
CENTRALIZED CONTROL OF WIRELESS

SENSOR NETWORKS FOR REAL-TIME

APPLICATIONS

Jianping Song ∗ Song Han ∗ Aloysius K. Mok ∗

Deji Chen ∗∗ Mark Nixon ∗∗

∗ Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712, USA
∗∗ Emerson Process Management

12301 Research Blvd Building III

Austin, TX 78759, USA

Abstract: Wireless sensor networks are usually composed of autonomous nodes.
Each networked node constructs its own neighbor table, routing table, and
schedules internal tasks on its own. However, the inherently distributed control
in a sensor network conflicts with the deterministic requirements when we develop
real-time applications on top of wireless sensor networks. In this paper we argue
for the case of centralized control in distributed wireless sensor networks. We first
describe the characteristics of wireless sensor networks and real-time applications.
Then we explain the gap between the demand and supply. We back our arguments
with some tentative simulation results. The idea of running real-time applications
over wireless sensor networks is motivated by WirelessHART, a standard to apply
process control over wireless mesh networks. Not surprisingly, WirelessHART

adopts centralized network management.

Keywords: centralized control, wireless sensor network, real-time application

1. INTRODUCTION

Recently, wireless sensor networks have been a
very popular research topic. However, most of
the proposed applications, such as environment
monitoring, are non-real-time (Song et al., 2006).
For other real-time related applications, such as
ZigBee, the built-in control functions are limited.
For example, ZigBee mesh network is designed
mainly for office automation. It provides ways to
efficiently manage building energy consumption as
well as fire alarm systems, which entails real-time
responses.

However, the characteristics of a wireless sensor
network makes is ill suited for real-time applica-

tions. First of all, each sensor has its own task set
and task scheduling. It is a big challenge to have
all the sensors to cooperate to support a network
wide real-time application. Secondly, the scarce
resource on each node makes it hard to provide so-
phisticated cooperative mechanisms. Thirdly, the
dynamic nature of a wireless network may make
an existing schedule obsolete and invalid.

In this paper we shall investigate those issues and
propose that a centralized scheduling scheme is
the better way to go. We shall discuss the pros and
cons of centralized and distributed approaches.
Although centralized approach is hard in theory,
it is simple and practical in real world. Our ar-
gument is further supported by the simulation



results. In addition, our claim is backed by Wire-

lessHART, a process control standard based on
wireless sensor networks.

The rest of this paper is organized as follows.
Section 2 introduces the concept of real-time tasks
and how to model a real-time network applica-
tion. Section 3 describes a wireless sensor network
and its real-time tasks. Section 4 presents differ-
ent approaches to schedule real-time tasks in a
wireless sensor network and Section 5 compares
both approaches with some simulations. Section 6
introduces WirelessHART standard. The paper is
concluded in Section 7.

2. REAL-TIME TASKS

A real-time task T is a 3-tuple {C, D, P}, where C

is the execution time, D is the relative deadline,
and P is the period (Chen et al., 1997). At the
beginning of each period P , the task T requests
an execution of length C that should be finished
within D time units. Each request is called a job.
Normally D ≤ P . The task T fails if any of its
jobs misses its deadline. A real-time task set S is
a set of n real-time tasks T1, T2, . . . , Tn. A task set
S is schedulable by a scheduling policy on a single
processor if no job of any task will miss deadline
under the control of this policy. S is feasible
if S is schedulable by at least one scheduling
policy. We shall use the definitions above in this
paper thereafter. There are also other real-time
task models. For example, a task may have fixed
initial start time. In some simple versions a task’s
deadline equals its period. For continuous real-
time applications, a task is usually repetitive,
hence the period P in the task definition. P is
sometimes also called the minimum separation
time to model tasks whose jobs are not exactly
periodic. Many schedulability results apply even
if P is the minimum separation time.

Research on real-time task scheduling on a sin-
gle processor is considered mature now. Many
well known scheduling policies, such as Earliest-
Deadline-First (EDF) (Liu and Layland, 1973),
(Stankovic et al., 1998), Rate-Monotonic-Algorithm
(RMA) (Sha et al., 1994), and Priority-Ceiling-
Protocol (Sha et al., 1990), have already found
their ways in real industrial applications. There
has also been works done on multi-processor sys-
tems in which a task could be selected to run
on any processor in the system. In this paper,
we assume each node in the sensor network has
a single processor and the scheduling algorithm
on each of them could be solved with any of the
well-known algorithms above once the task set
is defined. Next we shall describe how to model
real-time applications running on a distributed
network.

A real-time application running on a distributed
network could be modeled as one real-time task
set per node plus real-time data communications
among the nodes. A real-time data communica-
tion between a source and destination could be
considered as one real-time task in the source
and one task in the destination, plus the synchro-
nization requirement. Each communication task
has an execution time, a relative deadline, and
a period. The execution time is the transmission
time of the communication. The destination must
be in the listening mode when the source is trans-
mitting. Fortunately, there are always ways to
schedule the task set once we divide the prob-
lem into individual scheduling problems in each
node. Since mainstream distribute networks such
as Internet adopt best-effort data transmission
mechanisms, there are few, if any, real-time ap-
plications on distributed networks. It is hard to
provide guaranteed data delivery on best effort
networks anyway.

Another challenge lies in the case when the source
and the destination are not direct neighbors. In
this case, all nodes on the path from the source
to the destination should deliver the data to the
next hop timely so that the total delay is no more
than the relative deadline of the communication.
Since each node on the path acts independently
of one other, it is hard for the nodes down the
path to dynamically adjust to the accumulated
delay from earlier nodes. An easier way is to
pre-configure each node’s delay contribution. One
possible solution is to pre-assign individual delays
on each node. For example, in the RSVP protocol,
the bandwidth and delay request is passed from
the source to the destination. Each intermediate
node returns with the range of commitment it
could provide. Then the final allotment on each
node is calculated and assigned. To enable real-
time applications, some sort of centralized control
is necessary.

There have been extensive research works on find-
ing data paths that meet QoS requirements such
as delay bounds. Those results could be applied
to either centralized or distributed networks. For
example, (Ishida et al., 1998), (Jia and Varaiya,
2001), (Liu et al., 2005) proposed different heuris-
tic Delay-Constrained Least-Cost(DCLC) unicast
routing algorithms in which the path from source
to node is determined by breadth-first or depth-
first search on the network graph. It could be
done either in a distributed fashion or by a single
node with global information. We should point out
that DCLC algorithm would be very costly if it
is carried out online. For periodic real-time ap-
plications, we could use DCLC algorithms offline
and apply the result online during application
execution.



: Coordinator/Router

: Reduced Function Device

MeshStar

Cluster Tree

Fig. 1. ZigBee topology models

3. WIRELESS SENSOR NETWORKS

Wireless sensor network is a type of unreliable
distributed network. Except for the challenges
described in the section above, two unique fea-
tures of wireless sensor networks makes the issue
even worse: wireless communications and low-cost
nodes.

Figure 1 shows the topology models of ZigBee
networks (ZigBee, 2007). There can be two types
of devices in a ZigBee network: Reduced Function
Device (RFD) which can not relay data and Full
Function Device (FFD) which forwards data from
a collection of RFDs. Routers and Coordinators
are FFDs. Coordinator manages routers and de-
vices. Sometimes routers are mainline powered
and connected to the base station by wireline.
Figure 1 shows three basic topologies in ZigBee.
In a star topology, sensors are connected to a cen-
tral router/coordinator. In a cluster tree topology,
routers form a tree. Sensors connect to tree nodes.
In a mesh topology, stars and cluster trees are
connected via their routers. A large scale ZigBee
network is a mesh. We discuss sensor networks in
the mesh topology in this paper.

While most failures in wireline transmissions can
be attributed to collisions, wireless transmissions
can fail in more diverse ways. We could no longer
assume the reliability of a single path during the
lifetime of a real-time application. We have to
accept the fact that data may be diverted on
different paths at different times which, interest-
ingly enough, is one advantage of wireless sen-
sor networks. Real-time scheduling must consider
retrying data package on alternative paths.

Another advantage of wireless sensor network
is the low cost of sensors that enables massive
deployment. Low cost means minimal memory
size and low power usage. Real-time scheduling,
on the other hand, requires somewhat complicated
algorithm and process power. The dynamic nature

of a wireless network entails even more scheduling
complexity. It would be prohibitive for a sensor
node to provide full support for a global real-time
application.

4. CENTRALIZED VERSUS DISTRIBUTED
CONTROL

In this section we compare centralized and dis-
tributed control of wireless sensor networks from
the perspective of supporting real-time applica-
tions. By centralized control we mean a node does
not generate its own schedule; rather, it executes
a schedule generated by and downloaded from a
central scheduler such as the base station. The
node simply collects communication statistics and
forwards them to the central scheduler. On the
other hand, by distributed control we mean a node
is autonomous. It schedules its own tasks and
data processing. It also processes requests from its
neighbors and the host. In a centralized network,
the central controller generates routing paths and
distributes them to each node; in a distributed
network, each node builds its own routing infor-
mation by talking with each other.

We define a real-time application as a function
on the base station with an input set and an
output set. The input set is a collection of nodes
n1, n2, . . . , nk with their respective sensor values
v1, v2, . . . , vk. The output set is also a collection
of nodes and the values that will be assigned
to them. Figure 2 shows an example on the
enlarged mesh network in Figure 1. In Figure
2, the application T runs on node A every 10
seconds. At each execution it reads sample data
from sensor nodes C and G, and downloads the
result to actuator node H. The dotted arrows
show the data directions. Note that there can be
multiple concurrent real-time applications on the
mesh. There are two alternative paths from C to
A: C → B → A and C → D → A. Similarly,
there are two alternative paths from G to A:
G → F → D → A and G → F → E → A.
Finally, there are two alternative paths from A to
H : A → D → F → H and A → E → F → H .

Node D has three types of tasks, routing data
for other nodes, handling its own data, and its
internal management tasks.

In the following sub-sections we compare central-
ized and distributed control from five aspects. We
shall use node D as an example in some cases.

4.1 Run time scheduling

In centralized case, node D will receive exact
data routing schedule from the central manager.
Fixed time slots will be allocated every 10 seconds



: Coordinator/Router

: Reduced Function Device

Mesh

C

D

A

B

Task T

H

E

G

F

Fig. 2. Real-time application

to route data from application T . The central
manager will also schedule node D to route data
for other applications and send its own data.
When not servicing the above schedules, D is free
to handle its internal tasks. In centralized case, D

will not cause any deadline misses for T .

If D’s schedule is determined by itself, it will treat
T ’s data using its own judgement. The central
manager might dictate when D could listen or
transmit, or D has to compete for channel access.
Either way, T ’s data no longer has pre-determined
delay on D. D may not necessarily assign higher
priority to forward data of other applications.
Further more, even if D has dedicated time slot for
data routing, it could not differentiate data from
different applications. This means that applica-
tions sharing paths will interfere with each other
at the path level, which poses more obstacles to
meet real-time requirements.

In centralized control, the schedule is generated
offline by the central manager; the networks nodes
runs the schedule as simple as using a lookup
table. In distributed control, the schedule in each
node is usually generated online, which normally
takes more memory space and execution time.

Real-time support over the network could not be
achieved if network nodes schedule tasks on their
own.

4.2 Data path generation

Centralized management has advantage in gener-
ating routing paths. By taking into account all
possible links and their signal strengths, the cen-
tral controller could derive the best routing table
for each node based on the load, number of hops,
signal strength, and more importantly, deadline
requirements. All the nodes need to do is to finds
its neighbors and measure the signal strength with
the neighbors and pass the information to the cen-
tral manager. For example, in Figure 2 we list two
paths for each datum transmission of application
T . The paths are balanced.

It would be difficult if each node forms its own
knowledge of the network by itself. A good path
may be favored by all data transmissions and the
nodes on the popular path will exhaust their bat-
tery before other nodes. People could always find
good distributed routing protocols, but no matter
what those protocols are, they could always be
implemented on a central controller.

4.3 Device join and leave

We now look at how a node handles the come-and-
go of its neighbors. Suppose before a device joins
the network, the networks is running applications
without any real-time violations. After the device
joins the network, it would request data trans-
mission with certain nodes in the network. This
added data traffic, if not managed correctly, could
interfere with other applications and cause them
to fail. In the distributed control, a neighbor of
the new device may assign the new device’s data
the same priority as that of existing applications
while it should have assigned the lowest priority
to it. On the other hand, it is very difficult for the
individual node to make this decision alone.

With centralized control, the newly joined device
may not even be able to transmit data without
admissions from the central manager. After the
central manager decide that the addition of the
new node will not affect existing applications, the
new device could then safely be admitted into the
network and transmit its data.

Distributed control is better when a device dies
or voluntarily leaves the network. If the device is
a leaf node, there is not much difference between
the two control mechanisms. If the device is also
a router, the data from its neighbors must be re-
routed. Centralized control will be less respon-
sive to re-routing demand as the new schedule
would have to be updated by the central manager,
while in distributed case, sensors could handle re-
routing by themselves locally.

4.4 Collision avoidance

Another advantage of centralized scheduling is
collision avoidance. In random channel access
scheme, a node having data to transmit first lis-
tens on the channel, if the channel is clear, it
starts transmitting. If the channel is occupied, the
node has to back off and retry later. This mecha-
nism works very well when network traffic is low.
However, once many nodes try to transmit at the
same time, there would be lots of collisions which
may lead to miss deadlines. As for centralized
scheduling, a time slot is exclusively used by one
transmission. Retry is only to deal with outside
interference described in the next subsection.



4.5 Temporary interference

Temporary interference is common in wireless
networks. There are many ways to mitigate this
problem, such as Direct Sequence Spread Spec-
trum (DSSS ) and Frequency Hopping Spread
Spectrum (FHSS ). However, those mechanisms
could not eliminate the problem. We have to con-
sider it within the scheduling policies in order
to meet real-time requirements. When calculating
the worst data transmission delay, we should take
into account the retries and re-routing. For tem-
porary interference, retry and re-routing requires
similar work for centralized and distributed con-
trols. In both situations, the sender will resend
the packet to the same neighbor and, if unsuc-
cessful, try the neighbor on the alternative path.
Distributed control may have advantage in that
it could retry on re-route according to the failure
information. For example, it could choose alter-
native neighbor that it had the most successful
transmissions in the past. A simple node with
centralized control might retry the same failed
route until told by the central manger otherwise.

Note in general centralized control reduces the
scheduling computation in individual nodes, which
in turn reduces the cost of the sensors and in-
creases the battery life. Both real-time and non-
real-time applications can benefit in this aspect.

5. PERFORMANCE COMPARISON

To compare centralized and distributed network
management, we simulate the application T pre-
sented in Figure 2. The objective is to check to
what extent T will miss deadlines in various net-
work settings. In the simulation, we assume that
all other applications are non real-time and they
contribute to the background load of the network.
The load is defined in terms of the amount of
data traversing each node, which includes the data
generated by itself and its children.

The network is defined as follows: Node A is
mains powered host and has unlimited computa-
tion power. Nodes B, C, D, E, and F are sensors
that also route data. They have the same hard-
ware and require the same amount of execution
time to collect sensing data. G is a sensor leaf
with less process power and H is an actuator leaf.
Neither G nor H routes data. It takes 1 time unit,
which is 10 milliseconds, to transmit or receive
one data packet. All data is forwarded to the
host. In the centralized mode, a node transmits
data according to pre-configured schedule from
the central manager. In the distributed mode, a
node uses a First-In-First-Out (FIFO) queue to
store packets. We assume the network runs peri-
odically every 10 seconds. All simulations are run

0 20 40 60 80 100
0

10

20

30

40

50

60

Ap
pl

ic
at

io
n 

D
el

ay

Network Load

 Total Delay
 Hard Deadline

Fig. 3. Application delay vs. network load

for 10 seconds. After which no node will generate
any new data and we continue forwarding data
that has not arrived at the destination yet. To
manage the complexity, we stipulate that nodes
A, C, and F transmit at odd time slots and receive
at even time slots. Conversely, nodes B, D, E, G,

and H enters transmitting mode in even time slots
and listening mode in odd time slots. In the first
two simulations we introduce no communication
interference. We then test with random interfer-
ences during each data transmission in the third
simulation.

In the first experiment, we explore the effect of
network load on the total delay of application T ,
which is the period from the time the data is gen-
erated at the source nodes to the time when the
data arrives at the destinations. For the purpose of
simplicity, we use the same data size for each node
and we do not introduce transmission collision.
The simulation result for the distributed manage-
ment is presented in Figure 3. From this figure,
we can see that application T will miss its hard
deadline (10 seconds) if the network load increases
to 18% and the application delay increases linearly
with the rise of the network load. The increase of
network load does not affect centralized case be-
cause the transmission for T ’s data has dedicated
time slots. This test also reflects the case where
new devices join the network. For centralized case,
they do not add to network traffic because they
are not allowed to send out data until the cen-
tral control admits them into the network; for
distributed case there is no such mechanism and
they add to the network traffic immediately.

In the second experiment, we introduce transmis-
sion collisions and find the total number of retries
for a given system load. A node randomly backs off
a few time slots on transmission failure and then
retries. The number of back-off slots ranges from
0 to 20. We do not test centralized case as real-
time data does not need retry when there is no



0 20 40 60 80 100
0

500

1000

1500

2000

To
ta

l N
um

be
r o

f R
et

rie
s

Network Load

Fig. 4. Retries as a function of system load

outside noise. Figure 4 shows the result for the dis-
tributed case. Note that due to random back-offs,
the number of retries does not strictly increase
monotonically with the system load. As system
load increases, a lot of time slots are wasted in
the distributed management case.

At last, we introduce some outside interferences
into our simulation. In this experiment, we ran-
domly spread noise on the communication links
between two neighbors for a random period of
time up to 20 time slots and we assume that there
is no transmission collision. In the simulation,
the node will keep retrying until the transmission
succeeds. Thus we count the total transmissions
that lead to a successful communication. We list
the result for the three pieces of data in applica-
tion T . As described in Section 4, there are two
alternative paths for each data. We compare two
retry methods. In the first method, a node tries
the other neighbor upon first failure; in the second
method, a node retries the same neighbor for one
more time before going to the other neighbor. If
there is no alternative, the node will keep using
the same neighbor until the noise disappears. Fig-
ure 5 shows the comparison of the application
delay for the two approaches. From this figure, it is
easy to find that the first method (try alternative
first) excels under our current noise settings. If
the noise lasts long enough, retries on the same
neighbor always fails. Figure 6 demonstrates the
comparison of retries between these approaches. It
is hard to draw clear conclusions from this figure.
First of all, our simulation setting does not give
preference to any of the two retry methods. If the
noise always last long, retrying the same neighbor
would make no sense and simply waste retry ef-
fort. If a connection is always clear for a relatively
long time, first trying the successful neighbor from
last transmission has a better chance of succeeding
again. In a centralized case the central manager
may dictate what retry method to use, while in a

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

A
pp

lic
at

io
n 

D
el

ay

Network Load

 Approach one
 Approach two
 Approach three

Fig. 5. Application Delay with outside interfer-
ences

20 40 60 80 100
0
2
4
6
8
10
12
14
16
18
20
22
24
26

N
um

be
r o

f R
et

rie
s

Network Load

 Approach one
 Approach two
 Approach three

Fig. 6. Retries comparison

distributed case individual node could adopt the
best method on the fly.

6. WIRELESSHART

Wireless sensor networks have been extensively
studied. And there have been some real appli-
cations reported, such as environment and habi-
tat monitoring. Recently, people start to explore
the possibility of running time-critical industrial
applications on wireless networks. In this section
we shall introduce one such effort, an industrial
standard for wireless process control. This stan-
dard adopts centralized network management. We
include this section here to provide empirical sup-
port for our argument for centralized path routing
and schedule management.

HART (HART, 2007) is a very popular industrial
fieldbus standard. There are millions of HART
devices installed in the field. The massive deploy-
ment can be attributed to its simplicity, low cost,
ease of use, and high value. Currently, HART is



Network Manager

A

F

E

D

C

B

Gateway

Gateway

G

H

Fig. 7. WirelessHART mesh network

based on wireline transmissions. The next HART
version, which was ratified on September 7, 2007,
includes wireless transmissions. WirelessHART

enables host application to access existing HART-
enabled field devices through wireless channels. It
also supports the deployment of battery-operated
wireless-only HART field devices.

Figure 7 shows a WirelessHART mesh network
with the same topology as that in Figure 2. The
network connects to the host network through
one or more gateways. In Figure 7, there are two
gateways A and C. There is one network man-
ager in WirelessHART that controls the whole
network. It runs on a mains powered gateway or
outside the network. In Figure 7 it runs on a host
workstation. A node in the network reports its
communication statistics to the network manager.
Based on the information, the network manager
creates routing graph, configures communication
schedules, and downloads this information to each
node. A node can only communicate at some pre-
configured time slots. The configured time slot
defines the transmitter and receiver, the message
type, and the wireless channel to use. The sched-
ule produced by the network manager includes
time slots for retry, re-route, unscheduled data,
and others. Without first getting some time slots a
node cannot transmit or receive data. Thus a new
device joining the network will not interfere with
existing traffic until a new schedule is created and
downloaded. Once the schedule is downloaded to
each node in the network, the network manager
steps out of the way, listens to communication
statistics, and re-generates and downloads new
schedule when necessary. And the nodes simply
execute the schedule that collectively runs the
applications over the network.

Now we explain how the network manager could
allocate time slots for application T described in
Section 4. Suppose that the network is configured
to retry the same path first and then the alterna-
tive path. There will be time slots of (C → B),
(C → B), and (C → D) scheduled for C to send
out its data, for the next hop time slots (B → A),

(B → A), (D → A), and (D → A) would be
scheduled for C’s data. The same type of time
slots will be scheduled for the data from node G

to A and from A to H . The order of time slots is
also kept so that earlier hops are scheduled before
later hops. Also, the control module running in A

is scheduled after the sensor data have arrived and
before the time slot allocated to send data from
A to H . All these time slots must be scheduled
within T ’s period of 10 seconds and be repeated
every 10 seconds. Unless the network fails on all
data transmission retries, it shall meet the real-
time requirements of application T .

Industrial standards, especially those in the pro-
cess control industry, are very conservative in that
safety is utmost important. ZigBee has difficul-
ties getting into the process control market, as
it uses a fixed physical channel: any interference
on that channel will render the network useless.
New technologies such as distributed wireless con-
trol presents more risks than centralized control.
Even with centralized control, the initial target
of WirelessHART is still industry monitoring and
non-critical simple loop control.

7. CONCLUSION

In this paper we explore the case of running real-
time applications on wireless sensor networks. As
a sensor network is essentially distributed, each
sensor is autonomous, which means it schedules
internal tasks and data communications by itself.
To reach this goal, we propose centralized control
mechanisms, instead of distributed control. We
back our claim by first analyzing the features of
real-time applications and wireless networks. We
then compare the differences between centralized
and distributed management. The tentative sim-
ulation results also support our conclusions.

Applying wireless technologies in real-time appli-
cations is relatively new and challenging. Some
industry organizations are also pursuing this idea.
WirelessHART is a result of such pursuit. Wire-
lessHART defines an industrial process control
protocol suite on top of wireless communications.
It proves from another viewpoint that centralized
network management is preferable to distributed
control for real-time applications.

REFERENCES

Chen, D., A.K. Mok and S.K. Buruah (1997).
On modeling real-time task systems. Lecture

Notes in Computer Science - Lectures on

Embedded Systems.
HART (2007). http://www.hartcomm.org.



Ishida, K., K. Amano and N. Kannari (1998). A
delay-constrained least-cost path routing pro-
tocol and the synthesis method. The 5th In-

ternation Conference on Real-Time Comput-

ing Systems and Applications.
Jia, Z. and P. Varaiya (2001). Heuristic methods

for delay constrained least cost routing using
k-shortest-paths. INFOCOM.

Liu, C.L. and J.W. Layland (1973). Scheduling
algorithms for multiprogramming in a hard-
real-time environment. Journal of ACM.

Liu, W., W. Lou and Y. Fang (2005). An efficient
quality of service routing algorithm for delay-
sensitive applications. Computer Networks.

Sha, L., R. Ragunathan and S. Sathaye (1994).
Generalized rate-monotonic scheduling the-
ory: A framework for developing real-time
systems. In Proceeding of the IEEE.

Sha, L., R. Rajkumar and J. Lehoczky (1990).
Priority inheritance protocols: An approach
to real-time system synchronization. IEEE

Trans. on Computers 39, 1175–1185.
Song, J., A.K. Mok, D. Chen and M. Nixon

(2006). Using real-time logic synthesis tool
to achieve process control over wireless sen-
sor networks. The 12th IEEE Conference on

Embedded and Real-Time Computing Systems

and Applications.
Stankovic, J., M. Spuri, K. Ramamritham and

G. Buttazzo (1998). Deadline Scheduling for

Real-Time Systems: EDF and Related Algo-

rithms. Kluwer Academic Publishers. Boston,
USA.

ZigBee (2007). http://www.zigbee.org.


