a
larger search radius in the fragment match (Giladi et al., 2002;
Myers, 1994). Detailing these effects will require effort com-
mensurate with that put into analyzing and improving BLAST.

DISCUSSION
For the purpose of homology search, we have generated a
metric amino-acid substitution matrix. To summarize, Table 1
contains the average ROC50 scores for the results in Figure 3
and the ROC50 score for BLAST. The disparity in ROC50

scores between the mPAM results and the BLAST PAM250
score is just 0.05. These results are not directly comparable
since BLAST uses the statistical significance (E-score) of a
sequence match to prune the search in its chaining algorithm
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Fig. 3. Average fraction of true positive hits versus fraction of negative hits for PAM250, mPAM, PAM70, genetic-code matrix, inter-row
matrix and identity matrix (edit distance) using local alignment.

Table 1. Comparison of average of ROC50 value

Alignment method Smith–Waterman local alignment BLAST
Matrix name mPAM PAM 250 PAM 70 Inter-row distance Genetic code Edit distance PAM 250 PAM 70

Average ROC50 0.48 0.59 0.50 0.33 0.26 0.04 0.53 0.42

Fig. 4. Top t-score comparison among PAM250, mPAM, edit dis-
tance and genetic-code matrix. The plot shows the fraction of the
same fragments for top t rank. A set of randomly generated fragments
of length 10 was used.

and to rank the output. Assessing the significance of an
alignment score has greatly increased the quality of homo-
logy search results (Collins and Coulson, 1990; Altschul
and Gish, 1996; Altschul et al., 2001). Using methodology
similar to that of BLAST for chaining, we expect fragment

based sequence analysis to maintain or even improve upon the
accuracy we achieved using the Smith–Waterman algorithm.
Consequently, one can now anticipate that sequence analysis
methods like SST or BLAT may be extended and exhibit both
their intrinsic speed and scalability and the generality and
sensitivity of BLAST.

Our results also show that mPAM outperforms other metric
matrices (Fig. 3 and Table 1). As expected, the simple-edit
distance is insufficient because it does not contain any evol-
utionary information. Although the genetic-code matrix is
derived from the genetic codon, this calculation entails only an
information theoretic distance and does not take evolutionary
criteria into account (Haig and Hurst, 1991). The mathem-
atical projections from similarity-based matrices to distance
metrics, as proposed by Taylor and Jones (1993), necessarily
produce distance distortions. To solve the global classification
of protein sequences, Linial et al. (1997) used a distance meas-
ure between two segments of 50 amino-acid residues from
their similarity score [d(u, v) = s(u, u) + s(v, v) − 2s(u, v)]
with small metric distortion. We expect that mPAM can be
used in protein classification to form a metric space directly.

We anticipate that the explicit calculation of an expected
time between amino acid substitutions will draw the criti-
cism connected to the debate of the molecular clock theory
(Zuckerkandl and Pauling, 1962). A molecular clock was
also assumed to normalize the 1-PAM matrix. In general, the
simplifying assumptions in the derivation of the mPAM matrix

1219



W.Xu and D.P.Miranker

are nearly identical to those made in the derivation of the PAM
family. The most obvious weakness in mPAM with respect to
a molecular clock is that the relative mutability for different
amino acids is not preserved in mPAM as it is in PAM (all
the diagonal elements of mPAM are zero). We suspect this is
an important factor in the overall difference between mPAM
and PAM.

In another parallel with early work on sequence evolu-
tion, the number of mismatched nucleotides was initially used
as a distance measure. To compensate for the fact that the
difference count slows as the time of divergence between
two sequences increases, Jukes and Cantor (1969) developed
a correction for the simple-edit distance model for nucle-
otide sequences. The Jukes–Cantor correction as it applies
to peptides is

D = −
(

19

20

)
ln

[
1 −

(
19

20

)
D

]
(9)

or simply
D = −ln(1 − D). (10)

In our derivation of mPAM, we recognized the resemblance
of Equation (8) to Equation (10). The Jukes–Cantor model
assumes that all symbols share the same constant mutation
rate. Instead of using one constant rate for all of the amino-acid
pairs as in (10), we used a pair-specific value (6).

We expect that there are a number of refinements that may
be made to the mPAM model beyond adjusting for the relative
mutability of different amino acids. In particular, it may help
to explain our original speculation on why the mPAM deriv-
ation would succeed. We considered Seller’s theorem that if
a character-weighting matrix forms a metric, then the corres-
ponding weighted edit distance for sequences also forms a
metric (Sellers, 1974). We observed that for PAM Dayhoff
first aligned a set of sequences using maximum parsimony,
a distance metric, and then computed the phylogenetic tree,
also based on maximum parsimony. The evolutionary dis-
tances among the leaves of such a tree form an ultra-metric
(Gusfield, 1997). Under this circumstance, we speculated that
the converse of Seller’s theorem might hold, that traversing the
tree, counting amino-acid substitutions by sequence position,
should form a metric and that integrating the counts across the
length of the sequence would still be a metric. Our precise con-
jecture, which remains to be proven, is the following: given
an ultra-metric over a set of aligned sequences, there exists
a metric character weighting matrix such that the weighted
edit distance among the sequences will approximate the ultra-
metric. If this conjecture is proven constructively, then any
model of phylogenetic tree construction for sequences that
produces an ultra-metric may be used to define a metric sub-
stitution matrix. Nakhleh et al. (2002) have some recent results
that would further generalize this to allow any phylogenetic
tree construction, including an assessment of the deviation
of the approximation from a molecular clock. Just as the

PAM matrices spawned refinements and other substitution
matrices, we expect the mPAM model to be the subject of
further refinement.

The protein space is a very complex, high-dimension space.
None of the known scoring models can accurately capture all
of the complex relations within protein space. When a simil-
arity matrix is converted into a distance matrix, some property
loss is inevitable. Hence, the mPAM may not be as sensitive
as the PAM or BLOSUM series matrices when applied to a
certain set of sequences. Our intention of developing such a
matrix is to effectively index protein sequences in metric
space. Therefore, mPAM should primarily be used in build-
ing an index structure for overlapping k-mers of protein
sequences. Such an index structure can accelerate the homo-
logy search by offering fast on-line range query for searching
similar k-mers followed by a heuristic chaining algorithm to
form the local alignment results. In this sense, mPAM is the
most sensitive amino-acid substitution matrix with metric-
space properties. Moreover, there are several other important
issues in sequence analysis in addition to the scoring system,
such as the algorithm used to find alignment and the statist-
ical methods used to evaluate the significance of an alignment
score. Those other factors might substantially affect the results
of any scoring system. The integration of mPAM or a related
metric into homology search algorithms is still the subject of
research.

The doubling time of the sequence content of Genebank has
shrunk from 18 months to 15 months, and its rate of growth
continues to accelerate (Benson et al., 2002). Moore’s con-
stant for the doubling of processor speeds has been stable at
around 18 months for over a decade (Patterson and Hennessy,
1996). This means that the volume of biological sequence data
is growing faster than Moore’s law, and it has now reached a
rate of growth that ensures a widening gulf between computer
capacity and biological computing requirements. As a result,
metric-space indexing may be the only solution to manage
gigabytes of biological sequence data.

ACKNOWLEDGEMENTS
We acknowledge Jacob Sarvela and Rui Mao, students in the
laboratory who have participated in many discussions that
contributed to this paper. We thank Professors Andrew Mir-
anker and Edward Marcotte for their energetic and ongoing
encouragement in the pursuit of this research. This research
was supported in part by grants from the Texas Higher
Education Coordinating Board and NSF contract no. 0241180.

REFERENCES
Altschul,S.F., Bundschuh,R., Olsen,R. and Hwa,T. (2001) The

estimation of statistical parameters for local alignment score
distributions. Nucleic Acids Res., 29, 351–361.

Altschul,S.F. and Gish,W. (1996) Local alignment statistics. Methods
Enzymol., 266, 460–480.

1220



A metric model of amino acid substitution

Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215,
403–410.

Baldi,P., Chauvin,Y., Hunkapiller,T. and McClure,M.A. (1994) Hid-
den markov models of biological primary sequence information.
Proc. Natl Acad. Sci., USA, 91, 1059–1063.

Benson,D.A., Karsch-Mizrachi,I., Lipman,D.J., Ostell,J.,
Rapp,B.A. and Wheeler,D.L. (2002) GenBank. Nucleic
Acids Res., 20, 17–20.

Brin,S. (1995) Near neighbor search in large metric spaces. Proceed-
ings of the 21st Conference on Very Large Database (VLDB’95),
September 11–15, Zurich, Switzerland, pp. 574–584.

Casella,G. and Berger,R.L. (2002) Statistical Inference, 2nd edn.
Duxbury Press, Pacific Grove, CA.

Chavez,E., Navarro,G., Baeza-Yates,R. and Marroquin,J.L. (2001)
Searching in metric spaces. ACM Comput. Surv., 33,
273–321.

Collins,J.F. and Coulson,A.F. (1990) Significance of protein
sequence similarities. Methods Enzymol., 183, 474.

Cox,L.A., Birnbaum,S. and VandeBerg,J.L. (2002) Identification of
candidate genes regulating HDL cholesterol using a chromosomal
region expression array. Genome Res., 12, 1693–1702.

Dayhoff,M.O., Schwartz,R. and Orcutt,B.C. (1978) Atlas of protein
sequence and structure. 5 (Suppl. 3), 345–358.

Fitch,W.M. (1966) An improved method of testing for evolutionary
homology. J. Mol. Biol., 16, 9–16.

Giladi,E., Walker,G.M., Wang,J.Z. and Volkmuth,W. (2002) SST: an
algorithm for finding near-exact sequence matches in time propor-
tional to the logarithm of the database size. Bioinformatics, 18,
873–879.

Gonnet,G.H. and Benner,S.A. (1996) Probabilistic ancestral
sequences and multiple alignments. 5th Scandinavian Workshop
on Algorithm Theory, Springer vol. 1097 of Lecture Notes in
Computer Science, pp. 380–391.

Gribskov,M. and Robinson,N.L. (1996) Use of receiver operating
characteristic (ROC) analysis to evaluate sequence matching.
Comput. Chem., 20, 25–33.

Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences
Computer Science and Computational Biology. Press Syndicate
of the University of Cambridge, USA, pp. 449–454.

Haig,D. and Hurst,L.D. (1991) Quantitative measure of error min-
imization in the genetic code. J. Mol. Evol., 33, 412–417.

Hedenfalk,I., Ringner,M., Ben-Dor,A., Yakhini,Z., Chen,Y.,
Chebil,G., Ach,R., Loman,N., Olsson,H., Meltzer,P., Borg,A.
and Trent,J. (2003) Molecular classification of familial
non-BRCA1/BRCA2 breast cancer. Proc. Natl Acad. Sci., USA,
100, 2532–2537.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution
matrices from protein blocks. Proc. Natl Acad. Sci. USA, 89,
10915–10919.

Jukes,T.H. and Cantor,C. (1969) Evolution of protein molecules.
In Munro,H. (ed.), Mammalian Protein Metabolism. Academic
Press, USA, pp. 21–132.

Kent,W.J. (2002) BLAT—the BLAST like alignment tool. Genome
Res., 12, 656–664.

Linial,M., Linial,N., Tishby,N. and Yona,G. (1997) Global self
organization of all known protein sequences reveals inherent
biological signatures. J. Mol. Biol., 268, 539–556.

Myers,E.W. (1994) A sublinear algorithm for approximate keyword
searching. Algorithmica, 12, 345–374.

Nakhleh,L., Roshan,U., Vawter,L. and Warnow,T., (2002) Estim-
ating the deviation from a molecular clock. Proceedings of the
Second International Workshop on Algorithms in Bioinformat-
ics (WABI). Lecture Notes in Computer Science (LNCS #2452),
pp. 287–299.

Needleman,S.B. and Wunsch,C.D. (1970) An efficient method
applicable to the search for similarities in the amino acid
sequences of two proteins. J. Mol. Biol., 48, 443–453.

Patterson,D.A. and Hennessy,J.L. (1996) Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco.

Rouchka,E.C., Gish,W. and States,D.J. (2002) Comparison of whole
genome assemblies of the human genome. Nucleic Acids Res., 30,
5004–5014.

Schaffer,A.A., Aravin,L., Madden,T.L., Shavirin,S., Spouge,J.L.,
Wolf,Y.I., Koonin,E.V. and Altschul,S.F. (2001) Improving
the accuracy of PSI-BLAST protein database searches with
composition-based statistics and other refinements. Nucleic Acids
Res., 29, 2994–3005.

Sellers,P.H. (1974) On the theory and computation of evolutionary
distances. J. Appl. Math. (SIAM), 26, 787–793.

Smith,T.F. and Waterman,M.S. (1981) Identification of common
molecular subsequences. J. Mol. Biol., 147, 195–197.

Taylor,W.R. and Jones,D.T. (1993) Deriving an amino acid matrix.
J. Theor. Biol., 164, 65–83.

Waterman,M.S., Smith,T.F. and Beyer,W.A. (1976) Some biological
sequence metrics. Adv. Math., 20, 367–387.

Wootton,J.C. and Federhen,S. (1993) Statistics of local complexity
in amino acid sequences and sequence databases. Comput. Chem.,
17, 149–163.

Zuckerkandl,E. and Pauling,L. (1962) Molecular disease, evolu-
tion and genetic heterogeneity. In Kasha,M. and Pullman,B.
(eds), Horizons in Biochemistry. Academic Press, New York,
pp. 189–225.

1221


