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Abstract

mSQL is an extended SQL query language
targeting the expanding area of biological
sequence databases and sequence analysis
methods. The core aspects include first-class data
types for biological sequences, operators based
on an extended-relational algebra, an ability to
define logical views of sequences as overlapping
q-grams and the materialization of those views as
metric-space indices.
We first describe the current trends in biological
analysis that necessitate a more intuitive,
flexible, and optimizable approach than current
methodologies.  We present our solution, mSQL,
and describe its formal definition with respect to
both physical and logical operators, detailing the
cost model of each operator. We describe the
necessity of indexing sequences offline to
adequately manage this type of data given space
and time concerns. We assess a number of
metric-space indexing methods and conclude that
MVP-trees can be expected to perform the best
for sequence data. We ultimately implement two
queries in mSQL to show that, not only can
biologically valid analyses be expressed in
concise mSQL queries, such queries can be
optimized in the same ways as those relying on a
standard relational algebra.

1. Introduction

As biological data proliferates, the creation of new
computational biological protocols is also proliferating.
The focus of attention within sequence analysis is moving
beyond the identification of proteins and their homology.
New foci include identification of regulatory elements
such as transcription binding sites and RNA coding genes
[2,22,23,26,32].  Some investigational techniques, such as
phylogenetic footprinting, often require the comparison of
the entire contents of two or more genomes. While its
domain of applicability is often stretched, BLAST targets
protein sequence homology and its execution comprises a
linear scan of the database. In many cases BLAST is
either not equipped to discern the features of interest, or it
is computationally infeasible to use BLAST.  While
BLAST can be applied to comparing two genomes, the
resulting algorithm is O(n2), where n is the length of the
genomes.

In reviewing the biological literature we made two
important observations. First, much of the computation in
these new analysis methods could easily be captured as
database queries, but conventional relational query
engines are incapable of querying sequences in
biologically meaningful ways [28].  For example, a recent
Science paper started with the question, “What highly
similar subsequences co-occur in the genomes of humans,
mouse and rat?” [2]. Yet it is clear the researchers labored
to develop the computation and the final scientific
interpretation required integrating the results with
annotation data stored in the same database where the
sequences were kept.

Second, the storage and identification of biological
sequences comprises long functional units (e.g. genes,
proteins and chromosomes), but the analysis and retrieval
of those sequences is almost always concerned with
finding ordered sets of short matching subsequences. (The
Smith-Waterman local-alignment algorithm is the notable



exception.) Indeed, Search for short, nearly matching
subsequences is now a top-level option at NCBI’s BLAST
homepage [27].

We have addressed both of these issues in the
development of mSQL, a database query language that is
part of a larger experimental DBMS targeting biological
data. Two logical operators, createfragments() and its
complement, merge() , are used to help resolve the
dichotomy between the storage and identification of
sequences as long units and the analysis as the
comparison of short subsequences. Biologists are often
concerned with local-alignments, small areas between
pairs of sequences that are evolutionarily close, as defined
by a weighting model. Local-alignment algorithms often
start by performing exact matches on small subsequences
(hot-spots). For this reason, mSQL reflects an algorithmic
structure where sequences are decomposed into
overlapping substrings of length q (q-grams) [12].
Createfragments() decomposes a sequence into q-grams,
and merge() rejoins them. The algebra is much simpler
than many previous efforts on string query systems, and a
strong foundation in extended-relational algebra
simplifies implementation and optimization [11].

We also introduce the concept of a sequenceview,
which allows the database system to create a persistent
materialization of the q-gram representation.  In the
current implementation of mSQL, sequenceviews are
materialized as secondary indexes based on metric-space
indexing.

A metric-space is defined as a set of points and a
corresponding metric distance function, or metric. A
metric, by definition, obeys the triangle inequality.  That
property can be leveraged to form tree-based index
structures without embedding the data in a Euclidean
space [7,17]. Both biological and multimedia applications
may benefit from this approach [9,10,16,24].

The taxonomy of metric-space indexing algorithms
contains three primary classes: radius-based, generalized
hyperplane, and vantage point. To our knowledge there
are no refereed papers where the performance of the
different classes are compared on a biological workload.
We assess the performance of one algorithm from each of
the three major classes. We conclude that for sequence
data, MVP-trees perform the best.  We subsequently
consider detailed parameterization needed to optimize the
index structure. We then present empirical results
demonstrating the scalability and biological accuracy of
the system.

Finally, we present two biologically valid, working
mSQL queries, one of which is an mSQL version of the
genome comparison analysis mentioned above. In
previous work we have published 6 other mSQL queries
that encode use cases similar to the query above, all
drawn primarily from Science and Nature [26]. While we
have previously described the syntax of the language, this
is the first formal presentation of its semantics and
algebra. We use these two examples to detail how a query

optimizer could optimize the query using the rules of the
algebra.

2. mSQL

We have coined the term mSQL to describe our keyword
and operator additions to the SQL92 specification.  We
will use the explanation of a simple query to find
homologous regions in two genomes as a running
example to detail the merits of the system.  The schema
for a simple genome database is defined with the
following mSQL declaration:

create table genomes(
Organism varchar,
Acc_num integer,
DNA_Sequence dna,
constraint PK_genomes primary key (Acc_num)).
In addition to the standard SQL data types, mSQL

includes built-in data types for DNA and Protein
sequences, as well as Spectra (to support mass
spectroscopy analysis).  In the example, we assume for
simplicity that DNA_Sequence is a string, as its complete
definition entails biological semantics beyond the scope
of this paper (i.e., equivalence of reverse complements).
We will be looking for homologous regions of length 3
between the rat and mouse genomes that differ by at most
1 nucleotide.  For brevity, the rat ‘genome’ is illustrated
as two chromosomes and is 11 nucleotides long. The
mouse ‘genome’ is just 6 nucleotides long. The example
database is populated as shown in Table 1.

Table 1. Example genomes database

Organism Acc_num DNA_Sequence
rat 1 AGAAC
rat 2 CCGAT
mouse 3 AACAAT
From the logical perspective, our key contributions are

two new operators: createfragments() and its complement,
merge(). Createfragments() decomposes sequences into
overlapping substrings, also known as q-grams. Merge()
maps sets of overlapping q-grams back into larger
sequences. We include a groupfragments() operator,
which allows the user to ensure that merge() is applied
only to groups of q-grams with corresponding offset
differences. Finally, we have extended the distance()
operator of spatial databases to allow for a choice of
metric.

Algebraically createfragments() and merge() are
defined similarly to the unnest and nest operators of an
extended-relational algebra [19].  If the substrings did not
overlap, the behavior of createfragments() would be
identical to unnest applied to a representation of
sequences as a set of substrings. Merge() has similarly
been refined from nest to include biological semantics
constraining the nesting of overlapping q-grams.

mSQL also introduces a new type of view,
sequenceview. A sequenceview is a physical database
construct analogous to SQL’s v i e w .  Explicit in a



sequenceview is the materialization of createfragments()
as a secondary metric-space index.

2.1 Createfragments(κsequence:length)

Createfragments() takes two arguments: a table name
and sequence attribute (in dot notation) followed by the
length of the substring. The second parameter serves to
define the width of the sliding window on the sequences
when creating fragments.  Since in our example we will
be looking for homologous regions of length three, we set
this parameter to be three. The following query
demonstrates the syntax of the createfragments()
operation:

select * from createfragments(genomes.DNA_Sequence, 3)
where Organism = ‘rat’.
The results of the createfragments() operation are

shown in Table 2.
Table 2. Results of createfragments() operation

Createfragments(genomes.DNA_Sequence, 3)
Organism Acc_num DNA_Sequence
rat 1 {0, AGA}
rat 1 {1,     GAA}
rat 1 {2,        AAC}
rat 2 {0, CCG}
rat 2 {1,    CGA}
rat 2 {2,       GAT}
The createfragments() operation is formally defined as

follows: Assume a tuple X = {x1, x2, … xi, … xn}, where
xi represents a sequence of length m. Given xi and q, the
length of the fragment to create, the createfragments
operation will create a relation with m-q+1 tuples, X1, X2,
…Xj, … Xm-q+1. Each entity x of each tuple Xj is identical
except for xi, which consists of an offset equal to j and a
subsequence of the original sequence from j to j + m.
This operation is repeated for each tuple in the relation.

2.2 Sequenceview

By representing sequences as tables of q-grams we can
use join operators to compare the contents of the
sequences to each other. This by itself is not new.
Gravano et al. explicitly materialized q-grams in an
auxiliary table [12] such as the one shown in Table 2.
However, the lengths of the actual mouse and rat genomes
are ~2.6x109 bp and  ~2.75x109 bp respectively. With a q-
gram size of 200, (the size used in our application
example in section 7), a whole genome comparison would
require generating ~5.35x109 rows of 200 characters each,
or ~1.07x1012 extra characters. Furthermore, even if it is
feasible to materialize and compare q-grams at query time
under some computationally simple models of q-gram

similarity, biological sequences are more often compared
using expensive similarity models of evolution, i.e.,
weighted edit distance.

Moreover, the data in biological sequence databases is
write-once and monotonically increasing in size.  Entries
are rarely updated, and if they are updated the culture
demands that it be accomplished through versioning.
Under this workload it is safe to exclude the cost of
maintaining a view in the face of updates and deletes to
the base relations [3]. Once a sequenceview is
materialized as an index, it may be accessed multiple
times—reducing the impact of the cost of building the
index and providing a fast access path for range and
nearest neighbor queries. Figure 1 illustrates the creation
of a sequenceview for the rat genome in the example.

A sequenceview is comprised of two major elements:
1. Sequences that are to be included in a sequenceview

are derived in the standard method involving a SQL
query, including the explicit decomposition of the
sequences into q-grams using createfragments()
(lines 2-3).

2. A metric index is specified as the access-path for the
q-grams (line 4).

Part of the generality of metric-space indexes is that
the development of the index mechanism is independent
of the metric distance function (metric).  Thus, in addition
to the usual arguments to create a secondary index, the
creation of a metric-space index is parameterized by the
choice of metric.

Once createfragments() splits the sequences into a set
of fragments of a certain fragment length, a metric-space
index tree can be built over these fragment, which can
then be used to accelerate matching of fragments. The
details of materializing sequenceviews are described in
section 4.

2.3 Merge(λpredicate) and Groupfragments(γ)

Given a set of q-grams, it is ultimately necessary to
assemble them back into longer sequences.  The set of q-
grams may have been the argument to relational
operators, and not all of the q-grams of the original
sequence may be present in the computed result.
Informally, if two q-grams overlap or merely adjoin with
respect to the original sequence, we wish to merge them
into a longer sequence.

The merge operation takes as arguments the attributes
of a tuple to be merged. In terms of a relational algebra,
two tuples of a relation, X = {x1, x2, … xn} and Y = {y1,
y2, … yn}, can be merged into one tuple Z = {z1, z2, … zn}
iff, for each attribute pair xi, yi:
• xi = yi (yielding zi = xi = yi); or
• if xi and yi represent sequence fragments (with

offsets xik, yik, and lengths xim, yim),
o xik ≤ yik ≤ xik + xim, and
o xi from yik to (xik + xim) = yi from yik to (xik + xim).

1.create sequenceview rat_sview as
2. select * from createfragments(genomes.DNA_Sequence, 3)
3. where Organism = ‘rat’
4.using base_pair_mismatch;

Figure 1. Creation of a sequenceview



Depending upon the biological significance of the
query, it may be desirable to only reassemble fragments
that have a specific offset distance between two or more
different sequences.  A groupfragments() operator is
included so that merge() can be applied to sets of q-grams
that obey this property. A fragment group is formally
defined as follows:

For two sets of fragments, S1 = {s1, s2, … sn}, T = {t1,
t2, … tn}, where each fragment has a sequence offset
denoted xik, si, ti and sj, tj belong in the same fragment
group iff
• tik – sik = tjk – sjk.

The GROUP BY operator is overloaded to represent
the groupfragments() operator,  al though the
groupfragments() operator is quite different from the
traditional SQL GROUP BY operator. While the
traditional GROUP BY operator is based on equality, i.e.,
only equal objects are put into the same group, the
groupfragments() operator groups fragments based on the
equality of their offset differences. Also, unlike the
standard GROUP BY, groupfragments() only has
meaning when applied to more than one attribute.

2.4 Distance(δ(metric, a, b))

Below we illustrate the final SQL program for identifying
q-grams from our two genomes that differ by at most one
nucleotide:

select R.Organism, R.Acc_num, M.Organism, M.Acc_num,
merge(R.DNA_Sequence, M.DNA_Sequence)

from rat_sview as R, mouse_sview as M
where distance('base_pair_mismatch',

R.DNA_Sequence, M.DNA_Sequence) <= 1.0
group by R.Organism, M.Organism, R.Acc_num,

M.Acc_num, R.DNA_Sequence, M.DNA_Sequence;
A metric-space join is similar in concept to a spatial

join.  The goal is to determine pairs of objects that fulfill a
certain distance predicate. Analogous to spatial extensions
of SQL, mSQL allows distance predicates for selects and
joins.  The syntax has been expanded to allow for the
specification of a metric. In addition to built-in metrics,
users may extend mSQL with their own definitions of
new metrics.

Table 3. Results of the metric join

Org. Acc_
num

DNA_
Sequence

Org. Acc_
num

DNA_
Sequence

rat 1 {0, AGA} mouse 3 {1, ACA}

rat 1 {1,     GAA} mouse 3 {2,     CAA}

rat 1 {2,        AAC} mouse 3 {3,        AAT}

rat 1 {2, AAC} mouse 3 {0, AAC}

rat 2 {2, GAT} mouse 3 {3, AAT}

Table 3 illustrates the results of the metric join after
groupfragments() has been performed but before the
merge(). The first and second row of the join result have
been placed into the same fragment group by the
groupfragments() operator. Since they also meet all of the
requirements of the merge operation, the first two
fragments can be merged into one fragment for sequences

1 and 2, respectively, yielding the final results of the
query as shown in Table 4.

Table 4. Results of the mSQL query

merge(R.DNA_Sequence, M.DNA_Sequence)

Org. Acc_
num

DNA_
Sequence

Org. Acc_
num

DNA_
Sequence

rat 1 {0, AGAAC} mouse 3 {1, ACAAT}

rat 1 {2, AAC} mouse 3 {0, AAC}

rat 2 {2, GAT} mouse 3 {3, AAT}

3. Properties of the algebra

A well-defined algebra provides certain guarantees that
that a query optimizer can depend upon when forming
cost-effective query plans.  In this section we list some of
the properties of the algebra that can be used by the query
optimizer, as well as the cost of each additional operator.

It is easy to see that merge() is the inverse of the
createfragments() operation.  Thus,  λκ(R) = R.

A metric join is defined as a theta-join with a distance
function as one of the operators and a radius as the other,
where both of the inputs to the distance function are
attributes of relations. Thus a metric join obeys all of the
properties of a theta-join. Also, since the distance function
is defined to be commutative, where  δ(metric, a, b) =
δ(metric, b, a), (since metrics are symmetric), a metric
join is commutative over the attributes of the distance
function:

R |×|δ(metric, a, b) ≤  r S = R |×|δ(metric, b, a) ≤  r S.
Depending on the size of the relations R and S and the

method used to perform the join, the cost associated with
the join can be optimized. For instance, if the join is
implemented as an indexed nested loop, the query
optimizer can place the relation with fewer tuples on the
outside of the loop.  Metric join is also associative over
the attributes of the distance function:

(R |×|δ(metric, a, b) ≤  r1 S) |×|δ(metric, b, c) ≤  r2T =
R |×|δ(metric, a, b) ≤ r1 (S |×|δ(metric, b, c) ≤ r2 T).
This rule can be used to select the order of the join

operations over several distance functions. Furthermore,
metric join is also distributive over the attributes of the
distance function:

(R |×|δ(metric, a, b) ≤  r1 S) |×| (R |×|δ(metric, a, c) ≤  r1 T) =
(R |×|δ(metric, a, b) ≤  r1 S) |×|δ(metric, a, c) ≤  r1 T.

A metric match is defined as a select operation with a
distance predicate in which one of the attributes is a
constant. Like select, it is commutative:

σδ(metric, V, a) ≤  r1 (σδ(metric, W, b) ≤  r2 (S)) =
σδ(metric, W, b) ≤  r2 (σδ(metric, V, a) ≤  r1 (S)).

The metric match operator also distributes over the
metric join operator:

if attribute a occurs in R but not in S:
σδ(metric, V, a) ≤ r1 (R |×|δ(metric, b, c) ≤  r2 S) =

 (σδ(metric, V, a) ≤ r1 R) |×|δ(metric, b, c) ≤  r2 S; or
if attribute a occurs in S but not in R:



σδ(metric, V, a) ≤ r1 (R |×|δ(metric, b, c) ≤  r2 S) =
R |×|δ(metric, b, c) ≤  r2 (σδ(metric, V, a) ≤ r1 S); or

if attribute a occurs in both R and S:
σδ(metric, V, a) ≤ r1 (R |×|δ(metric, b, c) ≤  r2 S) =

(σδ(metric, V, a) ≤ r1 R) |×|δ(metric, b, c) ≤  r2 (σδ(metric, V, a) ≤ r1 S).
By pushing down metric match operations, the query

optimizer can reduce the size of temporary tables, thereby
reducing the size of the input parameters to the expensive
metric join operation.

The cost model for the new operators is listed in Table
5, where m and n represent the total number of input
fragments for two different sequences and p represents the
total length of an input sequence. As one can see, the
general query plan will involve pushing the metric join as
far as possible to the top, as it is the most expensive
operation performed at query time.

Since the metric join is the most expensive operation,
it is vital that mSQL uses an optimal index structure for
biological information. In the next sections, we describe
the materialization of sequenceviews as metric-space
indices and compare the performance of various metric-
space index trees.

Table 5. Cost model for algebraic operators

Operator Cost Description
Createfragments(κ) O(p) A linear scan
Merge(λ) O(m) A linear scan
Groupfragments(γ) O(mlogm) Sort followed by

a linear scan
Metric match O(logm) Using a metric-

space index tree
Metric join O(mlogn) Using nested

indexed loops

4. Materializing sequenceviews

4.1 Managing biological sequences in a metric-space

The use of metric-space indexing distinguishes our
approach from others where only exact or near exact
matching fragments can be searched [21]. Given a query
q-gram, our approach can identify a neighborhood of
evolutionarily close q-grams through a range search.  The
neighborhood of a q-gram is determined by a metric
distance function and a radius parameter of a given size.

The first step in developing a metric-space index for
a given type of data is to define a metric distance function
for that datatype. For nucleotides, we use weighted
Hamming distance as the metric distance function.
Comparing peptides is more difficult, because the protein
space has a larger alphabet size and contains more
complex relations than sequences of nucleotides.  The
primary challenge of indexing peptides in a metric space
is to properly define the distance between amino acids.
Sellers first proposed this problem in 1974 [29].  In our
previous work we derived a biologically effective amino

acid substitution matrix, mPAM, which satisfies the
metric distance properties [39].  The metric distance
function defined by mPAM enables effective indexing of
protein sequence in a metric space [40].

4.2 General approaches of metric-space indexing

Having implemented a metric distance function for both
nucleotides and peptides, the next step is to determine
which type of metric-space index will provide the best
performance for these data types. There are three
categories of tree-based index algorithms for metric-space
index trees: radius-based (RB) trees, generalized
hyperplane (GH) trees, and vantage point (VP) trees.  Our
first concern is a basic assessment of the performance of
each class on our workload.  This assessment is important
as analytic results have concluded that a linear search of
high-dimensional data will outperform indexing methods
[36].  Even though metric-space indexing enables the
retrieval of data without any explicit interpretation of the
data in Euclidean space, the data may intrinsically be of
high dimension.

Excellent survey articles on metric-space indexing
already exist [7, 17], so we present only the most basic
description of the various methods’ predicate structure.
Radius-based trees were inspired by R-trees [15].  In a
radius-based method, a hierarchy of bounding spheres
replaces the rectangles used in R-trees.  Bounding spheres
are defined by a pair c, r, where c is the center of the
sphere and the radius r determines the volume of the
bounding sphere.  Interior nodes of the tree contain a set
of predicates p, with d(c, p) < r, such that all points p
stored in the sub-tree are contained in the sphere.  Ciaccia
et al.’s M-trees are radius-based.  Ciaccia et al.’s effort
stands out as the first investigation of an external metric-
space index structure with all of the page organization and
dynamic properties expected of a database index [8].  The
results we present are for the RB-tree, our improvement
on the M-tree [24].  A challenge of M-trees, like R-trees,
is that bounding predicates may overlap, reducing the
opportunity to prune branches during search.  RB-trees
optimize the internal node structure and search
mechanism of M-trees and contain an improved bulk-
loading scheme.

In a binary GH-tree, two data points are selected as
pivots.  The surface of the hyperplane is determined by all
the points equidistant between the pivots.  A data point is
stored in the sub-tree with the closest pivot.  More
precisely, given pivots c1 and c2, a point p is stored in the
sub-tree corresponding to c1 if d(c1, p) < d(c2, p).
Otherwise it is stored in the sub-tree corresponding to c2.
Brin describes GNATs (geometric near-neighbor access
trees), which generalize the binary structure of a GH-tree
to consider many pivots and larger fanout of interior
nodes [5].

Predicates in a multi-vantage point (MVP) tree
consider multiple pivots as well as multiple partitioning



radii.  In a single vantage point tree, a pivot c and a radius
r are selected, just as in a radius-based method.  However,
in vantage point methods the radius forms a partitioning,
not a bounding sphere.  If we seek a binary partition, r is
selected such that the number of points that fall outside
the partition sphere is equal to the number of points inside
the sphere.  Therefore, r is actually the median of the
distances for all data points to the pivot.  Similarly,
multiple medians can be selected so that the distance
range from each vantage point may be broken into
intervals.  The Cartesian product of the intervals forms a
set of data partitions. The resulting structure is similar to a
kd-tree.  The construction is applied recursively to form
an index tree [4].

For GH-trees and MVP-trees, partitions form crisp
boundaries.  The results presented below show that the
overlap in the bounding predicates of a radius-based
method put it at a disadvantage.  An advantage of the
general hyperplane method over radius-based methods is
that a GH-tree has no radius and its clusters do not
overlap.

4.3 Optimal index structure for biological sequences

Each of the three metric space index structures carries
with it advantages and disadvantages.  To select the one
best fitted for indexing biological data, we implemented
all three algorithms and tested on a biological benchmark.

The benchmark suite is curated and furnished by
NCBI. The dataset contains 6433 yeast protein sequences
(about 2,892,155 residues). The query set contains 103
sequences whose true positive hits have been identified by
human experts and whose curation is continually refined
[28]. The benchmark suite was downloaded in August
2002 (ftp.ncbi.nlm.nih.gov/pub/impala/blastest).

Each index structure was tested by running range
queries on the yeast protein dataset, which was indexed
for global alignment of 5-grams using the mPAM matrix.

Our implementations of the GH-tree and the VP-tree
are slightly different from the original structures.
Originally, both GH-trees and VP-trees reside in main
memory.  In our implementation both algorithms are
parameterized such that their index nodes are sized to 4
kilobyte disk pages.  Thus, a measure of the number of
I/O operations is representative of the number of nodes
visited. In our implementation of the MVP-tree, the
number of vantage points and the split number of each
vantage point are maximized to make index nodes occupy
a full disk page. We use the farthest-first-traversal (FFT)
algorithm to select vantage points [18].  FFT is a k-center
algorithm, guaranteed to generate a clustering in which
the maximum cluster radius is within a factor of 2 of
optimal. In our GH-tree implementation we also compute
the radius of the bounding sphere containing all the points
in the partition. The retrieval algorithm integrates
additional pruning due to the bounding sphere predicate
into the GH-tree search procedure.

The experiment results are presented in Figure 2.
Since in most applications of metric-space indexing the
distance calculations are expensive, the goal of the index
structure is to minimize both the amount of I/O and the
number of distance calculations. Figure 2 shows the
relationship between the range search radius and the
number of distance calculations and the amount of I/O for
each index tree.  From this figure we can see that the RB-
tree has the largest number of distance calculation and the
MVP-tree has the largest number of I/O operations for
large radii.  However, the MVP-tree yields the best
performance for small range query radii.  In our
applications, the most biologically effective results are
obtained at small search radii. Thus we select the MVP-
tree as the best index structure for protein sequences.

4.4 MVP-tree parameter selection

Having chosen an MVP-tree  for our index structure, it is
necessary to choose the proper parameters for that tree.
There are three parameters associated with our MVP-tree
implementation: the number of vantage points in each
node, the number of children of each vantage point and
the maximum number of data points in each node.  There
is always a trade-off between the number of leaves visited
and the number of distance calculations needed.  The
more data points a node has, the less leaf nodes need to be
visited. However, a tree with bigger nodes requires more
distance calculations on each search. Figures 3 and 4
show the experimental results for various parameter
combinations.  Based on these results, we decided to use
two vantage points per node, two children per vantage
point and a maximum number of 100 data points per leaf
node.

Figure 2. Comparison of metric-space index
structures: RB-tree, GH-tree, and VP-tree
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4.5 Paged MVP-tree for materializing sequenceviews

We decided to use q-grams of length 5 for peptide
indexing [40] based on our results.  Since the alphabet
size of a peptide sequence is 20, the complete space of q-
grams will quickly be covered as the number of q-grams
increases. Furthermore, in a real dataset, some q-grams
have a significantly higher repetition rate than others
because of the non-uniform distribution of amino acids.

To solve this problem, we bucket the fragments in
index leaves.  For each leaf index node, identical
fragments are put into one bucket.  Only one distance to
each vantage point is stored for all of the fragments in
each bucket.  When a query is executed, if a bucket

cannot be pruned, the query must only compute distance
to one fragment in the bucket to determine whether or not
all of the fragments in the bucket are valid results.

Figure 5 shows that the bucketing structure can
decrease the average number of distance calculations even
for the benchmark dataset, which barely covers the space
of q-grams with length 5.  Such a data structure will be
more effective and assure scalable search performance for
a larger dataset.

5. Empirical results

In this section, we present our experimental results from
an analysis conducted on a protein sequence domain with
the benchmark described in section 4.3. The results show
that the q-gram approach has scalable, sensitive search
performance on biological sequences.

5.1 Quality of search result

The same benchmark described in section 4.3 was used to
analyze the performance of PSI-Blast [30]. The quality of
the search result is measured using receiver-operating
characteristic (ROC) scores, a popular measure used in
biology [13]. A similar method was used in [30] as well.
For each query, the ROC50 value is computed by
comparing the result list with the list of true positive hits.
The ROC50 value has been computed as follows:

ROCn = 
1

nT
 
i=1
Σ
n

ti                                                   (1)

where ti is the number of true positive hits ranked ahead
of the ith false positive, and T is the total number of true
positives.
Table 6. Comparison of average of ROC50 values for various

searches

Search Method Matrix Average ROC50

Sequential Search with Smith- MPAM 0.48
Waterman local alignment PAM250 0.59

algorithm PAM70 0.5
Indexed

Radius 3 0.45
Search Radius 4 0.53

AutoRadiusSearch

MPAM

0.5

PAM250 0.53
BLASTP

PAM70 0.42

In our indexed search, every query sequence is first
broken into overlapping 5-grams.  Each of these
fragments is then queried with a certain radius against a
pre-built database of the yeast protein sequence which has
also been broken into overlapping 5-grams. The returned
5-grams are processed using a heuristic chaining
algorithm to generate the homology search results.  Table
6 compares the average ROC50 score for each query using
different search radii as well as other search algorithms
with the same benchmark. The top three rows are results
computed using the Smith-Waterman local alignment

Figure 4. Average number of leaf nodes visited per
query for various tree structures

Figure 5. Average number of distance calculations using
a bucketing structure with MVP-trees
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Figure 3. Average number of distance calculations per
query for various tree structures.
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algorithm with different PAM matrices.  The bottom two
rows are the results of using Blastp program with
PAM250 and PAM70 matrices.  The middle three rows
are indexed search results using our approach with
different radii.  Each query sequence normally requires
many q-gram searches.  In the normal range search based
strategy, the same radius is used for all of the q-gram
searches. For example, in radius 4 search, all the q-grams
in the database that are within a distance of 4 to the query
q-gram are returned. Although radius 4 search shows
better accuracy than the radius 3 search (since more q-
grams are being returned per query q-gram) the search
process is also slower than the radius 3 search.  To
improve accuracy without losing too much performance,
we developed another search strategy named
AutoRadiusSearch.  Am AutoRadiusSearch automatically
adjusts the search radii based on the predicted number of
matching q-grams for each q-gram in the query sequence.

The results show that, using metric space indexing,
protein sequence homology search can yield accuracy
comparable to Blastp on the same benchmark.  Note that
the accuracy of the results is actually affected by many
factors, such as the value of the substitution matrices, the
search strategy, the chaining strategy, etc. [14].

5.2 Scalability of the search

The entire benchmark database used for the accuracy test
contains about 3 million amino acids.  In order to get a
more meaningful assessment of scalability, we acquired a
larger data set that contains FASTA formatted amino acid
translations extracted from GenBank/EMBL/DDBJ
records that are annotated with one or more CDS features.

The file was downloaded from Genbank in July 2003
(ftp://ftp.ncbi.nih.gov/genbank/genpept.fsa.z). A set of
databases was built with different subsets of the data that
were taken sequentially from the full dataset. The same
set of queries from the yeast benchmark was used for all
of the databases.

We used the same query set as used in the accuracy
benchmark against various sizes of databases with the
AutoRadiusSearch search strategy. The average number
of distance calculations and the average number of leaf
nodes visited are plotted in Figure 6. Both figures reveal
scalability with the size of the database.

We have reason to believe that as the database grows
the logical locality of the clusters starts to correspond
better to the physical clustering on pages [24].  The effect
is that entire contents of sub-trees could be found and
returned in their entirety without further distance
calculations, thus reducing the number of distance
calculations.  Similarly, entire sub-trees can be pruned,
reducing the search cost.

5.3 The wall clock time measurement

mSQL is implemented in Java as an extension of the
McKoi open-source relational database management
system, which is also written in Java. Those who avoid
Java for database management system research due to
performance concerns are well justified.  We have
determined that 80% or more of our execution time is
spent in object serialization and type casting routines in
the disk I/O manager.  These operations have no overhead
in C++ due to the looser type system and more
controllable memory allocation. At the outset of this work
we were primarily concerned with issues revolving
around validity of metric models of biological similarity
and  broad algorithmic assessments of relative behavior
and scalability. Thus, we determined that we would be
better served by the productivity offered by Java, even if
this meant an additional expense later of porting the
system to Postgres or a commercial RDBMS. We are
certain that we made the correct decision.

Even so, some assessment of the absolute speed of this
system is called for.  While mSQL addresses far more
general computation than is possible using BLAST,
BLAST searches to determine protein sequence homology
are the canonical comparison.  For consistency within the
database literature we used the same workload as was
used for a similar measure in a recent VLDB paper by
Meek et al [25]. We thank the authors for furnishing the
queries.

That query set consists of 100 queries ranging in
length from 6 to 56 amino acids with an average length of
16.  We tested this dataset against the complete yeast
protein database of roughly three million amino acids
using a search strategy in which all of the nearest
neighbors of the query fragment were returned. The
average search time per query sequence is about 3

Figure 6b. Average number of leaf nodes visited  per q-
gram search for different size datasets

Figure 6a. Average number of distance calculations
per q-gram search for different size datasets
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seconds.  For comparison, the average search time per
sequence using BLAST on the same dataset with an E
value of 20,000, as suggested by Meek et al., is about 0.2
seconds.  At this small database size our Java-based
system is an order magnitude slower. Given the vastly
superior programming model, (SQL vs. Perl scripts), the
broader applicability of mSQL and the opportunity on
more complex problems for a query optimizer to produce
algorithmically superior plans, we see this level of
performance as a successful accomplishment.  Given our
scaling results one can anticipate that a port of mSQL to
Postgres will yield BLAST-like speed on larger databases.

6. Application examples

Two application examples (three-way genome compare
and miRNA) are given in the following section to
demonstrate the functionality of sequenceview and the
optimizability of the operators defined above.

6.1 Three-way genome compare

A paper in the journal Science recently reported on
“Ultraconserved Elements in the Human Genome” [2].  It
compared the human, rat, and mouse genomes in search
of absolutely conserved orthologous regions, i.e. regions
that exhibit 100% identity with no insertions or deletions.
Each region was also required to be 200 base pairs in
length or longer. This specification can easily be written
as an mSQL query, one that is in fact more general.

The query assumes the following SQL schema:
HumanGenome {SID int, chromosome varchar, dna_seq DNA};
RatGenome {SID int, chromosome varchar, dna_seq DNA};
MouseGenome {SID, chromosome, dna_seq DNA}
To perform a three-way genome compare a

sequenceview must first be created  for each genome:
create sequenceview HV as
select SID, dna_seq
from createfragments(HumanGenome.dna_seq, 200)
using hamming.
Sequenceviews for the mouse and rat genomes are

created with similar arguments.
The runtime query is as follows:
select HV.SID, RV.SID, MV.SID,

merge(HV.dna_seq, RV.dna_seq, MV.dna_seq)
from HV, RV, MV
where distance('hamming', HV.dna_seq, RV.dna_seq) = 0
and distance('hamming', HV.dna_seq, MV.dna_seq) = 0
group by HV.SID, RV.SID, MV.SID,

HV.dna_seq, RV.dna_seq, MV.dna_seq.
This query selects all subsequences of at least length

200 from the three genomes that exhibit a one hundred
percent identity match. Notice that, although we specified
a radius of zero as per the specification in the above-
mentioned paper, any size radius could be specified
without a significant degradation in the performance of
the query, since we have created an index with O(logm)
search times for each genome.

By utilizing the properties of our algebra, the query
optimizer can create an optimal plan for this query. With

H’ = κdna_seq:200(H), R’ = κdna_seq:200(R), and M’=
κdna_seq:200(M),  the above query is equivalent to:

λγH’.SID, R’.SID, M’.SID, H’.dna_seq, R’.dna_seq, M’.dna_seq

(H’|×|δ(hamming, H’.dna_seq,R’.dna_seq) = 0 R’) |×|
(H’|×|δ(hamming, H’.dna_seq,M’.dna_seq) = 0 M’).

Since the distance function distributes over a metric
join, the query optimizer can perform two joins instead of
three.  The query can be optimized to the following:

λγH’.SID, R’.SID, M’.SID, H’.dna_seq, R’.dna_seq, M’.dna_seq

(H’|×|δ(hamming, H’.dna_seq,R’.dna_seq) = 0 R’)
|×|δ(hamming, H’.dna_seq,R’.dna_seq) = 0 M’.
See figure 7.

The optimizer can then use the associativity property
of the metric join to further optimize the join such that the
two smallest relations form the inputs to the topmost join.

These optimizations may appear rather mundane, but
this is precisely the point.  Since our algebra is based on a
standard extended relational algebra, it is possible to reuse
many of the optimizations already present in a standard
query optimizer. This fact also suggests straightforward
integration of this approach with existing systems.

6.2 miRNA query

MicroRNAs (miRNAs) are very small RNAs (about 22
nucleotides long) that may regulate gene expression in
plants, animals and fungi. The mechanism of the
regulation is interesting since an miRNA pairs with 3’
UTR (untranslated region) of the mRNA of the regulated
gene. TargetScan is a tool that predicts miRNA target
sites conserved across multiple genomes. The first step of
the algorithm is to search a set of orthologous 3’ UTR
sequences from one organism for perfect Watson-Crick
complementary matches to bases 2-8 (from the 5’ end) of
the miRNA, and then extend matches allowing G-U pairs
[23]. Such searching processes can be expressed in mSQL
as shown below.

We assume the following schema:
miRNA {name varchar, seq RNA}
Genome {SID int, dna_seq DNA}
Features {SID int, name varchar, gene varchar, complement

boolean, first int, last int}
The feature table contains ranges of mRNAs and

CDSs (coding sequences).

H’

|×|δ(hamming, H’.dna_seq, R’.dna_seq) = 0

γH’.SID, R’.SID, M’.SID, H’.dna_seq, R’.dna_seq, M’.dna_seq

M’R’

|×|δ(hamming, H’.dna_seq, R’.dna_seq) = 0

λ

Figure 7. Optimized query plan for three-
way genome compare



First, sequenceviews are created for miRNA and
genome sequences:

create sequencview M7 as
select * from createfragments(mirna.seq, 7) using hamming;
create sequenceview G7 AS
select * from createfragments(Genome.dna_seq, 7) using hamming.
A view is then constructed for 3’ UTR sequence

fragments  using information from the feature table:
create view UTR as
select G7.* from G7, Features F1, Features F2
where F1.gene = F2.gene and F1.name = 'CDS'
and F2.name = 'mRNA' and F1.complement = true
and F1.SID = G7.SID
and (G7.dna_seq.offset between F2.first and F1.first).
For brevity, we only consider the coding sequences

that are located on the complement strands. The queries
for the other case are similar.  The runtime query is as
follows:

select merge(UTR.dna_seq) gseq, merge(M7.seq) mseq
from (select UTR.SID, UTR.dna_seq.offset goffset,

M7.name, M7.seq.offset moffset
from UTR, M7
where M7.seq.offset = 1
and distance('hamming',
UTR.dna_seq, M7.seq) <= 0)
as SEED, UTR, M7

where distance('hamming-rna', UTR.dna_seq, M7.seq) <= 0
and M7.name = SEED.name
and UTR.SID = SEED.SID
and UTR.dna_seq.offset – SEED.goffset =

M7.seq.offset – SEED.moffset
group by UTR.SID, M7.name, UTR.dna_seq, M7.seq
having mseq.offset <= 1 and mseq.offset + mseq.length >= 7.
In this query, we first find 3’ UTR fragments that are

exact complementary matches of bases 2-8 of miRNAs
using a metric join. Then we find matches (allowing G:U
pairs) that are adjacent to the exact matches. The matched
fragments are merged. The HAVING clause filters the
result so that only merged miRNA fragments which are
extensions of bases 2-8 are returned.

miRNAs are very short and there aren’t many of them
(It is estimated that there about 200-255 miRNA genes in
the human genome [23]). Assuming there are fewer tuples
in M7 than in UTR, the query optimizer can choose an
indexed nested loop using the metric index of UTR for the
metric join. After the SEED table is returned, there are
two alternative paths to join it with UTR and M7. Since
miRNAs are short, the optimal plan is to join the SEED
table with M7 first. The result is joined with UTR by a
theta join. The query optimizer can then choose the join
order based on the selectivity of the attributes SID and
name. The query plan is shown in Figure 8.

7. Related work

The growth of the amount of sequence data and the
importance of manipulating it easily has produced dual
trends.  The growth has instigated algorithmic research
into approaches where sequence data is preprocessed off-
line and organized in data structures such that on-line
queries can be executed quickly. The importance has
instigated a number of SQL-level programming systems
aiming at simplifying the coding of sequence analysis.

Algorithmically, interest in leveraging metric-space
search methods to improve sequence analysis algorithms
has been expanding.  Modern efforts appear to have
started with the SST system, which reports 1 and 2 order
of magnitude speed improvements over BLAST [10].
SST comprises nearest-neighbor searches based on
Hamming distance using a vector space mapping of q-
grams and a TSQV tree.  Results were reported only for
sequence assembly.  Chen and Aberer proposed a system
composed of M-trees and a metric upper-bound on local
alignment scores.  No performance figures have been
published.  The most far-seeing work was a paper by
Wang and Shasha in 1990, which was one of the earliest
to propose algorithms to search metric spaces by
precomputing and storing selected distances [35].  They
further characterized the metric-join problem and
presented results on finding similar proteins for a set of
151 proteins made up of less than 21 amino acids.
Halperin et al. developed an embedding of the BLOSUM
matrices in Hamming spaces and employed a probabilistic
locality sensitive hashing algorithm to the protein
sequence homology problem [16].

At the language level, Patel’s work on PiQA, the
Protein Query Algebra, is closest to mSQL [34].  In PiQA
sequences are strings.  To integrate biological semantics
PiQA introduces two new types, hit and match, and a new
operator, match.  The match operator may be applied to a
table containing strings and is parameterized by a
matching model, which consists of either a regular
expression or a sequence coupled with a similarity model.
The output of the match operation augments the input
table with a new set-valued attribute of type match.  The
individual values are hits, which are triples, containing the

UTR UTRM7

σM7.seq.offset = 1

M7

|×|δ(hamming, M7.seq, UTR.dna_seq) <= 0

|×| M7.name = SEED.name

|×| UTR.SID = SEED.SID,UTR.dna_seq.offset – SEED.goffset = M7.seq.offset-

SEED.moffset, δ('hamming-rna', UTR.dna_seq, M7.seq) <= 0

γ UTR.SID, M7.name, UTR.dna_seq, M7.seqλ

σmseq.offset >=1, mseq.offset + mseq.length >= 7

Figure 8. Optimized query plan for miRNA query



position, length and score of the hit.  Since match is set-
valued, the PiQA algebra also requires that the query
engine support the nest and unnest operators.

Since match can take a regular expression as an
argument, PiQA does well with queries seeking to
identify protein motifs.  To date, the work does not speak
to integrating methods beyond sequential scan for
matching those expressions.  Full genomic comparisons,
(genome joins) are not yet well addressed in PiQA.  On
the other hand, mSQL, while addressing full genomic
comparisons, does not speak to matching regular
expressions.  It seems likely that mSQL’s fast access
paths to q-grams could be used to accelerate regular
expression matching. A fair characterization is that mSQL
and PiQA have complementary strengths.  In moving
forward, an integration of the ideas is more likely than a
competition.

A number of efforts have applied information retrieval
algorithms to biological sequence retrieval.  These
commonly involve inverted indexes on q-grams
[6,21,33,37].  These systems are proving to be very fast
and useful when used as either a coarse filtering
mechanism or when applied to genomic analysis problems
on evolutionarily close sequences [5].  Another
specialized index structure, the suffix-tree, has also been
tested with respect to both accuracy and scalability on
very large datasets [22].

8. Conclusion and future research

In his introduction and invited content to a recent special
issue of the Data Engineering Bulletin on Genomic
Databases, Patel makes the case that expanding the
declarative programming abilities of SQL engines to
include solving bioinformatics problems is a problem
whose solution would provide new productivity to
computational biology.  The mSQL system is a step in
this direction. An additional argument not developed in
that special issue is:  what is the penalty of not having
such an ability? In addition to explosive growth in the
amount of data in biology, biology is also facing
explosive growth in the number of databases. We know
that data federation is another large theme in biological
databases.  Our conjecture is that the lack of easy
sequence query systems is one source of new databases.
When biology problems like finding and identifying the
function of conserved genomic regions in mammals is
hard work, it makes sense that the results be entered in a
new database and added to the corpus. If that same
analysis takes an afternoon and can be recreated in a few
hours on a workstation, then the value of those results
may be insufficient to create a new database. All use case
examples of mSQL queries come from biological studies
that have archived their results in new databases.

Next steps for mSQL include more validation with
more use cases.  If the algorithms do not overcome the
performance penalty of the Java implementation the

system will be ported to Postgres or a commercial
RDBMS.

Many open research problems remain.  Our current
implementation of a metric-space join is a straightforward
indexed nested loop algorithm.  When n is in the range of
107-1010,  even O(nlogn) algorithms become
computationally challenging. Given a tree-structured
access path one can anticipate merge-join like algorithms
that would tend toward O(n) execution time, (assuming
output size is small).  Wang and Shasha detailed a simple
recursive descent of the index for self-join that will work
for most, if not all, tree-based methods of metric-space
indexing [35]. Other than their contribution, the topic of
metric-space joins is completely open. We anticipate that
generalizing such an algorithm will necessarily make
some assumptions about the underlying index and much
work needs to be done.
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